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Abstract
Social signal detection is a task in speech technology which has
recently became more popular. In the Interspeech 2013 Com-
ParE Challenge one of the tasks was social signal detection,
and since then, new results have been published on the dataset.
These studies all used the Area Under Curve (AUC) metric
to evaluate the performance; here we argue that this metric is
not really suitable for social signals detection. Besides raising
some serious theoretical objections, we will also demonstrate
this unsuitability experimentally: we will show that applying
a very simple smoothing function on the output of the frame-
level scores of state-of-the-art classifiers can significantly im-
prove the AUC scores, but perform poorly when employed in
a Hidden Markov Model. As the latter is more like real-world
applications, we suggest relying on utterance-level evaluation
metrics in the future.
Index Terms: Social signals, speech technology, Ada-
Boost.MH, deep neural networks, exponential smoothing

1. Introduction
In speech technology an emerging area is paralinguistic phe-
nomenon detection, which seeks to detect non-linguistic events
(laughter, conflict etc.) in speech. Being a relatively new area,
there is still not a wide consensus about which evaluation met-
rics should be used. In contrast to ASR, where edit distance-
based Word Error Rate (WER) (and sometimes Phoneme Error
Rate, PER) is the de facto standard, paralinguistic research uses
a wide variety of metrics, sometimes even on the same corpus.

One task belonging to this area is the detection of social
signals, from which, perhaps laughter and filler events (vocal-
izations like “eh”, “er” etc.) are the most important. Many
experiments were performed with the goal of detecting laughter
(e.g. [1, 2, 3, 4]), and the detection of filler events has also be-
come popular (e.g. [5]). To highlight the importance of social
signal detection, in 2013 one of the tasks of the INTERSPEECH
ComParE Challenge [6] focused on detecting these events.

Perhaps the most interesting finding of the Challenge was
that although classification and evaluation were performed at
the frame level, it is worth making use of the contextual infor-
mation and adjusting the frame-level scores based on the lo-
cal neighborhood. Gupta [7] applied probabilistic time series
smoothing; later, Brueckner [8] trained a second neural network
on the output of the first, frame-level one to smooth the result-
ing scores, using a surprisingly wide sliding window; in a later
study, Brueckner [9] used a deep bidirectional recurrent neural
network, which gathers information about the earlier frames in
its Long Short-Term Memory block.
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All these studies used the evaluation methodology defined
in the Challenge, which was based of the Area Under the Curve
(AUC) metric, calculated on the frames of the utterances. As in
this actual task there were two phenomena to detect (laughter
and filler events), the AUC scores for the two events were ave-
raged to give the final ranking of the classifier, resulting in the
Unweighted Average Area Under the Curve (UAAUC) score.

Clearly, there are a number of reasons for using this met-
ric. AUC is often used to measure the reliability of a two-class
classifier, and its three-class extension in this actual task is quite
straightforward. However, in our opinion, there are a number of
reasons why this metric does not really suit this particular task.

One of them is that when we apply this metric, we assume
that the class labels of the frames are 100% accurate (so we
have a perfect manual annotation). In practice, however, it is
impossible to objectively position the boundaries of any linguis-
tic event (in our case, laughter and filler events) within a 10ms
precision, which is the typical frame-shift: due to the continu-
ous movement of the vocal chords and the mouth, usually there
is no clear-cut boundary between two consecutive events.

This also implies that the frames cannot be treated as in-
dependent and equally important examples: while two annota-
tors would clearly agree in the inner frames of an occurrence,
they would probably disagree on a number of frames near the
borders. This implies that we should use a metric where the
frames at the center of a phenomenon are more important than
those at the sides. Furthermore, the fact that the more success-
ful approaches for this task all used some kind of averaging over
time also contradicts the assumption of frame independence, on
which UAAUC is based on.

Another reason is that of user expectations. This task is a
typical information retrieval (IR) one: we wish to find real oc-
currences of specific events from a huge number of occurrence
candidates. If our aim is to locate the filler events or laughter
inside an utterance, we clearly do not mind if the boundaries
of the found and the hand-labeled occurrences differ a couple
of frames (especially since we cannot expect a perfect match
anyway). Frame-level AUC, however, just does not accord with
this expectation.

