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Abstract—In the phoneme classification task of speech recog-
nition, usually Gaussian Mixture Models and Artificial Neural
Networks are used. For other machine learning tasks, however,
several other classification algorithms are also applied. One of
them is AdaBoost.MH, reported to have high accuracy, which
we tested for phoneme recognition on the well-known TIMIT
dataset. We found that it can achieve an accuracy comparable to
standard ANNs in this task, but lags behind recently-proposed
Deep Neural Networks. Based on our experimental results, we
list a number of possible reasons why this might be so.

I. INTRODUCTION

In machine learning, a wide variety of classification me-
thods have been introduced, ranging from the simpler, earlier
algorithms of decision trees [1] and Gaussian Mixture Models
(GMMs) [2] through Artificial Neural Networks (ANN) [3] to
more recent methods like Support Vector Machines (SVM) [4]
and AdaBoost.MH [5]. In the phoneme classification task of
speech recognition, however, GMMs have been the dominant
method for decades, which was only recently overtaken by
ANN.

In this task the utterance to be recognized is first divided into
small, equal-sized parts (frames) of typically 10 milliseconds
long, which are then classified independently as one of the
possible phonemes in the given language. However, evaluation
is usually not done on this level, but in the next step a
search is performed (typically via a Hidden Markov Model
(HMM)), based on the frame-level likelihood values provided
by the classification method. This search gives the most
probable path over the phonemes through time, from which
a phoneme sequence for the whole utterance is constructed.
So the performance of the frame-level phoneme classification
method is rated based on the accuracy of this utterance-level
phoneme sequence.

Therefore it is clear that phoneme recognition is not a pure
classification task, but the goal is essentially that of probability
estimation: in the search step those methods that provide poor
probability estimates have a disadvantage. On the other hand,
misidentifying individual frames is usually not a mistake at all,
as long as the given phoneme finally appears in the utterance-
level result (probably thanks to the high appropriate likelihood
scores in the neighbouring frames).
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Furthermore, from a machine learning perspective, speech
recognition databases usually have somewhat specific charac-
teristics. The number of features is quite low, as well as the
number of classes: the very popular MFCC feature set consists
of only 39 features for a frame, and the number of classes is
at most two hundred (at least for context-independent states).
Another special characteristic is that the classes are usually not
independent of each other: it is common to define different
states of the same phoneme as separate classes (usually the
beginning, middle and last parts (¢zri-state setup)), which are
naturally closely related, but to the machine learning method is
completely hidden. Another special property of the phoneme
recognition task is the number of examples: training on several
hours of audio recordings (nowadays hundreds of hours is
usual) leads to literally millions of examples.

This set-up is quite uncommon in machine learning, and
most algorithms simply cannot handle such a huge amount of
data. It is more usual to have fewer training examples, which
are described by a large feature vector, and which belong to
one of the few classes. Even speech technology has such tasks
like emotion detection [6], [7] and speaker recognition [8].

As ANNSs can be readily trained on huge amounts of data
by processing one chunk of data at a time, and are able to
produce reliable posterior scores, it is not surprising that they
have become the dominant machine learning method used for
phoneme classification. (We regard Deep Neural Networks
(DNN) [9] as a variety of ANNs.) Although other algorithms
like SVM and AdaBoost value each individual training exam-
ple more, in this given problem it is not so important due to the
huge number of training examples available. These methods,
due to their greater complexity, have other drawbacks as well
like higher training and evaluation times [10], high memory
requirements owing to the need to train on all the examples at
the same time, and necessity of tuning more meta-parameters
to achieve optimal performance.

In spite of the above points, AdaBoost was applied earlier
in speech technology. It is often applied when the number
of examples is small (typically one for each utterance), as in
emotion detection [11] and speaker verification [12]. Via the
increase in computational capacity and memory requirements
have become less critical issues, tasks that have several train-
ing examples like that of voice activity detection [13], [14],
feature selection [15] (also for laughter detection [16]) and
hypothesis rescoring [17] were studied recently.
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Some of these examples were frame-based (e.g. voice
activity detection [14]). Recently, we successfully applied
AdaBoost.MH to frame-level emotion detection [7], but with
specific features and only three classes. However, it is quite
rare to try to apply AdaBoost directly in the phoneme
classification task. Klautau [18]) trained one-against-all-type
classifiers for phoneme classification, but did not attempt to
construct an utterance-level phoneme-sequence of the results.
Dimitrakakis [19], Du [20] and Tang [21] boosted entire
HMMs, and Saon [22] also provided a training algorithm
for the whole speech recognizer framework. In most of these
studies, they boosted GMMs as weak learners, adding one
mixture in each iteration, which can be reasoned by the need
for good likelihood estimations. Yet, GMMs are already stable
on their own, which perhaps explains why using them as base
learners is practically unknown outside speech recognition.

