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Abstract
In current HMM/DNN speech recognition systems, the purpose

of the DNN component is to estimate the posterior probabil-

ities of tied triphone states. In most cases the distribution of

these states is uneven, meaning that we have a markedly dif-

ferent number of training samples for the various states. This

imbalance of the training data is a source of suboptimality for

most machine learning algorithms, and DNNs are no excep-

tion. A straightforward solution is to re-sample the data, either

by upsampling the rarer classes or by dowsampling the more

common classes. Here, we experiment with the so-called prob-

abilistic sampling method that applies downsampling and up-

sampling at the same time. For this, it defines a new class dis-

tribution for the training data, which is a linear combination of

the original and the uniform class distributions. As an extension

to previous studies, we propose a new method to re-estimate

the class priors, which is required to remedy the mismatch be-

tween the training and the test data distributions introduced by

re-sampling. Using probabilistic sampling and the proposed

modification we report 5% and 6% relative error rate reductions

on the TED-LIUM and on the AMI corpora, respectively.

Index Terms: speech recognition, deep neural networks, prob-

abilistic sampling

1. Introduction

The imbalance in the class distribution poses a significant chal-

lenge to most machine learning algorithms [1], and Deep Neural

Networks (DNNs) are no exception. It is known that neural net-

works are inclined to become biased towards classes with more

training examples, underestimating the posterior probabilities

of the rarer classes [2]. Class imbalance is a typical problem

in detection tasks, where usually only a small percentage of the

training samples belong to the positive class [3]. The situation

is even more difficult when the total amount of training data is

already very low in itself.

Here, we examine the effect of class imbalance on the train-

ing of DNN acoustic models. At first glance, class imbalance

is not an issue in speech recognition, as the frequency of the

phones is quite balanced, and we have tremendous amounts of

training data compared to some other machine learning tasks.

However, we typically use context dependent (CD) phone mod-

els, and we increase the number of tied states when the size of

the training corpus increases. We will show that the distribu-

tion of these CD target labels is far from uniform, meaning that

many of the training samples belong to only a few classes, while

many of the CD state classes are represented by just a few ex-

amples. While one would think that this causes problems only

in low-resource scenarios, our experiments will show that the

technique we propose may significantly improve the recogni-

tion results even in the case of fair-sized corpora.

The problem of class imbalance is typically tackled by ap-

plying re-sampling algorithms to the training data. In the sim-

plest approach, the class-balance of the data is achieved by ei-

ther reducing the number of the examples of the most common

classes (downsampling) [4] or by presenting the rare examples

more frequently (upsampling). Here, we utilize a more sophisti-

cated algorithm called probabilistic sampling [5]. Probabilistic

sampling offers a solution to apply downsampling and upsam-

pling at the same time by applying a two-step sampling pro-

cess. For this, we define a new probability distribution over the

classes, which determines how frequently the classes are cho-

sen during re-sampling. The first step of the sampling process

chooses a class based on this distribution. For the second step, a

sample from the training vectors of this class is selected follow-

ing a uniform distribution. A simple solution to create a prob-

ability distribution over the classes is to take the linear combi-

nation of the original class distribution and the uniform distri-

bution. This will result in a re-sampling process that has one

free parameter, the weight λ of this linear interpolation. With

λ = 0, we retain the original class distribution, while λ = 1
results in a uniform class sampling.

Tóth and Kocsor applied the probabilistic sampling method

to a very small speech recognition task in 2005 in the frame-

work of HMM/ANN hybrids, and they reported improvements

in the results [6]. As they worked only with monophone class

labels, the main problem they tried to handle by probabilistic

sampling was data scarcity. In 2015, Song et al. applied prob-

abilistic sampling in the training of DNN acoustic models with

context-dependent targets, and they obtained a significant re-

duction in the word error rate [7]. However, they performed

their experiments on a low-resource task, using a corpus of only

4.5 hours of speech. When discussing re-sampling methods in

the framework of speech recognition, we should also mention

the in-depth study of Garcı́a-Moral et al., who applied a sim-

ple downsampling approach by discarding examples belonging

to the more common classes. Although this made the ANN

training process much faster, they experienced a slight drop in

the accuracy scores [4]. Lastly, we should mention that in the

past few years we successfully used probabilistic sampling in

detection-oriented paralinguistic tasks such as detecting the in-

tensity of cognitive and physical load [3].

