
A Sequence Training Method for Deep Rectifier

Neural Networks in Speech Recognition

Tamás Grósz, Gábor Gosztolya, and László Tóth

MTA-SZTE Research Group on Artificial Intelligence
of the Hungarian Academy of Sciences and University of Szeged

Szeged, Hungary
{groszt,ggabor,tothl}@inf.u-szeged.hu

Abstract. While Hidden Markov Modeling (HMM) has been the domi-
nant technology in speech recognition for many decades, recently deep
neural networks (DNN) it seems have now taken over. The current DNN
technology requires frame-aligned labels, which are usually created by
first training an HMM system. Obviously, it would be desirable to have
ways of training DNN-based recognizers without the need to create an
HMM to do the same task. Here, we evaluate one such method which
is called Connectionist Temporal Classification (CTC). Though it was
originally proposed for the training of recurrent neural networks, here
we show that it can also be used to train more conventional feed-forward
networks as well. In the experimental part, we evaluate the method on
standard phone recognition tasks. For all three databases we tested, we
found that the CTC method gives slightly better results that those ob-
tained with force-aligned training labels got using an HMM system.

Keywords: connectionist temporal classification, deep neural networks.

1 Introduction

For three decades now, Hidden Markov Models (HMMs) have been the domi-
nant technology in speech recognition. Their success is due to the fact that they
handle local (frame-level) likelihood estimation and the combination of these
local estimates into a global (utterance-level) score jointly, in a unified mathe-
matical framework. Recently, however, it was shown that deep neural network
(DNN) based solutions can significantly outperform standards HMMs [5]. This
technology replaces the Gaussian mixtures of the HMM by a DNN, while the
utterance-level decoding is still performed by the HMM. Hence, this approach is
usually referred to as the hybrid HMM/ANN model [1]. The DNN component
of these hybrid models is usually trained only at the frame level. That is, we
generate frame-level training targets for the network, and during training we op-
timize some frame-level training criteria. This frame-by-frame training, however,
has several drawbacks. First, we must have frame-level labels to be able to start
the training. For very old and small databases (like the TIMIT dataset used
here) a manual phonetic segmentation is available. But for more recent corpora

A. Ronzhin et al. (Eds.): SPECOM 2014, LNAI 8773, pp. 81–88, 2014.
c© Springer International Publishing Switzerland 2014



82 T. Grósz, G. Gosztolya, and L. Tóth

which are hundreds of hours long, manual segmentation is clearly out of question.
Hence, the usual solution for obtaining frame-level labels is to train a standard
HMM system, and then use it in forced alignment mode. This means that, based
on the current technology, the training of a DNN-based recognizer should always
be preceded by the training of a standard HMM model. This clearly makes the
creation of a DNN-based system much more tedious and time-consuming, and
although quite recently there have been some attempts at having the standalone
training of DNN systems, these technologies are still far from complete [8].

Besides the cost of getting forced alignment labels, the frame-level training of
a neural network has another, more theoretical limitation. During this training,
we minimize the frame-level error cost, such as the frame-level cross-entropy
between the network output and the training targets. These training targets are
hard-labeled, which means that we expect the network to give an output of 1 for
the correct class and 0 for the remaining ones. This is not necessarily optimal
regarding the decoding process, which combines the frame-level scores. A more
sophisticated method that derives “soft” training targets from the sentence-level
scores can be expected to result in a better performance.

Graves et al. proposed a method that provides a solution to both the above-
mentioned problems, and called it the Connectionist Temporal Classification
(CTC) method for Recurrent Neural Networks (RNNs) [3]. This method re-
quires just the transcription of the utterance, without any further label align-
ment information. But their architecture differs fundamentally from the standard
HMM/ANN model: owing to the use of recurrent neural network classifiers, they
apply the training method called backpropagation through time [13], making the
training process much slower and more complex. The number of model parame-
ters is also quite high. Furthermore, as frames have to be processed in strictly
increasing order, decoding is much harder to parallelize. When using bidirec-
tional recurrent networks (which are required to achieve the best performance
with this approach [4]), we have to wait for the end of the utterance before we can
start evaluating, making real-time speech processing impossible. Lastly, instead
of using a standard language model like a phoneme n-gram, they use a special
technique called prediction network, which is also based on an RNN. Thus, their
approach is quite involved and quite different from the usual HMM/ANN model.

