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Abstract

In the recent years extracting non-trivial information from au-
dio sources has become possible. The resulting data has induced
a new area in speech technology known as computational par-
alinguistics. A task in this area was presented at the ComParE
2013 Challenge (using the SSPNet Conflict Corpus), where the
task was to determine the intensity of conflicts arising in speech
recordings, based only on the audio information. Most au-
thors approached this task by following standard paralinguistic
practice, where we extract a huge number of potential features
and perform the actual classification or regression process in
the hope that the machine learning method applied is able to
completely ignore irrelevant features. Although current state-
of-the-art methods can indeed handle an overcomplete feature
set, studies show that they can still be aided by feature selec-
tion. We opted for a simple greedy feature selection algorithm,
by which we were able to outperform all previous scores on the
SSPNet Conflict dataset, achieving a UAR score of 85.6%.
Index Terms: computational paralinguistics, conflict detection,
feature selection, SVM

1. Introduction

In the past, within the field of speech technology, most of the
researchers’ efforts were devoted to speech recognition. But
in recent years they have turned their attention to other areas
as well like emotion detection [1, 2], speaker verification [3],
speaker age estimation [4], detecting social signals like laugh-
ter and filler events [5, 2, 6] and estimating the amount of phys-
ical or cognitive load during speaking [7, 8, 9]. What these
tasks have in common is that what is considered noise in speech
recognition (i.e. non-verbal audio information) becomes impor-
tant, whereas what was relevant in speech recognition (i.e. what
the speaker actually said) becomes irrelevant.

One such task is to determine the level of conflict in speech.
Conflicts influence the everyday lives of people to a significant
extent, either in their public or personal lives, and they are one
of the main causes of stress [10]. With the rise of socially intel-
ligent technologies, the automatic detection of conflicts can be
the first step of handling them properly. Furthermore, conflict
detection has straightforward applications such as monitoring
incoming calls in call centers, where an important feedback of
the employees is how they can handle conflicted situations.

In this study, we focus on the automatic estimation of the
level of conflict in televised political debates [11, 12, 13]. This
is mainly a regression task [14], as the intensity of conflict
should be estimated, which are represented by real values. Of
course, regarding actual applications, a categorical approach
can be more practical, where the question is whether there is
a conflict present or not; then the task is turned into a (binary)
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classification one.

In computational paralinguistics the standard approach is to
extract a huge variety of features from each utterance, and per-
form classification or regression in this high-dimensional space.
This approach clearly contradicts the ideal set-up of machine
learning: ideally the feature set consists of only those features
(possibly violated by some noise) that are relevant to the actual
learning task. Features which capture only noise might even
deteriorate the performance of the learning model because it
becomes more prone to overfitting (i.e. it learns the noise).

Another problem with irrelevant features is that, due to
the curse of dimensionality [15], models trained in a high-
dimensional space require more examples. In contrast, more
restricted feature sets usually lead to more compact models,
which provide better generalization. An additional, obvious ad-
vantage of a smaller feature set is that it is also computationally
cheaper to extract, store and process.

For these reasons, some researchers already applied feature
selection in various paralinguistic tasks such as detecting emo-
tion [16, 17, 18], depression [19] and autism [20, 21]. A number
of such studies addressed the same problem as this paper does,
i.e. feature selection for conflict intensity estimation [21, 22].
(For a detailed list, see [22].) Perhaps due to the special aspects
of the area (few training vectors along with a huge feature set
containing both redundant and irrelevant features), most of the
efforts focused on adapting existing algorithms to paralinguistic
tasks, or developing new ones.

2. The SSPNet Conflict Corpus

The SSPNet Conflict Corpus [11] contains recordings of Swiss
French political debates taken from the TV channel “Canal9”. It
consists of 1430 recordings, 30 seconds each, making a total of
11 hours and 55 minutes. The ground truth level of conflicts was
determined by manual annotation performed by volunteers not
understanding French (French-speaking people were excluded
from the list of annotators). Each 30-second long clip was
tagged by 10 annotators, and in the end each recording was as-
signed a score in the range [-10, 10], 10 meaning a high level of
conflict and -10 meaning no conflict at all.