The classic mathematical formulation of HMM/ANN hy-

brids states that the neural network outputs estimate the pos-

terior distribution of the training labels, which can be incor-

porated in the HMM framework after a division by the class

priors [8]. When probabilistic sampling is applied with uni-

form class sampling, Tóth and Kocsor [6] proved that there was

no need to divide by the priors, as the network will approxi-

mate the class-conditional probabilities within a scaling factor.

Unfortunately, neither the authors of [6] nor [7] addressed the
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Figure 1: The distribution of tied CD states on a logarithmic

scale in descending order (TED-LIUM corpus, Kaldi recipe)

problem of intermediate distributions; that is, when the interpo-

lation factor λ is between 0 and 1. Garcı́a-Moral emphasizes

that in such cases the posterior estimates require a proper scal-

ing [4] after re-sampling the training data. To achieve this, here

we propose to re-estimate the priors from the re-sampled train-

ing data, and divide the DNN outputs by these adjusted priors.

Besides examining the effect of scaling by the various estimates

of the class priors, we also compare two different strategies for

the random selection of the samples within a given class. Our

experiments show that with the proposed minor modifications

probabilistic sampling can be used to improve the results of

training CD DNN acoustic models, even in cases where large

amounts of data are available. In the experiments we evaluated

our method on the publicly available TED-LIUM corpus (re-

lease 1), which contains 118 hours of training data [9], and the

public AMI corpus, which has a training set of 100 hours [10].

We report relative word error rate reductions between 5% and

6% on these corpora.

2. Probabilistic sampling

The class distribution of CD state labels is a heavy tailed dis-

tribution, meaning that the number of examples for each state

differs significantly. Fig. 1 shows the empirical distribution of

the CD states on a logarithmic scale for the TED-LIUM corpus

(the CD states were obtained using the Kaldi recipe [11]). As

can be seen, a subset of the classes is significantly over- and

under-represented, which might bias the DNN to favour certain

classes and neglect some others. As a result, it outputs impre-

cise posterior estimates for these classes, which usually leads to

a higher word error rate (WER).

One possible way to avoid this is to artificially balance the

class distribution by re-sampling the training set. Usually, we

have no way of generating additional samples from a rare class,

so balancing can be achieved by either reducing the number

of examples belonging to the most common classes (downsam-

pling) or by presenting the rare examples more frequently (up-

sampling).

Probabilistic sampling offers a third option by combining

the two previous sampling approaches [5]. It applies a simple

two-step sampling scheme; namely, first we select a class, then

we pick a training sample belonging to this class. The first step

requires us to assign a probability to each class, which deter-

mines how frequently it is selected. Here, we will use the fol-

lowing formula to define the sampling probability of the classes:

P (ck) = λ
1

K
+ (1− λ)Prior(ck), (1)

where Prior(ck) is the prior probability of class ck, K is the

number of classes and λ ∈ [0, 1] is a parameter. For λ = 1,

we get a uniform distribution over the classes; and with λ = 0
we retain the original class distribution. Using intermediate λ

values leads to a linear combination of these two distributions.

2.1. Selecting samples within the classes

Having chosen a class based on Eq. (1), we need to select a sam-

ple belonging to that class. During re-sampling our main goal is

to modify the class distribution of the training data and leave the

distribution of the training examples belonging to the same class

unchanged (uniform). The simplest way to do this is to pick a

random training vector within the class. However, as we per-

form only a few iterations through the training data, this strategy

could have an undesired side effect that it could change the dis-

tribution of the examples within the same class. The reason for

this is that for some classes the re-sampling method presents

the training vectors to the DNN unevenly, meaning that some

examples might not be selected at all during the whole train-

ing process. We propose a very simple solution to remedy the

problem. First, we define a random ordering of the examples

belonging to the given class. Then, during training, we always

select the next sample with this ordering. This strategy ensures

that the examples of the given class are presented evenly.