Of course, all these theoretical objections do not mean that
UAAUC does not correlate well with some other metric that bet-
ter fits the above expectations. To this end, in this study we will
also show experimentally why we cannot rely on UAAUC in
this task. For this purpose, we will use our approach submitted
to the Challenge [10], where we utilized the AdaBoost.MH [11]
method trained on frame-level. Then we apply an extremely
simple smoothing algorithm on the top of the output likelihoods
of AdaBoost.MH, and show that this extension improves the re-
sults of our classifier by a surprisingly large amount in terms
of class-wise averaged AUC. (In fact, we outperform all pre-
vious results except heavyweight Recurrent Neural Networks.)
However, when we evaluate the performance of the classifier
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methods by utilizing a Hidden Markov Model to detect event
occurrences, and use occurrence-level precision, recall and F-
measure scores as evaluation metrics, we find that smoothing
actually makes the results attained worse. (We also repeat this
experiment with the baseline SVM classifier and with Deep
Neural Networks, which can also be regarded as a state-of-the-
art classifier; the results will be quite similar in both cases.)
This, in our opinion, supports the view that the UAAUC metric
is unable to identify the real nature of this problem, and the ac-
curacy of social signal detection methods can be more reliably
expressed in terms of utterance-level IR metrics.

Note that we do not question the applicability of frame-wise
AUC in a classification challenge as in ComParE 2013. For
such tasks we need easy-to-calculate and platform-independent
metrics, which happens to be quite different from needing to
configure a Hidden Markov Model, deal with the special cases
of matching overlapping occurrences of different events, etc.,
just to rank a classification method. However, in other scien-
tific studies, in our opinion, applying a HMM and measuring
utterance-level scores should be standard practice, similarly to
the case of phoneme classification.

1.1. The SSPNet Vocalization Corpus

The SSPNet Vocalization Corpus [5] consists of 2763 short
audio clips extracted from telephone conversations from 120
speakers, containing 2988 laughter and 1158 filler events. We
used the feature set supplied for the Challenge, which was ex-
tracted with the openSMILE tool [12]. It consisted of the frame-
wise 39 MFCC+∆+∆∆ feature set along with voicing prob-
ability, HNR, F0 and zero-crossing rate, and their derivatives.
To these 47 features their mean and standard derivative in a 9-
frame long neighbourhood were added, resulting in a total of
141 features [6]. Each frame was labeled as one of three classes,
namely “laughter”, “filler” or “garbage”.

2. The Classification Methods Used
2.1. AdaBoost.MH

AdaBoost.MH [11] is an efficient meta-learner algorithm,
which seeks to build a strong final classifier from a linear
combination of simple, scalar base classifiers. For more
complex problems, the state-of-the-art performance of Ada-
Boost.MH is usually achieved using decision trees as base
learners, parametrized by their number of leaves.

We employed an open source implementation (the multi-
boost tool [13]), and followed a multi-armed bandit (MAB)
setup [14], which can speed up training significantly. In it, for
each boosting iteration step, the optimal base learner is found
using only a small subset of features, and the usefulness of
these subsets are learned from the accuracy of these basic clas-
sifiers [15]. We used our model trained for the Challenge: we
sampled the overrepresented “garbage” class, and included the
feature vectors of 8 neighbouring frames on each side. We used
8-leaved decision trees as base learners, and trained our model
for 100, 000 iterations. For details, see [10].

2.2. Deep Rectifier Neural Networks

Deep neural networks differ from conventional ones in that
they consist of several hidden layers. This deep structure can
provide significant improvements in speech recognition results
compared to techniques used previously [16], but the conven-
tional backpropagation algorithm encounters difficulties when
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Figure 1: The effect of exponential smoothing on the raw like-
lihood scores.

training such networks [17]. For this, one possible solution is
deep rectifier neural networks (DNNs) [18].

In deep rectifier neural networks, rectified linear units are
employed as hidden neurons, which apply the rectifier activa-
tion function max(0, x) instead of the usual sigmoid one [18].
The main advantage of deep rectifier nets is that they can be
trained with the standard backpropagation algorithm, without
any tedious pre-training (e.g. [19, 20]). We used our custom
implementation, originally developed for phoneme classifica-
tion. On the TIMIT database, frequently used as a reference
dataset for phoneme recognition, we achieved the best accuracy
known to us with a phonetic error rate of 16.7% [21, 22].