The database contains both audio and video recordings, and
the annotators could rely on both sources. In the recent experi-
ments, however, attention was focused only on the audio infor-
mation for a number of reasons. Firstly, the annotators judged
the level of conflict in a similar way based on the two sources:
the correlation of the scores was 0.95 [11]. Secondly, in a tele-
vision political debate, audio can be a more reliable indicator:
the subjects can hear all the participants, but they can only see
the one that the cameraman of the debate has chosen, which is
not the one speaking in many cases (especially in the heat of a
debate when several persons may be speaking at the same time).
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The audio clips of this dataset were also used in the Con-
flict sub-challenge of the Interspeech 2013 ComParE Chal-
lenge [12]. Besides completely discarding video information,
the organizers of the Challenge made other steps to standard-
ize the work on this dataset, and their setup has since been
adopted by most researchers. Firstly, separate training, devel-
opment and test sets were defined instead of relying on cross-
validation as was done in [11]; secondly, a standard feature set
was defined and extracted from the utterances by utilizing the
tool openSMILE [23]. The set includes energy, spectral, cep-
stral (MFCC) and voicing-related low-level descriptors (LLDs)
as well as logarithmic harmonic-to-noise ratio (HNR), spectral
harmonicity and psychoacoustic spectral sharpness, leading to
a total of 6373 features calculated for each utterance.

The evaluation metrics used for this dataset were also de-
fined. Although it was admitted that this was mainly a regres-
sion task, and cross-correlation (CC) was used to measure per-
formance, this task was also converted into a two-class clas-
sification one, defining the classes low and high based on the
signum of the score. Classification accuracy was measured by
using the Unweighted Average Recall (UAR) score [12]. This
score was used to evaluate contributions submitted to the Chal-
lenge (e.g. [6, 21]), and it has been used in research papers since
then (e.g. [22]). As this is clearly more like a regression task
than a classification one, we find CC a more appropriate metric
and we will primarily rely on it, but also give the UAR scores.

3. Feature Selection for Conflict Intensity
Estimation

Feature selection seeks to reduce the list of features extracted
for a given task. A large number of methods just consider
the correlation of the target score and each feature, such as
Correlation-based Feature Selection [24]. We can find several
such applications in computational paralinguistics as well; for
example, Kaya et al. proposed a feature selection method based
on Canonical Correlation Analysis (CCA) and applied it for de-
pression recognition [9]. Later, an improved version of this
method was proposed, which randomly selected feature subsets
and calculated the ranking of features based on the CCA-based
score got on these subsets [22].

The weakness of performing feature selection only on the
basis of correlation is, however, that after feature selection,
some kind of machine learning method (SVM, ANN etc.) is
trained using the restricted feature set, but the special aspects
of this method are ignored during feature selection. This can
be improved if we incorporate the machine learning method in
the feature selection process [24]. This approach has the ad-
vantage that we will more likely pick those features which are
relevant for the given machine learning method. Of course, this
approach could lead to higher computational times than before;
still, as in computational paralinguistics we do not have so many
examples, this can be a good choice as long as we can keep the
number of features low.

Such methods are usually divided into two types: forward
and backward feature selection methods. Forward methods start
with an empty (or very restricted) feature set, and expand it step-
by-step [25]. Perhaps the most well-known forward method is
the Sequential Forward Selection algorithm [26]: this, for each
step, tries to add each feature to the set, and keep the one which
resulted in the highest improvement in accuracy. Unfortunately,
for such a large set of available features as in this task, this
would be a very expensive method, as choosing each feature
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Algorithm 1 Greedy Forward Feature Selection

Require: features: an ordered list of features
Require: trainingData: the training dataset
Require: developmentData: the development dataset
selectedFeatures := ()
bestCC :=0
for i := 1 — len(features) do
testFeatures := selectedFeatures U { features(i) }
model := trainM L(trainingData(test Features))
actScores := evaluateM L(model, . . .
developmentData(test Features))
actCC = CC(developmentData, actScores)
if actCC > bestCC + ¢ then
selectedFeatures := test Features
bestCC := actCC
end if
end for
return selectedFeatures

would require several thousands of model trainings.

Backward methods work in the opposite way: they start
with the full feature set, which is reduced over time [25]. This
approach also has a drawback in our case: due to the large num-
ber of features, we have to train our classifiers by using a lot
of features (at least in the first part of the selection process),
making it rather time-consuming as well.

An interesting approach was proposed by Résédnen et
al. [21]: for each iteration they selected a random subset of
features, and a classifier model was trained on this feature sub-
set. The usefulness of each feature was calculated from the av-
erage classification accuracy using the given feature. (This is
similar to applying a Multi-Armed Bandit setup during the trai-
ning of AdaBoost.MH. [27, 28]) The drawback of this approach
is, however, that it requires a really huge number of iterations
to provide reliable accuracy estimates: the authors suggested
300, 000 iterations for the case of the SSPNet Conflict corpus.
This may be an option only if we apply a simple machine lear-
ning method (they used KNN), but then the final accuracy score
can be expected to be suboptimal after feature selection as well,
due to the simplistic nature of the classifier.