2.2. Adjusting the prior probability estimates

The standard practice for HMM/ANN hybrids is to divide the

outputs of the DNN acoustic model by the class priors, in order

to convert the posterior estimates to likelihood estimates. When

applying probabilistic sampling, in theory, the division by the

priors is required when λ = 0 (there is no re-sampling), and

there is no need to divide with the priors when λ = 1 (uniform

class sampling). The important theoretical question is what to

do in the intermediate cases (0 < λ < 1). Lacking theoretical

results, Tóth and Song performed their evaluations by dividing

the posterior estimates by the class priors or by using the neural

network outputs directly, and found the optimal λ value exper-

imentally [6, 7]. Here, we argue that the re-sampling of the

training database requires us to properly adjust the prior prob-

abilities. The reason is that by balancing the data we create a

mismatch between the distribution of the training and the test

sets. A simple and intuitive solution for the adjustment is to use

the class selection probabilities from Eq. (1) as class prior esti-

mates. This way, we can ensure that the adjusted priors estimate

the class distribution of the re-sampled training data. In our ex-

periments we evaluate our models with both the original and the

adjusted prior estimates to empirically justify the significance of

this adjustment.

3. Experimental Setup

Two large English speech databases were used to train the

DNNs, namely the TED-LIUM and AMI corpus. The TED-

LIUM corpus [9] is composed of a total of 774 TED talks, con-

taining 118 hours of speech overall: 82 hours of male and 36

hours of female speech. All recordings and their closed cap-

tions in this corpus were extracted from the TED website. The
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Figure 2: Word error rates got for the development set of the

TED-LIUM corpus using a 3-gram language model and proba-

bilistic sampling.

training data was automatically transcribed and only the devel-

opment and test sets were transcribed manually (for more de-

tails, see [9]). As training targets we used 3933 CD labels, and

the class distribution can be seen in Fig. 1. We evaluated the

trained DNN-based acoustic models using a 3-gram and a 4-

gram language model as well.

AMI is a multi-modal corpus, which contains recordings of

meetings [10]. All participants of the meetings speak in En-

glish, but only some of them are native English speakers, which

leads to a high degree of variability in speech patterns. Here we

used only the audio part of the corpus, specifically the record-

ings captured with the independent headset microphone (IHM).

Following the Kaldi [11] recipe, the DNNs predicted the poste-

rior scores of 3973 CD states, which had a similar class distri-

bution to that of the TED-LIUM corpus.

The acoustic model in our experiments was a DNN with

5 hidden layers, each containing 1000 rectified neurons [12],

while we applied the softmax activation function in the out-

put layer. The DNNs were trained using frame aligned labels

and no sequence training was applied. The main advantage

of Deep Rectifier Networks is that they can be trained with-

out any tedious pre-training (e.g. [13, 14]). As input we used

the 40 dimensional fMLLR features extracted by following the

Kaldi recipe and the DNNs were trained on 11 neighbouring

frames. To train the DNNs we used our own deep learning

framework [15], while the decoding and evaluation was per-

formed with Kaldi.

To test the effectiveness of the probabilistic sampling

method, we tested λ values between 0.1 and 1.0 with a step

size of 0.1. For each training iteration, we re-sampled the same

amount of training vectors as that in the original data. All DNN

models were evaluated with the division by the original and the

adjusted priors to see the effectiveness of the adjustment.

4. Results

First, we compared the two sample selection approaches de-

scribed in Section 2.1. We found that selecting training vec-

tors within the classes with uniform sampling led to suboptimal

models for some rare triphones. In our preliminary experiments

we observed that this strategy led to a 1% increase in the frame
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Figure 3: Word error rates got for the test set of the TED-LIUM

corpus using a 3-gram language model and probabilistic sam-

pling.

Table 1: Best word error rates got with and without proba-

bilistic sampling and dividing by the original and the adjusted

priors.