For the actual task, we trained our model on 31 consecutive
neighbouring frame vectors. (Due to shorter execution times,
we were able to do more experiments with neural networks than
with AdaBoost.MH.) After preliminary tests, we used five rec-
tified hidden layers, each consisting of 256 neurons, while we
had neurons using the softmax function in the output layer.

2.3. Results Using UAAUC

Table 1 shows the values we got for the two classification meth-
ods in terms of the Area Under the Curve metric. Both meth-
ods significantly outperformed baseline SVM; AdaBoost.MH
performed slightly better than neural networks, which is some-
what surprising as DNN is considered to be the state-of-the-art
in frame-level phoneme classification. DNN performed better
for filler events, whereas AdaBoost.MH produced a better AUC
score for laughter.

3. Posterior Smoothing
We trained our classifiers by treating the frames as individual
examples. However, it is easy to see that in practice this is not
the case, as usually a transition occurs from one class to another
over time. Successful approaches for this task [7, 8, 9] all ap-
plied some kind of smoothing along time, which suggests that
this is a good way of improving UAAUC scores. Next we will
extend our frame-level classifiers by applying the quite basic
Simple Exponential Smoothing (SES) [23] method. For the in-
put value series x1, . . . , xT it calculates its result s1, . . . , sT as
s1 = x1 and

si = αxi + (1− α)si−1 (1)
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Method Metric Dev. Test
AUC (Laughter) 86.2 82.8

SVM (baseline) AUC (Filler) 89.0 83.7
UAAUC 87.6 83.3

AUC (Laughter) 92.9 91.3
DNN AUC (Filler) 95.5 87.9

UAAUC 94.2 89.6
AUC (Laughter) 94.0 91.9

AdaBoost AUC (Filler) 94.9 87.9
UAAUC 94.5 89.9

Table 1: AUC scores got by using the two classifier methods.

for all 2 ≤ i ≤ T , where 0 < α ≤ 1 is a real-valued parameter
which controls the level of smoothing. As this method consid-
ers only previous observations, we also smoothed the series in
descending order; that is, bT = xT , and

bi = αxi + (1− α)bi+1 (2)

for all 1 ≤ i ≤ T − 1, using the same α value as before. The
final value was calculated as the mean of the two values, i.e.
x′
i = (si+bi)/2. (See Fig. 1.) Although exponential smoothing

causes a lag in the signal (which can be clearly seen in Fig. 1),
we found no improvement in the performance scores when this
delay was corrected in time. Here α had been chosen as the
value which gave the best UAAUC value on the development
set, independently for each method used.

3.1. Results Using UAAUC

Table 2 shows the resulting scores we got by smoothing. It
may seem surprising that with such a simple method we could
markedly improve the performance: the UAAUC scores are
significantly better than their non-smoothed counterparts. The
score of 92.8 for AdaBoost.MH was higher than the challenge-
winner 91.4 [7] and the 92.4 belonging to the neural network
smoothing approach [8], although it lags behind the 94.0 score
achieved using heavyweight Recurrent Neural Networks. How-
ever, considering the simplicity of our smoothing technique,
these scores appear unusually high, and it is hard to see why
the smoothed scores are so much better than their raw counter-
parts. As such a significant improvement in the accuracy scores
should be human-interpretable, in our opinion this fact alone
could mean that frame-level UAAUC is not the most suitable
metric for social signal detection.

Optimal αs (the weight of the actual likelihood) were quite
small (in the range 0.02 − 0.05), indicating that for a good
UAAUC score, the tendency of the scores is much more impor-
tant than the raw likelihood for the given frame. Of course, the
quality of scores used as the input for smoothing is also very
important, as the UAAUC values varied greatly depending on
the classification method used.

4. Turning to Event Occurrence Detection
Up to now, we have treated the task as a frame-level classifica-
tion one. In practice, however, frame-level classification task
evaluations are quite rare, frames being an intermediate step
required only for technical reasons. In speech recognition the
performance is typically evaluated at the sentence level, by ap-
plying a Hidden Markov Model (HMM) [24], which turns the
frame-level likelihood scores into utterance-level phoneme se-
quences, which are then rated by the accuracy metrics.

