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Abstract

Schizophrenia is a neurodegenerative disease with spectrum

disorder, consisting of groups of different deficits. It is, among

other symptoms, characterized by reduced information process-

ing speed and deficits in verbal fluency. In this study we focus

on the speech production fluency of patients with schizophre-

nia compared to healthy controls. Our aim is to show that a

temporal speech parameter set consisting of articulation tempo,

speech tempo and various pause-related indicators, originally

defined for the sake of early detection of various dementia types

such as Mild Cognitive Impairment and early Alzheimer’s Dis-

ease, is able to capture specific differences in the spontaneous

speech of the two groups. We tested the applicability of the

temporal indicators by machine learning (i.e. by using Support-

Vector Machines). Our results show that members of the two

speaker groups could be identified with classification accuracy

scores of between 70 − 80% and F-measure scores between

81% and 87%. Our detailed examination revealed that, among

the pause-related temporal parameters, the most useful for dis-

tinguishing the two speaker groups were those which took into

account both the silent and filled pauses.

Index Terms: spontaneous speech, temporal parameters,

schizophrenia, filled pauses

1. Introduction

According to Crow theory [1],schizophrenia (phenomenologi-

cally) could be a universal illness, which can be found in all the

populations of the planet. Crow assumed that it might be closely

related to the development of psychological structures and ge-

netic changes that cause lateralization. The following criteria

of symptoms represent the disease: (1) delusions; (2) halluci-

nations; (3) incoherent speech; (4) strikingly disintegrated or

catatonic behavior; and (5) negative symptoms, i.e. emotional

emptiness, alogia, or avolition [2].

Schizophrenia is characterized by several cognitive deficits

including reduced information processing speed and impaired

working memory [3]. Deficits in memory functions such as

working memory, verbal fluency and episodic memory have

been detected in patients with schizophrenia by neuropsycho-

logical tests [4, 5, 6]. Other authors have identified specific

impairments in schizophrenic working memory and sustained

attention [7, 8].

Patients with schizophrenia suffer from several impair-

ments at different levels of speech and language [9]. Pawełczyk

et al. found that schizophrenia patients scored significantly

lower than controls in subtests measuring comprehension of

implicit information, interpretation of humor, explanation of

metaphors, inappropriate remarks and comments, discernment

of emotional and language prosody and comprehension of dis-

course [10]. Differences were detected in prosody, while other

findings indicate that the negative symptoms of schizophrenia

may appear as a lack of tone and inflection [11, 12]. From the

aspect of speech production, studies on spontaneous speech dis-

cuss the complexity of the communicated thought, which is less

complicated in the case of schizophrenic patients than in the

speech of healthy controls. However, in patients with higher

performance, there is more involvement of depression and anx-

iety complications [13].

Several of these symptoms were analyzed by computational

tools. Rosenstein et al. examined verbal memory by measur-

ing recalled verbal processes using computational linguistic ap-

proaches [14]. Corcoran et al. found that automatized semantic

and syntactic analysis could be used as a basis for diagnostic

tools [15]. Prosodic abnormalities and potential characteris-

tics were also examined [16, 17], and so were the continuity

of speech or the quality and ratio of occlusive phenomena and

pauses [18]. Other findings showed that patients with formal

thought disorder (which could be a symptom in schizophrenia)

made strikingly fewer filled pauses than controls did [19].

In this study we will focus on the deficits of memory pro-

cesses reflected in spontaneous speech. We will do this by in-

vestigating directed spontaneous speech with a memory task

(“tell me about your previous day”). We assume that temporal

parameters of spontaneous speech will differ between healthy

controls and schizophrenic speakers. We expect the most signif-

icant differences in the number and type of hesitations. We will

perform our analysis in an automated way: we extract temporal

speech parameters by utilizing Automatic Speech Recognition

(ASR) techniques, and measure the utility of these parameters

via applying statistical machine learning to distinguish the two

speaker groups.

