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Abstract
The Interspeech ComParE 2014 Challenge consists of two ma-
chine learning tasks, which have quite a small number of exam-
ples. Due to our good results in ComParE 2013, we considered
AdaBoost a suitable machine learning meta-algorithm for these
tasks, besides we also experimented with Deep Rectifier Neu-
ral Networks. These differ from traditional neural networks in
that the former have several hidden layers, and use rectifier neu-
rons as hidden units. With AdaBoost we achieved competitive
results, whereas with the neural networks we were able to out-
perform baseline SVM scores in both Sub-Challenges.
Index Terms: speech technology, AdaBoost, deep neural net-
works, rectifier activation function

1. Introduction
Speech technology, besides speech recognition, includes several
other tasks as well such as emotion detection [1], speaker recog-
nition [2] etc. Several of these tasks involve the classification of
the whole utterance (or a relatively longer part of it), which ba-
sically differs from traditional frame-based phoneme classifica-
tion. In these tasks it is common to have thousands of features,
but the main difference is the number of examples. As record-
ing and annotating an audio database can be quite expensive,
the number of examples is often just a few hundreds. In these
tasks we can still use Gaussian Mixture Models (GMMs [3])
or Artificial Neural Networks (ANNs [4]), which are methods
commonly employed for phoneme classification. These meth-
ods, however, work ideally when there are several thousands, or
even millions of examples, which is not the case in these tasks;
therefore it may worth evaluating other methods like SVM [5],
AdaBoost.MH [6] and even decision trees [7].

The Interspeech 2014 Computational Paralinguistics Chal-
lenge (ComParE [8]) consists of two such tasks. In the Cog-
nitive Load Sub-Challenge, using the Cognitive Load with
Speech and EGG (CLSE) database [9], the ternary level of cog-
nitive load (low, medium or high) has to be classified automati-
cally using just the acoustic information. In the Physical Load
Sub-Challenge (using the Munich Bio-voice Corpus [10]) the
amount of physical load (low or high) has to be determined,
also based on the acoustic data. For the above reasons, we de-
cided to try to solve these tasks using AdaBoost.MH. In addi-
tion, we had another reason for doing so: in the ComParE 2013
Challenge [11] we also used this meta-learner algorithm, and
we managed to achieve good results: we won one of the sub-
challenges, and came second in another [12].
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However, ANNs have become the dominant method for
(phoneme) classification in speech recognition recently, mostly
due to the invention of Deep Neural Networks (DNNs [13]).
State-of-the-art performance is usually achieved via DNNs [14,
15, 16], but it is also widely used in other areas such as im-
age processing [17] as well. As our earlier experiments also
show that they are capable of attaining quite high accuracy
scores [18, 19], we thought that it would be worth testing this
technique in this challenge too.

Both sub-challenges come with a standard feature set con-
sisting of 6373 attributes. We treated both sub-challenges as
simple classification tasks, and did not try to extract additional
information from the wav files. However, we exploited some
other information provided, like the speaker identifier and (in
the Cognitive Load Sub-Challenge) the actual task performed,
which were used to form groups of specific examples.

2. Learning with AdaBoost.MH
The AdaBoost.MH algorithm [6] is an efficient meta-learner al-
gorithm, which seeks to build a strong final classifier from the
linear combination of simple, scalar base classifiers. The sim-
plest scalar base learner used in practice is the decision stump,
a one-decision two-leaf decision tree having the form

ϕj,b(x) =

{
1 if x(j) ≥ b,

−1 otherwise,
(1)

where j is the index of a feature and b is the decision threshold.
Although boosting decision stumps often yields satisfactory re-
sults, the state-of-the-art performance of AdaBoost.MH is usu-
ally achieved using decision trees as base learners, parametrized
by their number of leaves. We also tested a base learner which
optimizes products of simple base learners [20]; the base learner
is parametrized by the number of terms.

