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Abstract
Deep neural network (DNN) based speech recognizers have re-
cently replaced Gaussian mixture (GMM) based systems as the
state-of-the-art. While some of the modeling techniques devel-
oped for the GMM based framework may directly be applied to
HMM/DNN systems, others may be inappropriate. One such
example is the creation of context-dependent tied states, for
which an efficient decision tree state tying method exists. The
tied states used to train DNNs are usually obtained using the
same tying algorithm, even though it is based on likelihoods of
Gaussians, hence it is more appropriate for HMM/GMMs. Re-
cently, however, several refinements have been published which
seek to adapt the state tying algorithm to the HMM/DNN hy-
brid architecture. Unfortunately, these studies reported results
on different (and sometimes very small) datasets, which does
not allow their direct comparison. Here, we tested four of these
methods on the same LVCSR task, and compared their perfor-
mance under the same circumstances. We found that, besides
changing the input of the context-dependent state tying algo-
rithm, it is worth adjusting the tying criterion as well. The meth-
ods which utilized a decision criterion designed directly for neu-
ral networks consistently, and significantly, outperformed those
which employed the standard Gaussian-based algorithm.
Index Terms: deep neural networks, context-dependent state
tying, Kullback-Leibler divergence, entropy

1. Introduction
Deep neural network (DNN) based hybrid speech recognizers
are nowadays regarded as the state-of-the-art and have replaced
conventional Gaussian mixture modeling (GMM) based hidden
Markov models (HMMs). Since the introduction of HMMs,
the speech community have developed many methods to opti-
mize the process of the training of GMM-based acoustic mod-
els. HMM/DNN hybrid systems have inherited most of these
techniques, even though some of these may be suboptimal for
them. Two such examples are the flat start training scheme and
the creation of context-dependent (CD) phone models, which
are vital components of standard HMM/GMM systems.

Conventionally, HMM/GMM systems are trained by an it-
erative re-estimation and re-alignment of the models, known as
”flat start” training. This procedure is quite straightforward for
HMM/GMMs, but performing the same for HMM/DNNs is not
so obvious. In the past few years, however, it was shown by
several researchers that, if done with proper caution, flat start
training can also be performed with DNNs [1, 2, 3, 4].

While hybrid models applied only context-independent (CI)
phone models for a long time [5], there is now common agree-
ment that HMM/DNN systems also greatly benefit from using
context-dependent tied states [6, 7]. Thus, it is necessary to
find an approach for efficiently creating context-dependent tied
states for systems built on DNNs. Currently, the dominant so-

lution is the decision tree-based state tying method of Young
et al. [8]. This technique fits Gaussians on the distribution of
the states, and uses the likelihood gain to govern a decision
tree-based state-splitting process. Thanks to the Gaussian as-
sumption and the decision tree representation, this approach is
computationally very efficient. However, as we have already
mentioned, it may be inappropriate to just impose the common
HMM/GMM-based techniques on the HMM/DNN training pro-
cedure, and this may hold for this state tying algorithm as well.

GMM-based methods assume that the Gaussian compo-
nents have diagonal covariance matrices, and thus require
decorrelated features like cepstral coefficients (MFCCs). How-
ever, HMM/DNN hybrids tend to work better on more primitive
features like mel filter bank energies [9]. Since conventional
HMM/GMM systems cannot be efficiently trained on these fea-
tures, the usual approach is to build a HMM/GMM system on
a standard feature set like MFCCs, create the tied state inven-
tory and alignment, and then throw away the feature set and the
whole model. Furthermore, intuitively, the state clustering al-
gorithm should split those states where the splitting would be
beneficial for the respective classifier. Since the objective func-
tions during GMM and DNN training are different, measuring
how a Gaussian fits a given class may be unrelated to the diffi-
culty of modeling that class by a DNN. This suggests that if we
perform the CD state tying by following the standard approach,
we do it on a mismatched feature set and using a mismatched
similarity metric.