2. Temporal Speech Parameters

To investigate the spontaneous speech of schizophrenic patients

and healthy controls, we calculated specific temporal parame-

ters from their responses. We based our investigations on our

previous studies [20, 21, 22], where we introduced temporal

parameters focusing on hesitations in order to the early detec-

tion of Mild Cognitive Impairment (MCI). MCI, sometimes re-

garded as a prodromal stage of Alzheimer’s Disease, is a mental

disorder that is difficult to diagnose. MCI is known to influence

the (spontaneous) speech of the patient in several aspects [23],
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Figure 1: Workflow of automatic temporal speech parameter calculation and analysis, based on the study of Tóth et al. [20].

(1) Articulation rate was calculated as the number of

phones per second during speech (excluding hesi-

tations).

(2) Speech tempo (phones per second) was calculated

as the number of phones per second divided by the

total duration of the utterance.

(3) Duration of utterance, given in milliseconds.

(4) Number of pauses reflects the absolute number of

pause occurrences.

(5) Duration of pauses was calculated as the total du-

ration of pause occurrences.

(6) Pause duration rate was calculated by dividing the

total duration of pauses by the length of the utter-

ance.

(7) Pause frequency was calculated by dividing the

number of pause occurrences by the length of the

utterance.

(8) Average pause duration was calculated by divid-

ing the total duration of pauses by the number of

pauses.

Table 1: The eight examined temporal speech parameters,

based on the work of Hoffmann et al. [21] and Tóth et al. [22].

from which we concentrated on the verbal fluency. In MCI, the

verbal fluency of the patient tends to deteriorate, resulting in

distinctive acoustic changes — most importantly, in longer hes-

itations and a lower speech rate [24, 25]. To exploit this, we

developed a set of temporal parameters which mostly focus on

the amount of hesitation in the speech of the subject.

Our set of temporal parameters can be seen in Table 1. No-

tice that parameters (4)–(8) all describe the amount of hesita-

tion in the spontaneous speech of the subject by focusing on the

number or duration of pauses in some way. At this point we

may further clarify our terms regarding hesitation. The simplest

form of pause is that of silent pause, i.e. the absence of speech.

However, hesitation may manifest as filled pauses, i.e. vocal-

izations like “er”, “uhm”, “eh” etc. Clearly, both pause types

indicate some sort of hesitation in spontaneous speech produc-

tion. To be able to analyze both pause types, we included tem-

poral parameters (4) to (8) in our set of temporal parameters

examined by calculating them for silent pauses only, for filled

pauses only, and for taking all pause occurrences into account

regardless of type. This led to 18 temporal parameters overall.

2.1. ASR-Based Temporal Parameter Calculation

Calculating the above acoustic temporal indicators manually (as

was done in some of our earlier studies such as in [25]) is quite

expensive and labour-intensive. Therefore, we devoted our ef-

forts to the automatic extraction of these temporal speech pa-

rameters. One choice could be to rely on signal processing

methods as in e.g. [26]. Unfortunately, while it is relatively easy

to distinguish silence from speech and other voiced parts of hu-

man speech via signal processing techniques, this approach can-

not distinguish filled pauses from normal speech, and we would

be unable to calculate articulation rate and speech tempo either.

After reflecting on the above aspects, we decided to apply

Automatic Speech Recognition (ASR) techniques. (Our work-

flow was first presented in [20].) Evidently, an off-the-shelf

ASR tool may be suboptimal for this task, mainly because stan-

dard speech recognizers are trained to minimize the transcrip-

tion errors at the word level, while here we seek to extract non-

verbal acoustic features like the rate of speech and the duration

of silent and filled pauses. Luckily, though, the speech parame-

ters in Table 1 do not require us to identify the phones; we need

only to count them. Furthermore, while the filled pauses do not

explicitly appear in the output of a standard ASR system, our set

of temporal parameters requires them to be found. It is practi-

cally impossible to prepare a standard ASR system that it could

handle errors such as these.

For these reasons, we decided to use a speech recognizer

that provides only a phone sequence as output, treating filled

pause as a special ‘phoneme’. Of course, omitting the word

level completely (along with a word-level language model and

a pronunciation vocabulary) can be expected to increase the

number of errors at the phoneme level as well. However, as

we pointed out, not all types of phone recognition errors harm

the extraction of our temporal parameters; in our case only the

number of phonemes and the two types of pauses (i.e. silent and

filled) are important.