Running a full search for each boosting iteration step of
AdaBoost.MH is prohibitively expensive, so we decided to run
an accelerated version based on a multi-armed bandit (MAB)
setup [21]. The general idea of accelerating the base learner is
to partition the base classifier spaceH into (not necessarily dis-
junct) subsets G =

{
H1, . . . ,HM

}
and use MABs to learn the

usefulness of the subsets. Each arm represents a subset, so, for
each iteration, the bandit algorithm selects a subset. The base
learner then finds the best base classifier in the subset (instead
of searching through the whole space H), and returns a reward
based on this optimal base learner [22]. Based on the reward
values, the MAB algorithm learns the quality or usefulness of
the subsets. Here, we applied an adversarial bandit algorithm.

We employed an open source implementation – the tool
called multiboost [23] – where this bandit-based approach
is implemented along with the base learners mentioned above.
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2.1. The Training Steps

To get an optimal performance from a machine learning
method, we need to fine-tune the meta-parameters of the algo-
rithm. AdaBoost.MH fortunately does not require preprocess-
ing steps like feature selection or normalization, and usually
no such steps are employed. Although it was reported for the
Cognitive Load Challenge that applying specific normalization
techniques leads to a significant improvement in the baseline
accuracy scores, we adhered to standard practice and did not
apply any normalization procedure.

After some preliminary tests using products and trees with
different parameters for the base learners, we opted for simple
decision stumps. We kept the original training, development
and test sets, and used the same general scheme for each chal-
lenge and task. We trained 100 models for the training set; then
evaluated all of them after each 100 iterations and combined
their output via simple majority voting. We chose the iteration
where the UAR score was the highest; this value was compared
with that of baseline SVM on the development set. In the Com-
ParE 2013 Challenge [11] we then trained 100 new models on
the training and development sets altogether, evaluated them on
the test set using the iteration count found, and voted them to-
gether [12]. Although with this strategy we were ranked first
in one of the sub-challenges (Emotion), in another (Autism) we
scored below the baseline score. We think this was due to in-
correct iteration determination, since different values might be
optimal for different training set sizes, when the development
set is significant compared to the training set. As this was the
case in both the ComParE 2013 and 2014 challenges, we turned
to another solution, which is similar to the general leave-one-
out scheme, only subject-wise (“leave-one-subject-out”).

We made use of both the training and development sets, but
left out the examples belonging to one subject. Then we trained
100 models this way, which were evaluated just for the given
subject. We repeated this for all the subjects in the given sub-
challenge, e.g. when we had 12 subjects in the training and
development sets altogether, this led to 1200 models overall.
Lastly, we chose the “optimal” iteration number as the one for
which these models produced the best combined Unweighted
Average Recall (UAR) score.

Having determined the “optimal” number of iterations, we
chose not to train new models on the whole training and devel-
opment sets together, but using the ones trained in the leave-
one-subject-out–manner instead. Although all of them were
trained with one subject left out, we had already found the
best iteration for them, which may differ if we train models on
more examples. So we only evaluated these models on the test
database, and submitted these results to the Challenge.

Naturally, it may happen that by aggregating the output of
the different base learner configurations (i.e. stumps, products,
etc.), or even other machine learning methods via voting could
improve the accuracy; however, we considered the number of
training examples just too small to get a reliable weighting.

2.2. Cognitive Load Challenge

We followed the approach of the baseline paper, and split the
training examples, depending on the task the subject had to
perform while speaking (i.e. reading sentence, reading letter,
stroop time pressure or stroop dual task), and discarded those
that belonged to the reading span letter task. Then we treated
these subsets as if they were independent; hence we trained sep-
arate models, chose an optimal iteration number etc. separately.

Two tasks (stroop time pressure and stroop dual task) were
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Figure 1: The effect of adjusting decision threshold to class-
wise recalls and the UAR score for AdaBoost.

completely balanced: all three classes (L1, L2 and L3) had ex-
actly the same number of examples. In the remaining one, how-
ever, class L3 was overrepresented. Unbalanced class distribu-
tion can also be handled by following different initial example
weighting strategies in AdaBoost.MH, but as we could not re-
ally improve the accuracy, we downsampled L3 and kept an
equal number of examples from all three classes. As we did not
want to lose examples, we did this sampling on a per-training
basis.