In this work, however, we seek to apply AdaBoost as it
is typically used as a classification technique, and apply it
directly in the standard phoneme classification task. We will
also use a standard feature set and the the well-known TIMIT
database (frequently used as a benchmark). For comparison,
we also trained some other standard methods.

II. ADABOOST.MH

Next, we briefly describe the AdaBoost.MH algorithm.
First, let X = (x1,...,X,) be the observation matrix, where
xgj ) are the elements of the d-dimensional observation vectors
x; € R, We are also given a label matrix Y = (y1,...,¥n)
of dimension n x K where y; € {+1,—1}%. In a multi-class
classification one and only one of the elements of y; is +1;
we will denote the index of the correct class by £(x;).

A. AdaBoost. MH

The goal of the AdaBoost.MH algorithm [5] is to return a
classifier f : X — R¥ with a small Hamming loss

n K
B (80, W) = 375w Usien (7 (x0)) # 1.0}

i=1 4=1

by minimizing its upper bound (the exponential margin loss)
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where fy(x;) is the ¢th element of f(x;), and the indicator
function I{A} is 1 if A is true and O otherwise. The user-
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to create K well-balanced one-against-all classification prob-
lems. AdaBoost.MH builds the final classifier f as a weighted
sum of base classifiers hY) : X — RX returned by a base
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learner algorithm BASE(X,Y, W) for each iteration ¢. The
base learner should seek to minimize the base objective

n K
E(h, W(t)) = Z Z wgfg exp (—h[(Xi)yi’g). 3)
i=1 (=1
In our tests we used discrete AdaBoost.MH, in which the
vector-valued base classifier h(x) is represented as

h(x) = ave(x), “)

where o € RY is the base coefficient, v € {+1,—1}¥ is
the vote vector, and ¢(x) : R* — {41, —1} is a scalar base
classifier. The simplest scalar base learner used in practice is
the decision stump, a two-leaf decision tree having the form

Pjb(x) = {_

where j is the index of a feature and b is the decision threshold.
Although boosting decision stumps often yields satisfactory
results, state-of-the-art performance is usually achieved by
using decision trees as base learners, parametrized by their
number of leaves.

1
1

if z0) > b,

otherwise,

®)

B. Accelerated AdaBoost. MH

Running a full search for each boosting iteration step of
AdaBoost.MH is prohibitively expensive (especially for huge
datasets), so we turned to an accelerated version using a multi-
armed bandit (MAB) setup [23]. The main idea is to partition
the base classifier space H into (not necessarily disjunct)
subsets G = {Hl,...,HM} and use MABs to learn the
usefulness of the subsets. Each arm represents a subset; so,
for each iteration, the bandit algorithm selects a subset. The
base learner then finds the best base classifier in the subset
(instead of searching in the whole H space), and returns a
reward based on the output of this optimal base learner. From
the reward values, the MAB algorithm learns the usefulness
of the subsets. We applied the bandit algorithm EXP3.P [24].

For simple decision stumps, the natural partitioning is to
assign a subset to each feature: H; = {;,(x) : b € R}. But
the idea behind AdaBoost. MH.BA cannot be applied directly
to decision trees, since it is hard to find a suitable partitioning
of the space of trees, due to the large size of this space. So we
followed the setup of [25] where trees are treated as sequences
of decisions over the smaller partitioning used for stumps.

III. EXPERIMENTS

In our tests we used the TIMIT dataset. The standard
training set was split into a larger training and a small
development set: 50,693 frames belonged to the latter taken
from 176 utterances, leaving 1,074,130 frames for training. To
aid the phoneme recognizer, the training frame labels were re-
aligned by an ANN to more precisely position phoneme state
boundaries. All the 61 phonemes were used in a tri-state setup,
resulting in 183 classes overall. To improve the performance,
we used another task-specific modification: we also included
the feature vectors of 8 neighbouring frames on both sides in
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the training vector (so it consisted of 663 features accumulated
from a 170ms-wide long window), while keeping the original
class label. We used the MFCC+A+AA feature set, and used
the HTK toolkit [26] for preprocessing.