3. The Data

Ten subjects with schizophrenia were randomly selected from

the currently available clinical research database. After random

selection, eight healthy controls were matched in age and gen-

der. The group of speakers having schizophrenia (SCH) and

the matched group of healthy controls (HC) both had the same

sex distribution of 50% males and 50% females. Of course, the

number of speakers examined is rather low, but we plan to in-

volve new subjects in our investigations in the near future.

The utterances were recorded between February 2016

and March 2017 at the Department of Psychiatry, Faculty of

Medicine, University of Szeged. The study was approved by

the Ethics Committee of the University of Szeged, and it was

conducted in accordance with the Declaration of Helsinki. All

the speakers were native Hungarian speakers. We used our S-

GAP Test. We made the speakers perform spontaneous speech

by asking them to talk about their previous day. The instruction

was simply, “Tell me about your previous day!”. The subjects

were then given roughly five minutes to complete the task. We

used a Roland R-05 type recorder to record their replies.

The mean age was 39.9 years in the SCH group and 40.2
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in the HC group. The education (in years) (t=-1.82, df=18,

p = 0.09) and the age (t=0.06, df=18, p = 0.96) were not

significantly different among the two speaker groups. We also

performed Mini-Mental State Examination (MMSE, [27]) men-

tal tests on our subjects, which had significantly different results

for the two speaker groups (t=2.55, df=10.55, p = 0.028). The

subjects with schizophrenia lost points mostly in the subtest of

word recall; however, this was not only due to memory deficits,

but also to their scattered attention.

4. Experimental Setup

4.1. Temporal Parameter Extraction

The acoustic model of the speech recognizer was trained on

the BEA Hungarian Spoken Language Database [28]. This

database contains spontaneous speech, which is quite important

to us since filled pauses are only present in spontaneous speech.

We used roughly seven hours of speech data from the BEA cor-

pus. We made sure that the occurrences of filled pauses, breath

intakes and exhales, laughter, coughs and gasps were present in

the phoneme-level transcriptions in a consistent manner.

The ASR system was trained to recognize the phones in

the utterances, where the phone set included the special non-

verbal labels listed above. For acoustic modeling we applied a

standard Deep Neural Network (DNN) with feed-forward topol-

ogy. The DNN had 3 hidden layers with 1000 ReLU neurons

each. We used our custom implementation, by which our team

achieved the lowest phone recognition error rate published so

far on the TIMIT database [29]. As a language model we

employed a simple phoneme bigram (again, including all the

above-mentioned non-verbal audio tags). The output of the

ASR system is the phonetic segmentation and labeling of the

input signal, which includes filled pauses. Based on this out-

put, the temporal speech parameters of Table 1 can be easily

extracted using simple calculations.

4.2. Evaluation Metrics

In the past, many studies in biomedical ASR applications re-

lied on simple classification accuracy (e.g. [26, 30]). However,

the frequency of the two types of subjects is quite imbalanced

in the population, only 1-1.5% of the people being affected by

schizophrenia; for such an imbalanced class distribution, accu-

racy is not a reliable metric at all. For this reason, we opted for

the standard Information Retrieval metrics of precision, recall

and their harmonic mean, F-measure (or F1-score). Further-

more, we calculated the area under the ROC curve (the AUC

metric) for the SCH class as well.

4.3. The Classification Process

Our classification process basically followed standard biomed-

ical practices, and were similar to those of our earlier studies

focusing on detecting MCI (i.e. [20, 22]). Using the above-

listed temporal parameters, we trained a Support-Vector Ma-

chine (SVM, [31]), using the LibSVM [32] library. We used the

nu-SVM method with a linear kernel; the value of C was tested

in the range 10{−5,...,1}.