2.3. Physical Load Challenge

Although the class distribution was slightly unbalanced, this
was a two-class dataset, for which it is quite easy to correct.
A classifier chooses class one, when the appropriate posterior
score is above a given threshold (in our case zero by default),
and chooses class two otherwise. By adjusting this value, we
can control the balance between the two classes (see Figure 1).
Although there is no guarantee that the optimal value of UAR
will be where the recall values for the two classes match, we
found that it results in a robust threshold value. So we trained
100 models for each subject in the above mentioned way, result-
ing in 1200 models overall. Then, for each possible stopping it-
eration, all models were evaluated, and the threshold value was
chosen for which the absolute difference of the recall values for
the two classes was minimal. We chose the iteration number for
which UAR score was maximal. Finally we evaluated all these
models on the test set with this iteration and threshold value.

3. Using Deep Rectifier Neural Networks
Deep neural networks differ from conventional ones in that they
consist of several hidden layers, while conventional ANN-based
recognizers work with just one hidden layer. The application
of a deep structure can provide significant improvements in
speech recognition results compared to previously used tech-
niques [13]. But modifying the network architecture also re-
quires modifications to the training algorithm, since the conven-
tional backpropagation algorithm encounters difficulties when
training feedforward networks having several layers [24]. As a
solution, Hinton et al. presented an unsupervised pre-training
algorithm [25]; after this pre-training step, the backpropagation
algorithm can find a much better local optimum. But as this
pre-training algorithm is extremely CPU-intensive, several so-
lutions have been proposed to alleviate or circumvent the com-
putational burden of pre-training [26, 27, 28], one of them being
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deep rectifier neural networks [29].
In the deep neural networks used here we employed recti-

fied linear units as hidden neurons. These units apply the recti-
fier activation function max(0, x) instead of the usual sigmoid
one [29]. The main advantage of deep rectifier nets is that they
can be trained with the standard backpropagation algorithm,
without any pre-training, which makes training more straight-
forward and faster, while maintaining a high level of accuracy.

We used our custom implementation for neural networks,
which was developed for phoneme classification, but of course
can be applied to other tasks as well [30]. On the TIMIT
database, frequently used as a reference dataset for phoneme
recognition, we achieved the best accuracy known to us with a
phonetic error rate of 16.7% on the core test set [31].

For neural network training, the actual learning rate is cru-
cial; the simplest strategy is to use a pre-defined value for a pre-
defined number of iterations. (During one iteration we usually
train the network on all the samples once.) Another possibility
is to have a sequence of this process with different numbers of
iterations and learning rate values. We followed a more flexi-
ble approach: we held out a separated set of training examples,
on which the neural network was evaluated after each iteration.
When the accuracy failed to improve, we lowered the learning
rate; the training was terminated, when the improvement in the
error was less than 0.1% in two subsequent iterations.

Neural networks are reported to be sensitive to unnormal-
ized data, so we always normalize our input for zero mean and
unit variance (standardization). Although in the baseline paper
for some sub-challenges slightly better results were reported by
normalizing the input into the interval [0, 1], we decided to stick
to our former practice. The initial learn rate was set to 0.01. We
used 1000 rectifier neurons in each of the 3 hidden layers, and
softmax ones in the output layer.

Recall that our neural networks required a separate “hold
out” set for setting the actual appropriate training rate, which
examples were lost to the back-propagation algorithm. To over-
come this drawback, we attempted to fix the number of iter-
ations and learning rates: we withheld the examples of one
speaker at a time, and inspected the actual learning rates ap-
plied. These, however, varied to such an extent that no such
generalization was possible. So we trained ten models for each
speaker used as this hold out set, and performed classical back-
propagation learning on the rest, then evaluated them and ag-
gregated their output via a voting method. We did this first for
the training set, and the results obtained on the development set
were compared to the appropriate SVM scores; then we trained
our classifiers this way on the training and validation sets united,
evaluated them on the test set, and the resulting class labels were
submitted for the two sub-challenges.

Note that with this approach, when training on the training
set only, we were handicapped compared to the baseline SVM,
as we did not “peek” at all into the development set, whereas
for SVM this set was used for parameter selection.