3.1. Greedy Forward Feature Selection Method

For the above reasons, we opted for a greedy forward feature
selection heuristic. In the proposed method we first set up an
ordering of the possible features. Then we examine the features
in this order; each feature is examined only once: if using the
actual feature improves the quality of regression (or classifica-
tion), we permanently add this feature to our set of selected fea-
tures, otherwise we permanently discard it. For the pseudocode
of this method, see Algorithm 1.

In this algorithm the order of the features is quite important
because after choosing a feature we cannot discard it any more
(and vice versa, after rejecting a feature, we cannot add it to the
selected subset any more). Hence, instead of setting up a ran-
dom order, we opted for a more sophisticated solution: first we
measured the correlation of each feature with the target score.
Then the features were sorted according to the absolute value of
their correlation score in descending order, and this order was
used during feature selection.

Besides this order of features (which is calculated automa-
tically from the training set), we have one other parameter of
the method. As in the CC score very small improvements are



Algorithm 2 Greedy Backward Feature Elimination

Require: features: an ordered list of features
Require: trainingData: the training dataset
Require: developmentData: the development dataset
selectedFeatures := features
model := trainM L(trainingData(selected Features))
actScores := evaluate M L(model, . . .
developmentData(selected Features))
baseCC := CC(developmentData, actScores)
for i := len(features) — 1 do
test Features := selectedFeatures \ { features(i) }
model := trainM L(trainingData(test Features))
actScores := evaluate M L(model, . . .
developmentData(test Features))
actCC = CC(developmentData, actScores)
if actCC > baseCC then
selectedFeatures := test Features
end if
end for
return selectedFeatures

possible, the set of selected features can grow quite large by
features which aid the regression only vaguely; therefore we
required the improvement to be at least € (a parameter of our
method), thereby limiting the number of features selected.

3.2. Greedy Backward Feature Elimination Method

As was pointed out, forward methods tend to select a redundant
feature set, since once a feature is picked, there is no way to get
rid of it. For this purpose, it is not uncommon (e.g. [29, 30])
to use a backward feature elimination pass on the output of a
forward pass to prune the feature set. If we apply the backward
feature elimination step on the output of a forward pass, we also
avoid the high running times of backward methods mentioned
earlier, as the number of features examined can be expected to
be much smaller than the total number of input attributes.

In our proposed Greedy Backward FS method, we process
the feature set in the opposite order as we did in the forward
pass (i.e. features less correlated to the target score are checked
first). As the reason for this pass is not to improve the accuracy,
but to exclude the redundant features, for each step we check if,
by using the restricted feature set, we can achieve at least the
same cross-correlation value as that with the input feature set.
If we are able to do so, we can freely discard the given feature;
otherwise we have to keep it. (See Algorithm 2.)

4. Experiments and Results
4.1. Experimental Setup

We generally followed the set-up of the ComParE chal-
lenge [12] regarding feature set and training / development /
test set split, and applied both the CC and UAR metrics. Be-
fore feature selection every set was standardized independently,
i.e. they were converted so as to have a zero mean and unit
variance. We chose this strategy based on preliminary tests,
and as it was standard practice in earlier works on this dataset
(e.g. [21, 22]). We utilized the LibSVM [31] library, using the
nu-SVR method with linear kernel; the value of C' was tested
in the range 10851} (even during feature selection), while
v was left at its default value of 0.5. e for the forward feature
selection pass was set to 1074

1341

Table 1: Cross-correlation (CC) and UAR scores obtained in the
literature for the SSPNet Conflict Corpus, following the Com-

ParE 2013 setup. ”—" means that the given score was not pro-
vided.

Method | cC | UAR
Challenge baseline ([12]) 0.816 | 80.8%
Speaker overlap (Grezes, [6]) — 83.1%
Random Subset FS (Résédnen, [21]) 0.826 83.9%
SLCCA FS (Kaya, [22]) — 84.6%
Greedy Forward FS (CC) 0.835 | 85.6%
Greedy Forward + Backward FS (CC) 0.842 | 85.1%
Greedy Forward FS (UAR) 0.838 | 83.9%
Greedy Forward + Backward FS (UAR) 0.836 | 84.3%
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Figure 1: Cross-correlation (CC) and AUC scores during the
feature selection process. The dashed lines indicate the number
of features chosen in the forward pass (FW) and kept in the
backward pass (BW).

During feature selection, we always trained our regression
model on the training set, and calculated the correlation and
UAR scores based on the predictions made on the development
set. For each step, all possible values of C' were tested. Fi-
nally, we trained our regression model on the training and de-
velopment sets united, using the optimal feature set and SVR
parameter, and evaluated it on the test set.