From a machine learning perspective, we had an extremely

small dataset, but the number of diagnosed patients is very lim-

ited. Having so few examples, we did not create separate train-

ing and test sets, but applied the common solution of speaker-

wise cross validation (CV): we always trained our classifier

model on the data of 17 speakers, and evaluated it on the re-

maining one. The C meta-parameter of SVM was set in nested

cross-validation [33]: for the 17 speakers being in the train-

ing fold in the actual CV step, we performed another cross-

validation. We chose the C value which led to the highest

AUC score in this “inner” CV test; then we trained an SVM

model on the data of these 17 speakers with this complexity

value, and evaluated our model on the data of the 18th speaker.

This way we ensured that there was no peeking, which would

have created a bias in our scores if we had used standard cross-

validation.

4.4. Data Preprocessing

In our experiments we could use only one recording from only

18 speakers. In order to increase the size of our dataset, we

decided to utilize shorter utterance parts in our experiments.

Our hypothesis was that our temporal speech parameters re-

main indicative even when they are calculated from relatively

short utterances. With this in mind, we split our utterances

into 30 second-long segments with a 10 second overlap (regard-

less of actual phonetic boundaries), and treated these examples

independently. After this step, we ended up with 96 of these

small, equal-sized segments, significantly increasing our SVM

training set sizes. Of course, we still performed our classifica-

tion experiments using the leave-one-speaker-out nested cross-

validation scheme; that is, one fold always consisted of all the

speech segments of one speaker.

Although reporting the various classification metrics makes

sense for these 30 second-long audio clips, it would be better

interpretable to translate these scores to the subject level. A

straightforward solution could be to determine the category of

each speaker by simply taking the class hypothesis which the

majority of his segments had. This, however, would be pretty

hard to interpret. Thus, we decided to aggregate our predic-

tions into speaker-level values via another approach: we calcu-

lated a speaker-normalized confusion matrix by re-weighting

each speech segment with 1/k, k being the number of seg-

ments for the given speaker. That is, a healthy control speaker

with 10 speech segments, from which 7 was correctly identi-

fied, counted as 0.7 true negative and 0.3 false positive cases.

After repeating SVM training and evaluation for all the folds,

we were readily able to calculate accuracy, precision, recall and

F -measure from this, speaker-normalized confusion matrix. Of

course, as the AUC score cannot be determined from this con-

fusion matrix, we did not calculate the AUC values in this case.

5. Results

Table 2 contains the accuracy, precision, recall, F1 and AUC

scores obtained at the segment level. When including all 18

temporal speech parameters in our feature set, the 70.8% clas-

sification accuracy shows a fine performance and the F1 value

of 81.3% appears to be quite high in our opinion, especially

if we consider the small number of training samples available.

Examining the precision and recall scores we can see that the

performance is not really balanced, though, as only 74% of the

segments uttered by schizophrenia patients were found, but with

a roughly 90% precision score. This issue could be handled by

thresholding the example-wise output posterior values [34], but

we think this falls outside the scope of the present study.

Examining the results obtained by using only a subset of

temporal parameters, we observe that the classification scores

improved in almost every case. Comparing the temporal pa-

rameters associated with either silent or filled pauses, we can
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Table 2: The segment-level accuracy scores obtained using the

various parameter sub-sets

Accuracy (%)

Feature Set Acc. Prec. Rec. F1 AUC

Full 70.8 89.7 74.4 81.3 0.514

Silence-related 76.0 94.1 77.1 84.8 0.599

Filler-related 75.0 97.1 75.0 84.6 0.435

All pause-related 79.2 92.6 80.8 86.3 0.726

Tempo + silence 80.2 97.1 79.5 87.4 0.641

Tempo + filler 70.8 91.2 73.8 81.6 0.602

Tempo + all pauses 78.1 91.2 80.5 85.5 0.694

see that the filled pauses are less useful than the silent ones for

schizophrenia identification: the classification accuracy scores

of 71-75% lag behind those of 76-80% obtained when we fo-

cused on silent pauses, and the F-measure and AUC scores are

higher in the latter two cases as well. Examining the tendency of

the metric scores obtained, in our opinion the most useful subset

of the temporal parameters proposed was those which consisted

of indicators calculated based on the occurrences of hesitations

regardless of whether these were silent or filled pauses. Al-

though using the silent pause related parameters along with ar-

ticulation rate and speech tempo led to slightly higher accuracy

and F1 scores, the two cases when we considered all the pauses

led to consistently high metric values, and to the two highest

AUC scores.