In this study we show that the CTC training scheme is not an inseparable part
of the RNN-based architecture, and with a few small modifications it can also be
applied to the training of HMM/ANN models. Here, we use it to train standard
feed-forward deep neural nets over three different databases. The results show
that the CTC method gives a consistently better performance compared to the
case where the training targets are got using forced alignment with an HMM.

2 Connectionist Temporal Classification

Following the work of Graves et al. [3], first we outline the Connectionist Tem-
poral Classification training scheme. Similar to standard frame-level backpropa-
gation training, it is an iterative method, where we sweep through the whole



A Sequence Training Method for Deep Rectifier Neural Networks 83

100 200 300

20

40

60

100 200 300 100 200 300

Fig. 1. The α (left), β (middle) and αβ (right) values for a given utterance. The hori-
zonal axis corresponds to the frames of the utterance, while the vertical axis represents
the states (phonemes)

audio training data set several times. A speciality of this training method is that
we process a whole utterance at a time instead of using just fixed-sized batches
of it; however, we only need the correct transcription of the utterance, and do
not require any time-alignment.

The CTC training method is built on the dynamic search method called
forward-backward search [6], which is a standard part of HMM training. The
forward-backward algorithm not only gives the optimal path, but at the same
time we also get the probability of going through the given phoneme of the
transcription for all the frames of the utterance. From this, for each frame, we
can calculate a probability distribution over the possible phonemes; then these
values can be used as target values when training the acoustic classifier.

2.1 The Forward-Backward Algorithm

Let us begin with the formal description of the forward-backward algorithm.
First, let us take the utterance with length T , and let its correct transcription
be z = z1z2 . . . zn. We will also use the output vectors yt of the neural network
trained in the previous iteration. α(t, u) can be defined as the summed proba-
bility of outputting the u-long prefix of z up to the time index t ≤ T . The initial
conditions formulate that the correct sequence starts with the first label in z:

α(1, u) =

{
y1z1 if u = 1,
0 if u ≥ 2.

(1)

Now the forward variables at time t can be calculated recursively from those at
time t− 1; we can remain in state zu−1, or move on to the next one (zu). Thus,

α(t, u) =

{
ytzuα(t− 1, u) if u = 1,
ytzu

(
α(t− 1, u) + α(t− 1, u− 1)

)
otherwise.

(2)

In the backward phase we calculate the backward variables β(u, t), which rep-
resent the probability of producing the suffix of z having length n − u starting
from the frame t+ 1. The backward variables can be calculated recursively as

β(T, u) =

{
1 if u = n,
0 otherwise,

(3)



84 T. Grósz, G. Gosztolya, and L. Tóth

and for each t < T

β(t, u) =

{
ytzuβ(t+ 1, u) if u = n,
ytzu

(
β(t+ 1, u) + β(t+ 1, u+ 1)

)
otherwise.

(4)

Fig. 1. illustrates the forward variables, the backward variables and their product
for a short utterance.

2.2 Using the αβ values for ANN training

The α(t, u)β(t, u) product values express the overall probability of two factors,
summed along all paths: the first is that we recognize the correct sequence of
phonemes, and the second is that at frame t we are at the uth phoneme of z.
For neural network training, however, we would need a distribution over the
phoneme set for frame t. It is not hard to see that such a distribution over the
phonemes of z can be obtained by normalizing the α(t, u)β(t, u) products so that
they sum up to one (by which step we eliminate the probability of recognizing
the correct sequence of phonemes). Then, to normalize this distribution to one
over the whole set of phonemes, we need to sum up the scores belonging to the
multiple occurrences of the same phonemes in z. That is, the regression targets
for any frame t and phoneme ph can be defined by the formula∑

i:zi=ph

α(t, i)β(t, i)

n∑
i=1

α(t, i)β(t, i)
. (5)

We can use these values as training targets instead of the standard binary zero-
or-one targets with any gradient-based non-linear optimization algorithm. Here,
we applied the backpropagation algorithm.