4.2. Results

The results achieved here and in the preceding studies can be
seen in Table 1. As the UAR score was the de facto standard
evaluation metric on this dataset and setting so far, we listed
the UAR score of all previous studies; however, we also give
the cross-correlation scores where available. It is clear that we
exceeded the performance of all previous studies achieved on
this dataset regarding UAR, and the CC scores are much higher
than those in the previous studies as well. The backward pass
improved cross-correlation even further, meaning that achieving
the same CC score on the development set using fewer features
improves the generalization capabilities of a machine learning
method, and make the results more robust. (The backward pass
somewhat reduced the UAR value, though.)

Note that our scores even exceeded the results presented
in [11], where correlation scores around 0.75 were reported.
These values cannot be directly compared, though, as the au-
thors of [11] used 5-fold cross validation and a more restricted
feature set (90 attributes overall).
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Figure 2: Density scatter plot of the predictions on the dev set,
after FW+BW feature selection optimizing for CC; these esti-
mates had a CC score of 0.912 and a UAR score of 84.4.

4.3. The Selected Features

After the forward pass, our feature selection method retained
only 158 features, which is a very small feature set overall:
Résdnen et al. had 349 features [21], whereas Kaya et al. chose
500 features from the original 6373-long set [22]. The back-
ward pass further reduced this value to 137. Two thirds of
the full feature set consist of spectral-related features (66%),
MFCC taking up another 22%; the rest is standing of energy-
and voicing related attributes (5% and 7%, respectively). Sur-
prisingly, after the forward pass, only 36% of the retained fea-
tures belong to the spectral category, which is exceeded by
the ratio of energy-related features (38%). The importance
of MFCC and voicing-related attributes practically remain un-
changed (22% and 4%, respectively), and these ratios are only
slightly affected by the backward pass. This suggests that for
conflict intensity estimation, mainly energy-related attributes
are needed, which is logical if we consider that a high level of
conflict is usually accompanied by the participants raising their
voice. (We use the categories defined in [32], treating MFCC
independently of other spectral features, following [22].)
Figure 1 shows the best CC and UAR scores for each itera-
tion on the development set. CC shows an increasing tendency,
which is not surprising as we optimized for it. The tendency of
the increasing UAR scores can also be seen, but as it was not our
primary metric, the values vary much more in both directions.
The dashed lines in Fig. 1 represent the number of features
selected (FW) and kept (BW) after examining the actual feature.
It is not surprising that most features are selected from the 1000
most correlated features of the original set, and most of them are
kept even after the backward elimination pass. After examining
1000 features, the CC and UAR scores are also close to optimal.
Still, valuable features are picked during the later iterations as
well, as one-third of the final feature set is chosen in this phase.

5. On the UAR Evaluation Metric

Figure 2 shows the distribution of the output scores of the best-
performing regressor model (FW+BW feature selection opti-
mizing for CC) on the development set. The high CC value as-
sociated with this prediction is obvious; the UAR metric, how-
ever, concentrates only on the ratio of the correctly classified
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Figure 3: Density scatter plot of the predictions on the dev set,
after FW+BW feature selection optimizing for UAR; these esti-
mates had a CC score of 0.796 and a UAR score of 85.4.

examples after discretization; thus, maximizing UAR practi-
cally means minimizing the number of examples falling into the
shaded regions of Fig. 2. When compared with Fig. 3, which
shows the same plot when optimizing for UAR, we see that al-
though fewer points fall in the shaded region, overall the points
are more scattered. The difference is even more obvious in the
region around the origin. Although Fig. 3 has a higher UAR
score than in Fig. 2, it is hardly better in any other way. And
since these figures show the results for the development set, it
is not surprising that the latter model appears to be less robust,
in the end achieving a worse UAR score on the test set.

Over the past two years since the Challenge, researchers
have found that during feature selection, we should focus on
correlation instead of UAR [22], which accords with our experi-
ence. We also got better results if we first performed regression
(i.e. using nu-SVR) and then discretized the predictions, instead
of directly focusing on the binary classification task. It turns out
that the UAR metric should only be used for final model evalu-
ation; and even in this sub-task, its use can be questioned. For
these reasons, we suggest that instead of the UAR score, future
studies on this task should be evaluated using only regression
metrics like cross-correlation and RMSE.

6. Conclusions

The standard set-up in computational paralinguistics is to ex-
tract a highly redundant feature set in the hope that the machine
learning method applied can handle the redundancies and irrele-
vant attributes present. However, recent studies have shown that
even current state-of-the-art classification and regression algo-
rithms can be aided by feature selection. We proposed a simple
greedy forward-backward feature selection algorithm for con-
flict intensity estimation; using this method, we were able to
significantly outperform all previous scores on this task.
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