Interpreting our classification results by normalizing the

number of utterances speaker-wise instead of considering each

segment independently (see Table 3), we can see a slight drop in

the metric values. What might be even more interesting is that in

the tendency of the precision and recall scores, we can see just

the opposite trend as we found at the segment level: now we

have lower precision and quite high recall values. This is prob-

ably because patients living with schizophrenia tended to de-

scribe their previous day in much more detail than healthy con-

trols did, therefore recordings of schizophrenic subjects were

significantly longer than those of healthy controls. This then

resulted in an imbalance in the number of utterances: these ap-

peared to be 68 and 28, patients with schizophrenia and healthy

controls, respectively.

Examining the different subsets of temporal speech param-

eters applied, it is obvious in this case that we could identify the

two speaker groups most efficiently with the parameters which

took both pause types into account. Clearly, the classification

accuracy scores of 77.2% and 76.5% are significantly higher

than either those got by using only the silent pauses (68.3% and

73.4%) or only the filled pauses (65.7% and 61.0%). The F1

scores got this way (81.5% and 80.7%) are also the highest ones

measured (i.e. 76.6-80.0% and 76.1%-71.9%, silent and filled

pauses, respectively).

Regarding the utility of the different temporal parameters,

the fact that the recordings of schizophrenic subjects were sig-

nificantly longer than those of healthy controls might be related

to positive symptoms such as circumstantialism (over-detailed

speech), thought rush and systematic self-referral. Higher num-

ber of silent pauses of subjects with schizophrenia can also be

explained by other symptoms (related to executive and mem-

ory functions): confused thoughts and speech. People suffer-

ing from schizophrenia could have problems in organizing their

thoughts, which might be reflected in the temporal parameters

Table 3: The speaker-level accuracy scores obtained using the

various parameter sub-sets

Accuracy (%)

Feature Set Acc. Prec. Rec. F1

Full 60.8 60.0 88.0 71.4

Silence-related 68.3 65.0 93.0 76.6

Filler-related 65.7 62.1 98.3 76.1

All pause-related 77.2 74.4 90.0 81.5

Tempo + silence 73.4 68.7 95.6 80.0

Tempo + filler 61.0 59.9 89.7 71.9

Tempo + all pauses 76.5 74.1 88.6 80.7

of spontaneous speech (such as number of silent or filled pause

occurrences).

Overall, we found a significant difference in the temporal

parameters of spontaneous speech for schizophrenic speakers

and healthy controls. The examined temporal parameters, fo-

cusing on articulation rate, speech tempo and hesitations per-

mitted an accurate distinction between the two speaker groups;

of course, we plan to involve more speakers in our future stud-

ies to reinforce our findings. We also plan to continue analyz-

ing spontaneous speech on the psychosis spectrum (including

schizophrenia, bipolar disorder and schizoaffective disorder) in

the near future.

6. Conclusions

In this study we assumed the presence of a difference in the

temporal parameters of spontaneous speech for control subjects

and schizophrenic patients. With automatic speech analysis and

machine learning techniques, we were able to efficiently distin-

guish the members of the two speaker groups. Hesitations were

expected to be the main distinctive features, which was justified

by our test results: the classification accuracy scores of about

77% were significantly higher than either those obtained by us-

ing only silent pauses (68-73%) and those achieved by relying

only on the filled pauses (61-66%).

Our work was a pilot study: we wanted to find out whether

our automatic speech analysis process could be used in the tem-

poral description of schizophrenic spontaneous speech. We also

sought to contribute to the description of the linguistic charac-

teristics of neurodegenerative disorders, or more specifically, a

subset of suprasegmental attributes. Of course, obtaining more

precise findings requires an increase of the number of speakers

participating in our studies. We are already collecting record-

ings from further schizophrenic patients as well as speakers suf-

fering from other neurodegenerative disorders, as we also plan

to investigate the temporal speech parameters of other speaker

groups belonging to the psychosis spectrum in the near future.
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