3.1. Probabilistic Sampling

Neural nets are sensitive to class imbalances, and tend to be-
have inaccurately on classes having only a few examples. Our
aim was to balance the class distribution by presenting more ex-
amples taken from the rarer classes to the learner, for which we
applied the training scheme called probabilistic sampling [32].
It is a simple two-step sampling scheme: first we select a class,
then randomly pick a training sample from the samples of this
class. Selecting a class can be viewed as sampling from a multi-

nomial distribution after we assign a probability to each class:

P (ck) = λ
1

K
+ (1− λ)Prior(ck), (2)

where Prior(ck) is the prior possibility of class ck , K is the
number of classes and λ ∈ [0, 1] is a parameter. If λ is 1, then
we get a uniform distribution over the classes, and with λ = 0
we get the original class distribution. Choosing a value between
0 and 1 for λ allows us to linearly interpolate between these two
distributions. In this study we either used the setting λ = 1 (so
we sampled from a uniform class distribution), or we did not
use sampling at all, as we found that these settings performed
best on the development set.

3.2. Model Output Aggregation

Training a neural network is a non-deterministic procedure due
to the random initial weight values. To reduce this effect of
uncertainty, it is common to train several models with the same
parameters, and aggregate their output in some way. Perhaps the
most commonly used way of aggregating outputs is via simple
majority voting: we choose the class label which was supported
by the largest number of models. It can be readily applied to
neural networks, but it is well known that ANNs are able to pro-
duce accurate posterior scores, which information is lost during
simple majority voting. So we tested another simple aggrega-
tion method: for each example and each class we averaged out
the output posterior values of all models, and chose the class
where this mean value was the highest. We will refer to this
method as probabilistic voting later on.

3.3. The Cognitive Load Challenge

Our approach for this challenge generally followed that of the
authors of the baseline paper [8]: the examples were divided
into three groups, based on the task performed by the speaker,
and separate DNNs were trained on these subsets (with the ex-
ception of the Reading span letters task, which was omitted).
For each task, we optimized for the UAR score of that subset;
although this does not necessarily lead to an optimal UAR score
for the whole challenge, we viewed this as the most straightfor-
ward way of meta-parameter optimization.

Although the best baseline accuracy scores were obtained
via normalization on a per-speaker basis, this information was
not available for the test set. The second-best score was got
via normalization separately for training and validation sets, in
contrast with normalizing all the data together. This can prob-
ably be explained by the fact that this strategy lies closer to
per-speaker normalization, hence we followed this approach.

We tested both sampling and both voting strategies for all
three tasks, although sampling was not strictly required for the
tasks stroop time pressure and stroop dual task. Finally we
chose the one which worked best on the development set.

3.4. The Physical Load Challenge

In this sub-challenge the class distribution was only slightly bi-
ased towards one of the classes, so it was not clear which sam-
pling strategy would work better. Hence we trained DNNs with
both sampling strategies on the training set, and evaluated the
resulting models on the validation set, again with both output
aggregation algorithms.
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Method Sentence Time Dual

DNN voting 59.97% 73.02% 60.32%
p. voting 59.88% 74.60% 58.73%

DNN + p.s. voting 62.91% 71.43% 61.90%
p. voting 62.96% 73.02% 63.49%

SVM (baseline) 61.20% 74.60% 63.50%

Table 1: UAR scores obtained for the validation set of the Cog-
nitive Load Challenge with DNNs, for the different sampling (no
sampling / probabilistic sampling) and voting (simple majority
voting / probabilistic voting) techniques tested.

Task Method Valid. Test
AdaBoost 63.76% —

Reading sentence DNN 62.96% —
SVM 61.20% 61.50%
AdaBoost 76.19% —

Time pressure DNN 74.60% —
SVM 74.60% 66.70%
AdaBoost 77.78% —

Dual task DNN 63.49% —
SVM 63.50% 56.90%

AdaBoost 66.59% 59.35%
Cognitive Load DNN 64.21% 63.05%

SVM 63.20% 61.60%

Table 2: UAR scores got for the Cognitive Load Challenge.