A. Classification Methods

We tested a variety of machine learning methods for com-
parison. We utilized the LibSVM [27] library for SVM and
the multiboost tool [28] for AdaBoost. For ANNs, we used
our custom implementation, which can also be trained as a
Deep Neural Network using rectifier activation function [29],
[30] in the hidden layers, which can be regarded as a state-
of-the-art technique [30]. We trained a neural network with
one hidden layer using sigmoids, and a DNN having 5 1024-
sized hidden layers with rectifier functions for comparison. For
AdaBoost. MH, we used decision stumps and decision trees
(with 8 leaves) as base learners, and employed the bandit-
based approach.

Including the feature vectors of the neighbouring frames is
a task-specific modification of the general machine learning
task. Our custom ANN implementation handled this easily by
training on a sliding window over the input feature vectors, but
as we used off-the-shelf libraries for SVM and AdaBoost, we
had to insert these extra feature vectors into the training data.
As this increased the memory requirements to 17 times the
original case, we had to sample the training data by keeping
only every third element (more for rarer classes), resulting in
375,673 actual training examples. For comparison, we trained
ANNS on this subset as well.

To avoid overfitting, we employed the straightforward tech-
nique of early stopping (meaning we just stop training after a
certain number of iterations). We trained AdaBoost for 100k
iterations, evaluated at every 10k, and chose the one for testing
on the core test set when the phoneme-level accuracy score
was the highest on the development set.

B. Frame-level evaluation

We measured the frame-level performance of the machine
learning methods in terms of accuracy, i.e. the percentage of
correctly determined class-labels over the number of examples.
We calculated this score for the development set only, where
we had re-aligned frame-level class labels. To determine how
much of the error came from intra-phoneme state mistakes,
and how much might be due to confusing similar phonemes,
we also calculated the accuracy scores without tri-states (61
classes), and for the reduced 39-long phoneme set with and
without tri-states (117 and 39 classes, respectively), along with
the original 183-class values. To calculate these scores, we did
not train any new models, but got these values via simple class
fusing. As fusing classes clearly reduces error, we calculated
and compared the relevant Relative Error Reduction (RER)
scores, and estimated the amount of confusing similar classes
and/or states of the same phoneme based on these values.

C. Phoneme-level evaluation

Computing frame-level accuracy values is not the most
adequate way of measuring the performance of a phoneme
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recognition method for several reasons. First, examples are
treated independently, which does not really fit in with frame-
level classification (although including the feature vectors of
neighbouring frames may be viewed as a solution for this). The
second, more important reason is that it is virtually impossible
to determine the exact border between successive phonemes
within a 10ms accuracy, and it is even harder in a tri-
state setup. Therefore an utterance-level phoneme sequence is
computed from the posterior probability values using a HMM,
which is then rated via edit distance-based accuracy. (We used
the HTK toolkit [26] for these steps.) As we just focused on
the acoustic model, we did not employ any language model.

If we have no posterior probability values (e.g. when using
sparse representation [31]), or they are not too precise (which
is the case for AdaBoost.MH, requiring post-calibration [32]),
we can also construct a phoneme sequence from the frame-
level class labels via a simple dynamic search method. Of
course, due to information loss, the resulting accuracy score
is expected to be somewhat lower. We also constructed pos-
terior estimates simply by assuming that the output scores
of AdaBoost were log-likelihoods; hence we only had to
normalize them frame-wise by subtracting a constant from
them to get their exponential function to add up to one. As
using a HMM instead of the dynamic search method reduces
the recognition error, and the amount of this reduction depends
on the accurateness of posterior probability values, we again
calculated RER scores to judge the posterior quality of the
classification methods.