Quite recently, a number of articles were published about
CD state tying for HMM/DNNs. The issue of the ‘inappropri-
ate feature set’ can be handled by performing the state clustering
process on the output of a DNN instead of the raw features. This
idea was investigated in a couple of studies (e.g. [1, 2, 10, 11]).
In those studies, however, only the input of the clustering al-
gorithm was modified, while the whole state tying algorithm
remained intact. Other studies proposed novel decision cri-
teria for the standard state tying method, which suit neural
networks better. Gosztolya et al. [12] proposed applying the
Kullback-Leibler divergence-based decision criterion originally
developed for KL-HMMs by Imseng et al. [13]. Zhu et al. [14]
constructed a criterion that relied on entropy. Lastly, Wang
et al. [15] trained a special network that optimized for Deep
Canonical Correlation Analysis, and clustered the output of this
network via k-means.

All these studies experienced a drop in the word error
rate (WER) compared to the baseline that uses the standard
Gaussian likelihood-based state tying method with the MFCC
vectors. However, none of these studies compared its results
with other neural network-based state tying approaches, which
makes these methods quite hard to compare. Furthermore, the
datasets used differed to a huge extent as well: Gosztolya et
al. used a Hungarian database, Zhu et al. used a German one,
while Wang et al. used the quite small TIMIT corpus, where
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only phoneme error rates can be reported. In this study we com-
pare four such approaches on the same LVCSR task, where the
same context-independent neural network will provide the input
vectors for the state clustering. Note that, since we obtain the
frame-level CI labels by the MMI DNN flat-start method pro-
posed in [3], the CI models have no inherent GMM dependency.
Therefore those state tying methods which have a decision cri-
terion designed for DNNs (i.e. the ones proposed by Gosztolya
et al. [12] and Zhu et al. [14]) are completely GMM-free.

2. Decision Tree-Based State Tying
The decision tree-based state tying algorithm was introduced by
Young et al. [8], and evolved into a vital component of training
large vocabulary speech recognizers. The main idea is to pool
all context variants of a state, and then build a decision tree
by successively splitting this set into two. For each step, the
algorithm chooses one of the pre-defined questions in such a
way that the resulting two non-overlapping subsets of the orig-
inal state set S differ maximally. The algorithm measures this
difference by using a likelihood-based decision criterion. Al-
though minor improvements to the algorithm like the automatic
generation of the questions via clustering were proposed [16],
the main scheme of the method proved to be so successful that
it has remained unaltered ever since.

2.1. Likelihood based decision criterion

Suppose that we have a set of states S that we need to tie, using
the decision tree-based method of Young et al. At each node,
we have a set of questions, and each question can split S into
two non-overlapping sub-sets depending on the answer to the
question. Odell formulated a maximum likelihood-based de-
cision criterion [17] and proposed a computationally efficient
algorithm by approximating the splitting criterion as

L(S) � −
1

2

(
log[(2π)K |Σ(S)|] +K

)∑

s∈S

N(s), (1)

where s ∈ S are the individual states, Σ(S) is the variance of
data in S , and N(s) is the number of examples (frames) in the
training data which belong to state s. Using this formula, we
should choose the question q which maximizes the likelihood
difference ΔL(q|S)

ΔL(q|S) =
(
L(Sy(q)) + L(Sn(q))

)
− L(S), (2)

where Sy(q) and Sn(q) are the two subsets of S formed based
on the answer to the question q. Notice that the likelihood va-
lues do not depend on the training observations themselves, but
only on the variance over training samples corresponding to the
states, and the total number of frames belonging to each state.

3. Neural Network-Based CD State Tying
Using the state tying method of Young et al. with the decision
criterion of Odell, we rely on the variance of the feature vectors
assigned to each state. While this assumption fits well with a
system employing GMMs, using the above procedure to create
tied states for a CD HMM/DNN system is flawed in two distinct
ways, because we perform state tying using the wrong feature
set and the wrong state similarity criterion.