Method Metric Dev. Test
AUC (Laughter) 92.9 88.6

SVM (baseline) AUC (Filler) 89.7 84.4
UAAUC 91.3 86.4

AUC (Laughter) 97.1 94.9
DNN AUC (Filler) 96.5 89.4

UAAUC 96.8 92.1
AUC (Laughter) 97.9 95.4

AdaBoost AUC (Filler) 96.7 90.2
UAAUC 97.3 92.8

Table 2: AUC scores got by using exponential smoothing.

The reason for this is partly that it is impossible to objec-
tively position phoneme boundaries within a 10ms precision,
which is the typical frame-shift: due to the continuous move-
ment of the vocal chords and the mouth, usually there is no
clear-cut boundary between two consecutive phonemes. Even
two human annotators would not agree on the exact phoneme
boundaries, but this requirement of precision is avoided if we
rate the performance at the utterance-level, where slight differ-
ences in time-alignment are tolerated. AUC is slightly better
than frame-level classification accuracy: we do not expect clear-
cut changes at the “objective” boundaries of the events we are
looking for, but prefer a slight transition instead. But treating
each frame independently is still a weakness of this approach.

Another reason to change the evaluation metric is the nature
of the problem: in the social signal detection task we basically
have some occurrences of certain events (now laughter and filler
events), and we would like to measure how accurately a system
can detect these occurrences. This is clearly the domain of in-
formation retrieval, which has straightforward and widely-used
metrics: precision measures how big the ratio of the hypotheses
is for real occurrences, whereas recall tells us how many of the
real occurrences were found. To balance these two values, they
are usually aggregated together by F-measure (or F1-score).

It is quite obvious that during this evaluation “occurrence”
refers to a time interval and not to one frame or a set of individ-
ual frames, which approach clearly better satisfies user expecta-
tions. In the task of Spoken Term Detection (STD [25], some-
times also referred to as Keyword Spotting, KWS [26]), where
we look for occurrences of given words in speech, it is also
standard practice not to expect frame-level precision. Overall,
in our opinion there are several reasons for dealing with whole
occurrences instead of individual frames; and when we do so,
straightforward metrics are precision, recall and F1.

As we have two phenomena to detect (laughter and filler
events), we should aggregate the corresponding metric values
into one final score. For this, instead of micro-averaging, which
weights the values obtained for the two events by their number
of occurrences, we opted for macro-averaging, where the com-
bined precision and recall scores are calculated by taking the un-
weighted mean of the corresponding scores (then the F1-score
is calculated as the harmonic mean of these combined metrics).
This means that we consider the two kinds of events equally
important, which also matches the set-up of the Challenge [6].

We treated a hypothesis matching an occurrence if they both
referred to the same social signal (laughter or filler event), and
their time intervals intersected. We adopted this approach as
it is standard practice in spoken term detection [27, 28]; also,
this way we can eliminate the requirement of frame-precision
boundary matching we found so ill-founded previously. Manual
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Development set Test set
Method Task Prec. Recall F1 Prec. Recall F1

Laughter 50.3% 74.7% 60.1% 42.3% 64.4% 51.6%
SVM (baseline) Filler 60.3% 68.0% 65.6% 51.8% 60.3% 55.7%

Averaged 56.8% 71.3% 63.2% 47.4% 62.3% 53.8%
Laughter 59.5% 69.8% 64.2% 49.9% 57.0% 53.2%

SVM + smoothing Filler 64.2% 51.6% 57.2% 51.3% 46.1% 48.6%
Averaged 61.8% 60.7% 61.3% 50.6% 51.6% 51.1%
Laughter 68.3% 76.4% 72.1% 58.3% 72.9% 64.8%

DNN Filler 83.3% 61.7% 70.9% 71.4% 60.8% 65.7%
Averaged 75.8% 69.1% 72.3% 64.9% 66.9% 65.8%
Laughter 89.3% 48.4% 62.3% 84.3% 35.9% 50.4%

DNN + smoothing Filler 96.9% 11.1% 20.0% 85.6% 11.5% 20.3%
Averaged 93.1% 29.8% 45.2% 84.9% 23.7% 37.1%
Laughter 74.8% 80.4% 77.5% 58.4% 74.7% 65.5%