2.3 Garbage Label

Although the above training method may work well for the original phoneme set,
Graves et al. introduced a new label (which we will denote by X ), by which the
neural network may choose not to omit any phoneme. This label can be inserted
between any two phonemes, but of course it can also be skipped. They called
this label “blank”, but we consider the term “garbage” more logical.

To interpret the role of this label, let us consider a standard tri-state model.
This divides each phone into three parts. The middle state corresponds to the
steady-state part of the given phone, whereas the beginning and end states
represent those parts of the phone which are affected by coarticulation with the
preceding and the subsequent phones, respectively. By introducing label X , we
allow the system to concentrate on the recognition of the cleanly pronounced
middle part of a phone, and it can map the coarticulated parts to the symbol X .
Therefore, we find it more logical to use the term garbage label instead of blank,
as the latter would suggest that the label X covers silences, but in fact this label
more likely corresponds to the coarticulated parts of phones.



A Sequence Training Method for Deep Rectifier Neural Networks 85

Formally, introducing this label means that instead of the phoneme sequence
z we will use the sequence z′ = X z1X z2X . . .X znX . The forward-backward
algorithm also has to be modified slightly: the initial α values will be set to

α(1, u) =

{
y1z′

1
if u = 1 or u = 2,

0 if u ≥ 3,
(6)

while for the latter labels we allow skipping the X states:

α(t, u) =

⎧⎨
⎩

ytz′
u
α(t− 1, u) if u = 1,

ytz′
u

(
α(t− 1, u) + α(t− 1, u− 1)

)
if z′u = X ,

ytz′
u

(
α(t− 1, u) + α(t− 1, u− 1) + α(t− 1, u− 2)

)
otherwise.

(7)
The calculation of the β values is performed in a similar way.

It is also possible to use the garbage label with a tri-state model: then X is
inserted between every state of all the phonemes, while still being optional.

2.4 Decoding

When using Recurrent Neural Networks, it is obvious that we cannot perform
a standard Viterbi beam search for decoding. However, when we switch to a
standard feed-forward neural network architecture, this constraint vanishes and
we can apply any kind of standard decoding method.

The only reason we need to alter the decoding part is that we need to remove
the garbage label from the resulting phoneme sequence. Luckily, in other respects
it does not affect the strictly-interpreted decoding part. This label also has to be
ignored during search when we apply a language model like a phoneme n-gram.
In our tests we used our own implementation of the Viterbi algorithm [6].

3 Experiments and Results

3.1 Databases

We tested the CTC training method on three databases. The first was the well-
known TIMIT set [7], which is frequently used for evaluating the phoneme recog-
nition accuracy of a new method. Although it is a small dataset by today’s
standards, a lot of experimental results have been published for it; also, due to
its relatively small size, it is ideal for experimentation purposes. We used the
standard (core) test set, and withheld a small part of the training set for devel-
opment purposes. The standard phoneme set consists of 61 phonemes, which is
frequently reduced to a set of 39 labels when evaluating; we experimented with
training on these 61 phonemes and also on the restricted set of 39 phonemes.