A solution proposed by several studies is that we first train
a context-independent neural network (either DNN or a shallow
ANN). This CI NN (referred to as the auxiliary neural network

from now on) can be trained using the frame-level targets pro-
vided by a HMM/GMM system, but we can also utilize some of
the DNN flat-start techniques introduced recently (e.g. [2, 3, 4]).
Then, for the next step, we create the CD states based on this
auxiliary neural network. This approach has the advantage that
this network can be trained on the same feature set that is used
for the final acoustic model training. However, the optimal way
of performing state clustering on the output of this CI DNN is
not clear. Next, we will describe four such approaches.

3.1. Clustering the CI DNN output

This approach, proposed by Senior et al. [10], is quite straight-
forward. They simply use the frame-level outputs of the auxil-
iary neural network as input for the state tying procedure. The
whole clustering process remains the same in every other re-
spect. Senior et al. reported a slight improvement in the WER,
and, naturally, with this approach they were able to avoid the
feature set mismatch among CD DNN training and the CD state
tying process. However, since they used the original state ty-
ing method of Odell [17], which relies of likelihoods of Gaus-
sians, in our opinion their method can hardly be regarded as
completely GMM-free.

3.2. Clustering the DNN hidden activations

In a parallel study Bacchiani and Rybach [11] proposed per-
forming the clustering on the activations of the last hidden layer
of the auxiliary CI NN. Although one cannot expect the acti-
vation vectors to be decorrelated (or to follow any predefined
distribution), Bacchiani and Rybach were able to use them as
inputs for the CD state tying method of Young et al. The WERs
they got were reported to be lower for smaller CD state sizes
than by using the standard approach, but for larger state counts
it was the other way around. They explained this by recalling
that the frame-level CI labels were obtained by HMM/GMMs,
hence there was a mismatch in the frame-level targets.

3.3. Kullback-Leibler divergence based decision criterion

The DNN-based CD state tying approaches described so far all
leave the decision criterion intact. The first study published
which utilized a criterion designed for DNN outputs in a stan-
dard HMM/DNN framework was that of Gosztolya et al. [12],
who used the criterion of Imseng et al., originally developed
for their Kullback-Leibler HMM framework [13]. Since in the
study of Gosztolya et al. neither the feature set nor the deci-
sion criterion relied on Gaussians, this was the first study in
which the state tying procedure was in fact completely GMM-
free. Next, we give a brief description of this algorithm, based
on articles [12], [18] and [19].

The Kullback-Leibler divergence between two posterior
vectors (the observed (zt) and the state prototype (ys)) is de-
fined as

DKL(ys||zt) =
K∑

k=1

ys(k) log
ys(k)

zt(k)
, (3)

where k ∈ {1, . . . ,K} is the dimensionality index of the pos-
terior distribution vector [20]. Instead of maximizing the likeli-
hood, we will minimize the KL-divergence

DKL(S) =
∑

s∈S

∑

f∈F (s)

K∑

k=1

yS(k) log
yS(k)

zf (k)
, (4)

1627



where S is a set of states s, and F (s) is the set of training vec-
tors corresponding to state s. The posterior vector associated
with the set S (i.e. yS ) can be calculated as the element-wise
geometrical mean of the example vectors belonging to the ele-
ments of S , normalized to add up to one, but Imseng noted that
the arithmetic mean can also be used [21]. After expanding and
simplifying, we get

DKL(S) = −
∑

s∈S

N(s) log
K∑

k=1

yS(k), (5)

so the KL divergence of a set of states S can be calculated based
on the statistics ys and N(s) of the individual states [18]. For
the splitting of a set of states S , the straightforward option is to
choose the question that maximizes the KL-divergence differ-
ence ΔDKL(q|S):

ΔDKL(q|S) = DKL(S)−
(
DKL(Sy(q)) +DKL(Sn(q))

)
.