4. Results
The UAR scores achieved on the validation set with DNNs, us-
ing the different sampling and voting techniques in the Cogni-
tive Load Sub-Challenge can be seen in Table 1. The first
thing to notice is that probabilistic sampling clearly helped on
the Reading sentence task, but its effect is not so beneficial on
the task Stroop time pressure. This is understandable since the
class distribution is already balanced for the latter task; in this
case using this sampling technique just introduces a further ran-
dom factor in the training process, decreasing model robustness.
On the other hand, although task Stroop dual task looks similar
to Time pressure, we found the models trained using the proba-
bilistic sampling less sensitive to different subjects. This can be
due to that the order of training examples is also important (es-
pecially for such tiny datasets), and by probabilistic sampling
we reshuffle the training set. Finally we opted for using prob-
abilistic sampling in tasks Reading span sentence and Stroop
dual task. Probabilistic voting also helps in most cases, which
can be explained by the good probability estimation capabilities
of neural networks. Also note that these scores were obtained
by training on the training set only, whereas the baseline SVM
score was got by peeking into the validation set.

The results for stroop time pressure and stroop dual task
show signs of overfitting; this is not surprising, however, con-
sidering how tiny these two datasets are with only 99 examples
for the three classes overall in the training set and 63 in the de-
velopment one. It may be also the case that neural networks are
just too complex for these tasks.

The combined results on the development and test sets (see
Table 4) show that deep neural networks consistently performed
better on the two sets than baseline SVM. (Unfortunately there
were no detailed results for the different tasks.) On the other
hand, AdaBoost.MH shows signs of overfitting: although it pro-

Method Valid. Test

DNN voting 62.48% —
prob. voting 65.11% —

DNN + p.sampling voting 67.12% —
prob. voting 68.16% 73.03%

AdaBoost 68.45% 71.43%

SVM (baseline) 67.20% 71.90%

Table 3: UAR scores obtained for the Physical Load Challenge.

duced significant improvements over the baseline score on the
validation set, we could not carry these over the test set. It was
not that surprising, though, since most of the development set
scores were peaks in the UAR curve. Still, judged from the re-
sults, both methods can be clearly applied as we were able to
produce results quite similar to those of the baseline.

The results obtained on the Physical Load Sub-Challenge
are listed in Table 3. It can be seen that for DNNs probability
voting strategy is clearly superior to simple majority voting in
this sub-challenge. Another observation is that even this slight
(cca. 10%) bias towards one of the classes is significant for
our Deep Neural Network, at least for such a small dataset, but
this shortcoming can be fixed by using probabilistic sampling.
The improvement of over 1% over the baseline score could be
transferred to the test set again.

As for AdaBoost.MH, we scored slightly below baseline,
which means one or two further misclassified items, compared
to baseline SVM. This amount of error may come from the non-
optimal tradeoff between the two classes as well; nevertheless,
this performance still could be worth applying in practice.

We also note that from the base learner configurations
tested on AdaBoost.MH, stumps proved to be the best. This can
probably be explained by the size of the datasets: all four data-
bases are quite small, but the Stroop time pressure and Stroop
dual task sets have an extremely small set of examples. In this
case, decision trees can be one of the best methods, which is
practically the same as AdaBoost.MH using decision stumps.

5. Conclusions
We applied two state-of-the-art machine learning methods in
the Interspeech 2014 Computational Paralinguistics Challenge:
AdaBoost.MH and Deep Rectifier Neural Networks. Our re-
sults showed that, although with the former algorithm we scored
slightly below baseline, both methods produced competitive
performances, and DNNs consistently managed to outperform
baseline SVM. We experienced that the two methods gave
quite different outputs: with neural networks we had a hard
time classifying the two tiny tasks, whereas AdaBoost.MH we
could only handle the unbalanced class distribution of the Read-
ing span sentence task by downsampling. Therefore it may
worth mixing the two learning methods in the Cognitive Sub-
Challenge, solving different tasks with different algorithms; an-
other idea worth testing is evaluating both algorithms and com-
bining their output. These are, however, considered as future
work, in the case if the datasets will be released to the public in
the future.
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[31] L. Tóth, “Combining time- and frequency-domain convolution in
convolutional neural network-based phone recognition,” in Pro-
ceedings of ICASSP, 2014.
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