LM Method Dev WER Test WER

original adjusted original adjusted

priors priors priors priors

3-gram
baseline 16.9 – 15.0 –

λ = 0.4 16.3 15.9 14.4 14.1

4-gram
baseline 15.2 – 13.7 –

λ = 0.4 14.7 14.4 13.0 12.9

error rates compared to that for the other selection method, and

also resulted in a higher WER. As the selection method that uses

a random ordering performed consistently better, we decided to

apply it in all our experiments.

4.1. TED

Fig. 2 and 3 shows the results we got with probabilistic sam-

pling on the TED-LIUM corpus. Clearly, dividing the DNN

outputs by the original priors gives worse results as λ increases,

and we found that small λ values (here 0.1) work best. For small

λ values, i.e. when the original distribution remains dominant in

the class distribution of the new training data, both prior estima-

tion strategies performed similarly, but as we increase λ above

0.5, the mismatch between the training and test sets caused a

significant drop in recognition accuracy (even below the base-

line). When we used the adjusted priors, the models became

more robust and we got better results than the baseline for all

λ values. The best result on the development set was attained

using the adjusted priors and λ = 0.4; this network achieved

a 14.1% WER on the test set, which means a 6% relative error

reduction compared to the baseline.

Table 1 summarizes the best results on the TED-LIUM

database. As can be seen, probabilistic sampling always yielded

better results and with the prior adjustment we managed to

improve the performance further. Using the 4-gram language

model produced similar results to those achieved with the 3-

gram model. The optimal value for the re-sampling parameter

was 0.4 similar to when the 3-gram language model was used.
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Figure 4: Word error rates got for the development set of the

AMI corpus using probabilistic sampling.

4.2. AMI

On the AMI corpus the results follow a similiar trend; the best

results were achieved with the adjusted priors, and the division

by the original priors resulted in a declining recognition accu-

racy for increasing λ. All DNNs trained with λ ≤ 0.7 per-

formed better than the baseline model both on the development

and the test sets. The optimal value of λ was 0.1 when we di-

vided by the original prior (26.7% WER on the development set

and 27.4% on the test) and 0.1 or 0.4 when the adjusted priors

were used. Both DNN achieved a WER of 26.6% on the de-

velopment and 27.3% on the test set. On the test set the best

WER was 27.3%, which is significantly better than the base-

line (28.6%), giving approximately 5% relative error reduction.

We would like to note, that using uniform re-sampling with the

original priors resulted in recognition results far below the base-

line.

4.3. Discussion

To get an insight on why probabilistic sampling helps, we per-

formed an analysis to see how the accuracy of CD state classi-

fication varies as a function of state frequency. Fig. 6 shows the

average frame level accuracy scores of the sorted CD states,

comparing the baseline method with the best model trained

with re-sampling. The first thing to notice is that probabilistic

sampling significantly improves the accuracy scores of the rare

states (Index ≤ 1000), and even the common states are recog-

nized more frequently. The downside of this improvement is the

lower accuracy of those classes that have the most training data.

Interestingly, the accuracy of classes having an average amount

of training data (middle section in the figure) also increased with

probabilistic sampling; the reason behind this could be that they

were less likely confused with the more frequent states.

As we saw, dividing the DNN outputs by the adjusted priors

stabilized the results: for almost all λ values we got similar WE

scores. If the original priors are used then a declining trend is

present as we move farther from the original distribution. The

stability of this adjustment could be explained by the fact that it

reduces the mismatch between the training and test data intro-

duced by the re-sampling.
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Figure 5: Word error rates got for the test set of the AMI corpus

using probabilistic sampling.
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Figure 6: Averaged accuracies of sorted CD states on the TED-

LIUM development set with and without re-sampling.

5. Conclusions

Here, we showed that CD DNN training can be improved by

probabilistic sampling. We also proposed a new method to re-

estimate the class priors when using this sampling algorithm.

Our results showed that this re-estimation is essential to remedy

the mismatch between the training and the test data distributions

introduced by the re-sampling step. These adjusted priors made

the re-sampling method more robust, and the recognition results

varied only slightly as the class distribution was shifted towards

uniform distribution. Our experiments showed that by using

this modification, the recognition results improved significantly

(between 5% and 6% relative error reduction) on two fair-sized

corpora (TED-LIUM and AMI).
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