AdaBoost Filler 81.8% 76.8% 79.2% 65.2% 71.1% 68.0%
Averaged 78.3% 78.6% 78.5% 61.8% 72.9% 66.9%
Laughter 84.7% 73.8% 78.9% 75.0% 58.1% 65.5%

AdaBoost + smoothing Filler 84.0% 63.3% 72.2% 69.2% 42.4% 52.6%
Averaged 84.4% 68.6% 75.6% 72.1% 50.2% 59.2%

Table 3: Precision, recall and F1 scores obtained on the development and test sets for the different classifier methods.

annotation also tends to be ambiguous at this level of precision,
and it is also prone to subjective factors, like whether adjacent
or intermediate silent pauses should be part of a filler event.

4.1. Employing a Hidden Markov Model

To calculate these metrics we first have to convert the frame-
level likelihoods produced by our classifier method into
utterance-level time-aligned event occurrences. We made the
straightforward choice of using a HMM; for the sake of sim-
plicity we used uniform state transitional probability values, but
employed an insertion penalty to fine-tune the performance. We
would like to stress here that this time we wanted to use exactly
the same likelihoods as we did in sections 2 and 3.

4.2. Results

Table 3 shows the scores we got for precision, recall and F1 for
both the development and the test sets for each classifier tech-
nique tested. As can be seen, both classifier methods (DNN and
AdaBoost.MH) attained better scores than the baseline SVM;
AdaBoost.MH was a little better than DNN.

The use of simple exponential smoothing dramatically im-
proved UAAUC scores, but it reduced the F1 values quite sig-
nificantly in each case. The reason is probably that AUC is an
intra-class metric: in it, only the likelihoods of the target class
(i.e. filler events or laughter) are considered, and the goal is
to produce higher posterior scores for frames belonging to the
given class than for the others. This has two important prop-
erties in our case: firstly, AUC is scale-independent, so it does
not matter if all the likelihoods are quite low as long as they are
even lower for frames containing speech or silence; and sec-
ondly, these likelihoods are never compared to the likelihoods
of other classes for the same frame. When we use a HMM, how-
ever, this latter property suddenly becomes important, which is
completely ignored by AUC. This hypothesis is supported by
the fairly high precision and low recall scores: these reflect that
the smoothed likelihoods for the laughter and filler classes were
generally low, being higher than those of the “garbage” class
only at the clean-cut occurrences, while missing the rest.

Note that we do not suggest that systems presented in earlier
studies are inadequate for this task (clearly, Recurrent Neural
Networks are one of the most powerful tools in speech technol-
ogy). We just say that their potential cannot really be measured
by the UAAUC metric, hence they should be re-evaluated using
utterance-level metrics like precision, recall and F-measure.

5. Conclusions
Automatic social signal detection is an emerging task in speech
technology. The 2013 Interspeech ComParE Challenge con-
tained a social signal detection task, on which further exper-
iments were later published, all using the original set-up of
the Challenge in terms of training-development-test set divi-
sions, feature set and evaluation metric. In this study we ar-
gued against applying the Unweighted Average of Area Under
the Curve (UAAUC) metric for a number of reasons, primarily
because of its frame-based nature.

To demonstrate the unsuitability of UAAUC, we also car-
ried out an experiment. We used two state-of-the-art frame-
level classification methods and applied a very simple smooth-
ing technique on their output. This smoothing improved the
UAAUC scores by a surprisingly large amount. Then we
converted the frame-level posterior scores into utterance-level,
time-aligned occurrence hypotheses of laughter and filler events
by employing a HMM; these utterance-level occurrences could
then be rated via the standard information retrieval metrics of
precision, recall and F-measure. We found that although ex-
ponential smoothing markedly improved the methods in terms
of UAAUC, it actually made the occurrence-level F1 scores
worse. As we consider the latter a more appropriate evalua-
tion methodology, in our opinion this proves that UAAUC is ill-
suited to measure the efficiency of social signal detection me-
thods (although it was good for a classification challenge which
ComParE 2013 was). We do not mean that methods for this
task appearing in previous publications do not perform well;
we suggest, however, that they should be re-evaluated by using
occurrence-level IR metrics; and researchers should consider
using this kind of evaluation in the future.
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