The next database was a Hungarian audiobook; our choice was the collection
of short stories by Gyula Krúdy [9] called “The Travels of Szindbád”, presented
by actor Sándor Gáspár. The total duration of the audiobook was 212 minutes.
From the ten short stories, seven were used for training (164 minutes), one for



86 T. Grósz, G. Gosztolya, and L. Tóth

Table 1. The accuracy scores got for the three different DRN training methods

Database Method Dev. set Test set

CTC + DRN 73.31% 71.40%
Monostate (39) Hand-labeled 72.74% 70.65%

Forced Alignment 72.90% 71.08%
CTC + DRN 73.93% 72.66%

TIMIT Monostate (61) Hand-labeled 73.58% 72.06%
Forced Alignment 74.08% 72.45%
CTC + DRN 76.80% 75.59%

Tristate (183) Hand-labeled 77.25% 75.30%
Forced Alignment 77.22% 75.52%

development (22 minutes) and two for testing (26 minutes) purposes. A part of
the Hungarian broadcast news corpus [12] was used as the third database. The
speech data of Hungarian broadcast news was collected from eight Hungarian
TV channels. The training set was about 5.5 hours long, a small part (1 hour)
was used for validation purposes, and a 2-hour part was used for testing.

3.2 Experimental Setup

As the frame-level classifier we utilized Deep Rectifier Neural Networks (DRN)
[2,11], which have been shown to achieve state-of-the-art performance on TIMIT
[10]. DRN differ from traditional deep neural networks in that they use rectified
linear units in the hidden layers; these units differ from standard neurons only
in their activation function, where they apply the rectifier function (max(0, x))
instead of the sigmoid or hyperbolic tangent activation. This activation function
allows us to build deep networks with many hidden layers without the need for
complicated pre-training methods, just by applying standard backpropagation
training. Nevertheless, to keep the weights from growing without limit, we have
to use some kind of regularization technique; we applied L2 normalization. Our
DRN consisted of 5 hidden layers, with 1000 rectifier neurons in each layer. The
initial learn rate was set to 0.2 and held fixed while the error on the development
set kept decreasing. Afterwards, if the error rate did not decrease for a given
iteration, the learn rate was subsequently halved. The learning was accelerated
by using a momentum value of 0.9. We used the standard MFCC+Δ+ΔΔ feature
set, and trained the neural network on 15 neighbouring frames, so the number
of inputs to the acoustic model totalled 585.

We did not apply any language model, as we wanted to focus on the acoustic
model. Furthermore, due to the presence of the garbage symbol in the phoneme
set, including a phoneme n-gram in the dynamic search method is not trivial; of
course, we plan to implement this small modification in the near future.

3.3 Results

First we evaluated the CTC training method on the TIMIT database, the results
of which can be seen in Table 1. As for this data set a manual segmentation is



A Sequence Training Method for Deep Rectifier Neural Networks 87

Table 2. The accuracy scores got for the two different DRN training methods

Database Method Dev. set Test set

Audiobook
Monostate (52)

CTC + DRN 82.15% 83.45%
Forced Alignment 82.24% 83.02%

Tristate (156)
CTC + DRN 87.42% 88.33%
Forced Alignment 87.53% 88.04%

Broadcast news
Monostate (52)

CTC + DRN 74.04% 74.42%
Forced Alignment 74.18% 74.36%

Tristate (156)
CTC + DRN 78.38% 78.77%
Forced Alignment 77.87% 78.26%

also available, the results obtained by training using the manually given bound-
aries is used as a baseline. As a further comparison, the training was repeated in
the usual way, where the training labels are obtained using forced alignment. We
found that the results obtained using the hand-labeled set of labels were notice-
ably worse than the ones we got when we used forced-aligned labels. This reflects
the fact that the manually placed phone boundaries are suboptimal compared
to the case where the algorithm is allowed to re-align the boundaries according
to its needs. The results obtained using tri-state models were always better than
those got with monostate ones, on all three databases. Furthermore, the CTC
DRN training model consistently outperformed the other two tested training
schemes (although sometimes only slightly), when evaluated on the test set. On
the development set usually the standard training strategies were better, which
can probably be attributed to overfitting.

Training when using CTC was slightly slower than in the baseline cases: cal-
culating the α and β values increased the execution times only by a very small
amount, but it took a few more iterations to make the weights converge. On
TIMIT, CTC used all training vectors 24-25 times, whereas it was 18-19 in the
baseline cases. This is probably due to that CTC strongly relies on the acoustic
classifier trained in the previous iteration, so it takes a few iterations before the
training starts to converge. We think these values are not high, especially as
Graves et al. reported much higher values (frequently over 100) [4].