(6)

3.4. Entropy-based decision criterion

The fourth approach we tested was proposed by Zhu et al. [14].
They also replaced the decision criterion of Eq. (1) with another
formula that has no implicit GMM dependency. The key idea
was to measure the inter-similarity of each merged cluster by
calculating the entropy of the examples belonging to it. The
entropy of aK-dimensional probability distribution can be cal-
culated as

H(p) =

K∑

i=1

p(i) log p(i). (7)

The probability distributions associated with each initial state
(i.e. the ys vectors) were estimated via the mean of the DNN
outputs for all the frames associated with a given state. Then,
for a set of states S , the prototype probability vector (yS) was
calculated as the arithmetic mean of the prototype (ys) of the
member states, weighted by the number of state occurrences
(N(s)); from these values, the decision criterion used during
state tying can be calculated by using the entropy function, i.e.

DE(S) =

K∑

k=1

yS(k) log yS(k). (8)

4. DNN Flat Start
CD state tying requires aligned frame-level CI labels. Further-
more, all of the CD state tying methods described in Section 3
require a trained neural network that provides the probability
estimates of CI outputs. The alignments can be got by training
a HMM/GMM in flat start mode, and the alignments provided
by this model can be used to train a context-independent DNN;
this solution, however, besides being quite clumsy, has other
weaknesses as well. For example, Bacchiani and Rybach [11]
experienced that a HMM/GMM system may produce subopti-
mal alignments for a HMM/DNN framework.

For these reasons, we opted for a more elegant solution,
which relies only on neural networks. We trained a CI DNN
in flat-start mode, following the adaptation of the Maximum
Mutual Information (MMI) algorithm published in [3]. In or-
der to speed up training and increase robustness, Gosztolya et
al. proposed a number of small modifications over the original
MMI training scheme. First of all, frame-level training targets
were determined by using a forward-backward search instead
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Figure 1: The number of training frames for the different state
tying methods for the case of cca. 2400 CD states.

of using the crude binary targets. Secondly, decoding was not
done at the word level (which is the common approach in DNN-
based sequence-discriminative training; see e.g. [22, 23]), but
at the phoneme level instead. As a further simplification, the
alignment process was performed by omitting state priors and
the language model as well. This allowed the online utterance-
by-utterance re-alignment of the phonetic transcriptions, which
led to a quicker convergence of the training process. With these
small modifications Gosztolya et al. were able to not only speed
up DNN training significantly compared with other DNN flat-
start methods used such as that of Zhang et al. [2], but they also
reported an improvement in the word error rate with the final,
context-dependent HMM/DNN system.

5. Experimental Setup
The DNN acoustic models were trained on the 81-hour long
Wall Street Journal (WSJ) read speech corpus [24] (specifi-
cally the si-284 set). The recognizers were evaluated on the
eval92 and eval93 test sets in the “open-vocabulary” (60K
word vocabulary) test condition, using a pruned version of the
standard trigram language model. We used the eval93 set as
our development set; i.e. we tuned the language model weight
and the insertion penalty on it, and also chose the number of tied
states for each state tying method based on the WER achieved
on this set. Then, in the last step, we evaluated the models using
the optimal meta-parameters on the eval92 set as the test set.

We used our custom DNN implementation, which achieved
the best accuracy published so far on the TIMIT database with
a phonetic error rate of 16.5% on the core test set [25]. In the
actual tests, 40 mel filter bank energies were used along with
their first and second order derivatives as input features. The
DNNs were trained on 15 neighbouring feature vectors. Both
the auxiliary CI and the final acoustic DNNs had five hidden
layers, each containing 1000 rectified linear neurons [26, 27],
and the softmax function was employed in the output layer. De-
coding and evaluation was performed by a modified version of
HTK [28]. For all four clustering algorithms, we varied the state
tying threshold to get roughly 1800, 2400, 3000 and 3600 tied
states.

Fig. 1 shows the distribution of the training classes for the
case of roughly 2400 CD states. Besides noticing that the dis-
tribution produced by the different state tying methods is quite
similar, we should also note that using the original decision cri-
terion with the DNN outputs as input (proposed by Senior et al.)
resulted in the best balanced class distribution of tied states.
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Figure 2: WER for the different state tying approaches on the
development set.