IV. RESULTS

A. Frame-level results

Table I lists the frame-level accuracy scores we obtained. It
can be seen that database sampling reduced the accuracy of
neural networks by about 1-2%, depending on the number
of classes; we can assume that restricting the dataset to
its one-third reduced the accuracy scores of SVM and the
AdaBoost.MH trainings by this amount as well. The scores
for AdaBoost.MH using stumps as base learners were quite
low, but with decision trees the results are comparable with
those of ANNSs, although lower than those of DNNs. This
was expected, though, DNNs being the current state-of-the-
art machine learning method for phoneme classification. SVM
training achieved slightly better scores than AdaBoost.MH.

Fusing the three states (reducing 183 classes to 61) led to
relative error reduction (RER) scores of 16.20% to 18.66% for
the neural networks; the score of 18.02% for AdaBoost.MH
with tree base learners lay in this range, showing that iden-
tifying the three states was no harder than that for neural
networks. But fusing phonemes (reducing the 183 classes to
117) led to a RER score of 11.30% to 12.76% for ANNS,
whereas for AdaBoost it was 9.51% and 10.46%, suggesting
that even though boosting was not sensitive to inter-state label
mismatch, it could not tolerate similar phonemes as well as
neural networks could.
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TABLE I
FRAME-LEVEL RECOGNITION ACCURACY SCORES FOR THE MACHINE
LEARNING METHODS FOR 39 AND 61 PHONEMES, WITH AND WITHOUT
TRI-STATES, ON THE DEVELOPMENT SET.

DB No. of classes

size | Method 39 [ 117 “ 61 [ 183

Ul ANN 77.74% | 69.39% 71.89% | 65.44%
DNN 80.12% | 73.33% 74.55% | 69.43%
ANN 76.53% | 68.21% 70.60% | 64.16%
DNN 78.25% | 71.23% 72.54% | 67.23%

1/3 SVM 76.49% | 68.56% 70.70% | 64.48%
Stumps 67.93% | 58.04% 61.25% | 53.63%
Trees 76.01% | 67.80% 70.52% | 64.04%

B. Phoneme-level results

Phonetic accuracy scores (see Table II), regardless of the
search method applied, mirror the frame-level tendencies.
Values got by training on the whole database were somewhat
better than ones got by training on the sampled subset.
AdaBoost with stumps again proved to be the worst method,
while SVM and AdaBoost with trees as base learners again
practically matched the performance of standard-architecture
ANNs. SVM slightly outperformed AdaBoost in terms of
frame-level accuracy, but its phonetic-level results are clearly
worse than those of AdaBoost using trees as base learners.

The quality of the probability values may be judged from
the extent of the difference in scores got via dynamic and
HMM search methods. This difference is greatest with the
neural networks: switching to the latter search method brought
an improvement of between 9.00% and 10.38%, whereas for
AdaBoost this value lay between 7.15% and 8.98%, and for
SVM we got an RER score of 7.47%. This is in accordance
with the literature, that although AdaBoost can produce high
accuracy scores, its posterior scores are quite imprecise. It
may be worth applying a more sophisticated post-calibration
method (e.g. [32]), but this is beyond the scope of our study.

C. Overall Performance

Overall, we can say that the performance of AdaBoost,
using stumps as base learners, was quite low for a complex
task like frame-level phoneme classification. However, using
decision trees as base learners the results were practically the
same as those for standard ANNs, making it precise enough
for actual use. The 72.85% accuracy score on the TIMIT
core test set may not seem too high at first glance, but it
was achieved without using any language model. Another
point was that, for technical reasons (namely using an off-
the-shelf implementation) we had to reduce the size of the
training set, which may be the reason for an additional 1-
2% loss in accuracy. If we recall that we used a very simple
posterior construction method, what we get is a fair acoustic
performance. Note however, that the execution times tend to
be high, especially for training, but a feasible solution is to
parallelize the algorithm [33].

Figure 1 shows the phonetic-level accuracy scores of both
base learners. Stumps attained their optimum around 30k
iterations (50k with HMM), whereas with decision trees the
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TABLE 11
UTTERANCE-LEVEL PHONEME ACCURACY SCORES FOR THE MACHINE
LEARNING METHODS APPLIED, FOR THE DEVELOPMENT AND TEST SETS,
USING A DYNAMIC SEARCH METHOD AND A HMM.