Another interesting point is that besides the similar accuracy scores, standard
backpropagation leads to a relatively high number of phoneme insertions, while
when performing CTC it is common to have a lot of deletion errors. The reason
is that the correct phonemes are often suppressed by X s, which labels are then
deleted from the result before the accuracy score is calculated. This behaviour,
however, does not affect the overall quality of the result.

4 Conclusions

In this study we adapted a sequence learning method (which was developed for
Recurrent Neural Networks) to a standard HMM/ANN architecture. Compared
to standard zero-or-one frame-level backpropagationANN training we found that



88 T. Grósz, G. Gosztolya, and L. Tóth

networks trained with this sequence learning method always produced higher
accuracy scores than the baseline ones. In the future we plan to implement a
duration model, incorporate a phoneme bigram as language model, and combine
the method with a convolutional network to further improve its performance.

Acknowledgments. This publication is supported by the European Union
and co-funded by the European Social Fund. Project title: Telemedicine-oriented
research activities in the fields of mathematics, informatics and medical sciences.
Project number: TÁMOP-4.2.2.A-11/1/KONV-2012-0073.

References

1. Bourlard, H.A., Morgan, N.: Connectionist Speech Recognition: A Hybrid Ap-
proach. Kluwer Academic, Norwell (1993)

2. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier networks. In: Proceedings
of AISTATS, pp. 315–323 (2011)

3. Graves, A.: Supervised Sequence Labelling with Recurrent Neural Networks. SCI,
vol. 385. Springer, Heidelberg (2012)

4. Graves, A., Mohamed, A.R., Hinton, G.E.: Speech recognition with Deep Recurrent
Neural Networks. In: Proceedings of ICASSP, pp. 6645–6649 (2013)

5. Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A., Jaitly, N., Senior, A., Van-
houcke, V., Nguyen, P., Sainath, T., Kingsbury, B.: Deep Neural Networks for
acoustic modeling in Speech Recognition. IEEE Signal Processing Magazine 29(6),
82–97 (2012)

6. Huang, X., Acero, A., Hon, H.W.: Spoken Language Processing. Prentice Hall
(2001)

7. Lamel, L., Kassel, R., Seneff, S.: Speech database development: Design and analysis
of the acoustic-phonetic corpus. In: DARPA Speech Recognition Workshop, pp.
121–124 (1986)

8. Senior, A., Heigold, G., Bacchiani, M., Liao, H.: GMM-free DNN training. In:
Proceedings of ICASSP, pp. 5639–5643 (2014)

9. Tóth, L., Tarján, B., Sárosi, G., Mihajlik, P.: Speech recognition experiments with
audiobooks. Acta Cybernetica, 695–713 (2010)

10. Tóth, L.: Convolutional deep rectifier neural nets for phone recognition.
In: Proceedings of Interspeech, Lyon, France, pp. 1722–1726 (2013)

11. Tóth, L.: Phone recognition with Deep Sparse Rectifier Neural Networks.
In: Proceedings of ICASSP, pp. 6985–6989 (2013)

12. Tóth, L., Grósz, T.: A comparison of deep neural network training methods for
large vocabulary speech recognition. In: Proceedings of TSD, pp. 36–43 (2013)

13. Werbos, P.J.: Backpropagation Through Time: what it does and how to do it.
Proceedings of the IEEE 78(10), 1550–1560 (1990)


	A Sequence Training Method for Deep RectifierNeural Networks in Speech Recognition
	1 Introduction
	2 Connectionist Temporal Classification
	2.1 The Forward-Backward Algorithm
	2.2 Using the αβ values for ANN training
	2.3 Garbage Label
	2.4 Decoding

	3 Experiments and Results
	3.1 Databases
	3.2 Experimental Setup
	3.3 Results

	4 Conclusions
	References