Input State tying WER (%)
layer decision criterion Dev. Test

Output Likelihood (Senior, [10]) 8.70% 6.47%
Hidden Likelihood (Bacchiani, [11]) 8.85% 6.04%

Output
KL-divergence (Gosztolya, [12]) 8.06% 5.72%
Entropy (Zhu, [14]) 8.03% 5.92%

Table 1: WER values on the development and test sets got by
using the different CD state tying methods

6. Results and Discussion
Table 1 sums up the best WER scores got on the development
set and the corresponding WER values obtained on the test set
for the four CD state tying approaches tested. It can be clearly
seen that the most basic approach worked the worst of all: using
the CI DNN outputs with the standard state tying decision cri-
terion led to an 8.7%WER on the development set and a 6.47%
WER on the eval92 set, used as our test set. Although using
the outputs of the last hidden layer with the original state ty-
ing method (proposed by Bacchiani and Rybach) led to slightly
worse scores on the development set, it significantly outper-
formed the first approach on the test set. This approach is also
justified by the fact that the activation vectors of a DNN are
widely used as features in several tasks such as speaker identi-
fication [29] and various image processing applications [30].

The remaining two methods utilized some novel decision
criteria instead of the Gaussian-based, standard one, and this
fact is clearly reflected in their performance. On the develop-
ment set they achieved practically identical WER scores (8.06%
vs. 8.03% for the Kullback-Leibler and the entropy-based de-
cision criteria, respectively); they differed somewhat on the test
set, but the difference is statistically not significant. Overall,
by relying on the Kullback-Leibler based decision criterion the
WER scores were reduced by 0.8% compared to the basic ap-
proach of Senior et al., meaning a 12% improvement in terms
of relative error reduction.

Figures 2 and 3 show the WER scores attained as a function
of the number of CD states for the four state tying approaches
tested. We can observe that the two solutions that used the orig-
inal state tying algorithm, and the two which utilized a deci-

1800 2400 3000 3600
4.5

5

5.5

6

6.5

7

7.5

No. of tied states

W
or

d 
E

rr
or

 R
at

e 
(%

)

DNN + Likelihood
DNN (hidden) + Likelihood
Kullback−Leibler
Entropy

Figure 3: WER for the different state tying approaches on the
test set.

sion criterion designed for DNN outputs, are clearly separated,
with the latter group producing consistently lower WER scores
for both sets regardless of the number of tied states. (Notice
that on the development set the highest WER is around 9.5%,
while it is 6.5% for the test set, so the same relative WER im-
provement corresponds to a smaller absolute improvement for
the latter set.) This, in our opinion, supports our hypothesis that
besides changing the input of the CD state tying algorithm, its
behaviour should also be adjusted to better suit DNNs, and so
achieve an optimal performance.

Increasing the number of CD states helps those approaches
which use the original, likelihood-based criterion; for the other
two methods, however, optimality is achieved by having about
2400 states. On the test set, all four approaches seem to be
quite insensitive to the number of tied states. Note that these
inventory sizes appear to be smaller than those commonly used
on the WSJ corpus, which, due to the lower computational re-
quirements, is an improvement by itself.

7. Conclusions
In this study we compared the performance of four state clus-
tering approaches proposed earlier to create context-dependent
tied states for DNN acoustic models. What was common in
the four approaches is that they utilized the output of a context-
independent neural network as their input. We found that be-
sides this, replacing the decision criterion used during state
clustering is also beneficial: the two methods that employed
this step consistently and significantly outperformed the two
variants that used the original formula on the Wall Street Jour-
nal corpus, often used as reference. As we employed the MMI
DNN flat-start method proposed by Gosztolya et al., in our tests
neither the frame-level training targets nor the feature set used
during CD state tying had any implicit GMM dependency. This
means that, in our tests, the models that used the Kullback-
Leibler divergence-based and the entropy-based decision crite-
ria were 100% GMM-free.
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