DB Development Set Test Set

size | Method |[ Dynamic | HMM Dynamic | HMM

1 ANN 75.23% 77.44% 71.99% 74.76%
DNN 76.80% 79.37% 73.90% 76.27%
ANN 73.67% 76.31% 70.99% 73.60%
DNN 74.77% 77.39% 72.34% 75.19%

1/3 SVM 72.79% | 74.85% 70.53% 72.73%
Stumps 65.91% 68.43% 63.683% 66.94%
Trees 74.09% 75.29% 70.76% 72.85%
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Fig. 1. Phonetic-level accuracy as a function of iterations for AdaBoost. MH

with both base learners (stumps and trees).

accuracy improved even after 100k iterations; this also sug-
gests that this task is just too complex for decision stumps.

But if AdaBoost is well-known for its high precision, why
did it rank slightly below a standard ANN in this particular
task, even in terms of frame-level accuracy? Besides the
factors already mentioned like the huge dataset size, there may
be other factors as well; one of them, which is usually ignored,
is that of training labeling. As phoneme boundaries cannot be
positioned objectively with one-frame precision, frame labels
are not obvious. ANNSs, probably due to their good posterior
estimation capabilities, are robust to this phenomenon; other
methods, however, may be less tolerant to imprecise labeling,
making labeling quality quite important. Vinyals achieved a
51.1% frame-level accuracy with sparse representations [31],
from which they got a 75.1% phonetic accuracy with their
simple dynamic method. Although these scores, measured on
the test set, cannot be directly compared to our 64.04% frame-
level and 74.09% phonetic accuracy scores, the contrast is
quite apparent, and in our opinion it is due to their carefully-
constructed frame labels.

Another factor may be the way phoneme classification is
employed in a speech recognition framework. Tri-state model-
ing is a technique developed originally for the HMM/GMM
architecture, and it is well suited to the generative nature
of GMMs. But if we shift to a discriminative classification
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Fig. 2. Total weights for the 39 MFCC features and 17 neighbouring rows
when using boosted decision trees.

technique, which seeks to find the only correct class label,
the interpretation is not that plausible any more (although a
HMM/ANN hybrid set-up still performs well). The states of a
phoneme are strongly correlated, and confusing them is not a
serious error (sometimes not even an error), but this connection
among the classes remains hidden to the classifier, which
could be quite far from ideal for a discriminative machine
learning method. For example, AdaBoost.MH has an one-
against-all set-up, which explains why it is quite sensitive to
labeling noise. All this suggests that for optimal performance,
besides applying another phoneme classifier method, other
modifications in the architecture like avoiding tri-state set-up
and/or redundant phonemes might be required as well.

V. RELATION TO FEATURE IMPORTANCE

AdaBoost. MH.BA trains base classifiers on feature subsets,
using weights that reflect their learned usefulness. This infor-
mation can be extracted from the model by taking the sum of
the corresponding « values, this being the sum of the weights
of base classifiers using the given features, which could serve
as valuable feedback for assessing relative feature importance.

Fig. 2 shows the sum of the corresponding « values for the
39 MFCC coefficients and 17 frames, using trees as base learn-
ers. As it can be seen, the low-level coefficients (especially the
energy, treated as the Oth) are more important than the high-
level ones. This suggests that for phoneme recognition we
mostly need gross information about the spectral content of
the current portion of speech, whereas the fine spectral details
are somewhat less important. The original coefficients are used
more often than the A values, AA vectors being the least
frequent vectors used. It is also quite apparent that the values
associated with the central frames are more important than
those of more distant ones. The exceptions are the first and last
frames, where the feature values (especially the derivatives)
contain information about subsequent speech regions. These
observations mirror our earlier findings [7], which seems a bit
surprising. Then we sought to detect filler events and laughter,

65

for which it is logical to prefer lower-level features, but this
is not obvious when performing phoneme classification.

VI. CONCLUSIONS

In this work we applied a high-precision meta-learner algo-
rithm, the AdaBoost.MH method in the phoneme classifica-
tion task of speech recognition, where traditionally Gaussian
Mixture Models and Artificial Neural Networks are used. We
found that AdaBoost is able to produce a performance compa-
rable to that of standard neural networks, although lags behind
recently-proposed Deep Neural Networks. These results can
be explained by the specifics of task from a machine learning
perspective, and the simplicity of our method used to construct
class-wise posterior scores from the raw likelihood outputs of
AdaBoost. This, however, can be helped by using some more
sophisticated posterior construction method or even posterior
calibration, but these are subjects of future studies.
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