
SHORT PAPER

A feature selection-based speaker clustering method
for paralinguistic tasks
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Abstract In recent years, computational paralinguistics

has emerged as a new topic within speech technology. It

concerns extracting non-linguistic information from speech

(such as emotions, the level of conflict, whether the speaker

is drunk). It was shown recently that many methods applied

here can be assisted by speaker clustering; for example, the

features extracted from the utterances could be normalized

speaker-wise instead of using a global method. In this

paper, we propose a speaker clustering algorithm based on

standard clustering approaches like K-means and feature

selection. By applying this speaker clustering technique in

two paralinguistic tasks, we were able to significantly

improve the accuracy scores of several machine learning

methods, and we also obtained an insight into what features

could be efficiently used to separate the different speakers.

Keywords Computational paralinguistics � Clustering �
Speaker clustering � Feature selection � Classifier
combination � Support-vector machines � Deep neural

networks � AdaBoost.MH

1 Introduction

Computational paralinguistics, a subfield of speech tech-

nology, is concerned with the non-linguistic information

content of the speech signal. A large number of different

paralinguistic tasks exist like detecting laughter

[16, 24, 31], emotions [16, 38, 47], or estimating the

intensity of conflicts [15, 29, 33]. The importance of this

area is reflected in the fact that for several years now the

Interspeech Computational Paralinguistic Challenge

(ComParE) has been held regularly (e.g., [36–38]).

A technique that has so far remained relatively unex-

ploited in computational paralinguistics is that of speaker

clustering [1]. It is quite obvious that, in a number of tasks,

the phenomenon we seek to detect might be speaker-de-

pendent. For example, the effect of physical load varies

greatly depending on the subject’s physical condition; the

expression of various emotions is affected by the speaker’s

personal habits, etc. Therefore, if each speaker uttered

multiple utterances and we could identify the different

speakers, then we would be able to incorporate this extra

speaker-dependent information into the classification pro-

cess. For example, instead of normalizing the dataset as a

whole, we could normalize it speaker-wise, which may

assist the classifier method used [36]. Although it is not yet

standard practice in computational paralinguistics, there

were already some studies that have applied this technique.

For example, Van Segbroeck et al. used an i-vector

framework for speaker clustering in order to perform

speaker-wise normalization, achieving the highest accuracy

score in the Cognitive Load Sub-Challenge of the Inter-

speech Computational Paralinguistic Challenge in 2014

[40].

Speaker clustering is a task not unknown in speech

recognition literature (e.g., [1, 8, 26, 49]). In most cases,
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however, it has to be done along with speaker segmentation

(‘‘Who spoke when?’’), while in computational paralin-

guistics we usually have only one speaker per utterance;

therefore, speaker diarization is of no interest to us. A

standard solution for speaker detection and normalization

is to use an i-vector framework [7]. However, besides the

complexity of this method, we have to train a whole speech

recognition system just to obtain the i-vectors, which we

consider a serious overkill.

Furthermore, adapting standard clustering methods

might lead to higher accuracy scores, as automatic speech

recognition (ASR) systems require large datasets, which

are usually not available in computational paralinguistics.

Another motivation is that it would be better to perform

speaker clustering and the paralinguistic classification

process using the same setup (e.g., features), and it could

lead to a more interpretable model as well. For these rea-

sons we will introduce a novel speaker clustering method,

which is based on general clustering principles.

To demonstrate the usefulness of our speaker clustering

approach, we will apply it on two tasks of two recent

ComParE challenges [36, 37]. The Cognitive Load with

Speech and EGG Corpus [48], used in ComParE 2014,

serves to evaluate algorithms to assess the Cognitive Load

and working memory of speakers during speech. In the

iHEARu-EAT database [28] the task is to find out what

kind of food the speaker is consuming. Although this latter

task could be regarded as one with little practical use, we

regard it a good testbed for machine learning tasks in the

area of computational paralinguistics.

2 Speaker clustering by feature selection

The standard approach in computational paralinguistics is

to extract a huge number of features (i.e., thousands) from

each utterance in the hope that the machine learning

method applied for the given task can handle this highly

redundant feature set. As these features have to be

extracted from the utterances for the paralinguistic task

anyway, it is reasonable to attempt speaker clustering using

some standard clustering method such as K-means [42] or

Fuzzy C-Means [3] with the Euclidean distance function on

this set of features. The drawback of this approach is that it

treats all features as equally important ones. This means

that, like for the majority of clustering methods, differently

scaled, redundant and irrelevant features may cause a

problem. The issue of different scales of the features may

be overcome by normalization, but relying on redundant,

and especially irrelevant features can reduce the quality of

clustering, and it is easy to see that this overcomplete

feature set extracted for the paralinguistic task will be full

of such attributes. Furthermore, many kinds of valid

clusters can be formed, but we now want to form specific

ones: those that correspond to the different speakers. For

these reasons, a logical step is to carry out feature selection.

Here, we sought to select the feature set which allows the

most efficient identification of the speakers in the training

set, and evaluate it on the test set.

We will describe our speaker clustering approach in four

parts. First, we will describe the evaluation metric we used

to measure clustering quality; then, we will present our

greedy feature selection approach proposed. This algorithm

uses an ordering of the input features, which we will

describe next. Lastly, we will describe the technique we

applied when clustering the test set, using the features

previously selected.

2.1 Evaluation of clustering

If the correct groups of the examples (in our case, the

various speakers) are known, we can evaluate a clustering

hypothesis generated via an automatic clustering method

(external evaluation, [30]). However, this is more difficult

to do than that for classification, as we cannot be sure

which resulting cluster corresponds to which group (if

any). From the variety of evaluation metrics available

(purity, entropy, normalized mutual information, etc. [30]),

we opted for entropy. For X ¼ fx1; . . .;xKg (the set of

resulting clusters), C ¼ fc1; . . .; cNg (the set of correct

groupings) and n elements (
P

jxkj ¼
P

jcij ¼ n), the

entropy of a cluster xk is defined as

EðxkÞ ¼ � 1

logN

XN

i¼1

jxk \ cij
jckj

log
jxk \ cij

jckj
; ð1Þ

while the entropy of the C clustering will be the sum of the

EðxkÞ values weighted by the number of the elements, i.e.,

EntropyðX; CÞ ¼
XK

k¼1

jxkj
n

EðxkÞ: ð2Þ

The better a clustering is, the lower the entropy value; a

perfect clustering has an entropy value of zero, while

randomly assigning cluster labels to the examples leads to

an entropy value close to one. We will also use purity,

which metric takes the most frequent class label in each

cluster and calculates the ratio of the elements in the cluster

which belong to this class. Then these scores are averaged

out for all clusters by weighting them with the number of

their elements [30, 45]. That is,

PurityðX; CÞ ¼ 1

n

XK

k¼1

max
i

jxk \ cij: ð3Þ

Bad clusterings have a purity value close to zero, while a

perfect clustering has a purity score of one. It has the
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drawback that it is easy to achieve high purity scores when

the number of clusters (K) is large, but as in our case it is

known in advance, we can set K ¼ N (the number of

speakers) to handle this issue.

2.2 The proposed feature selection algorithm

Due to the enormous number of features for each

utterance in computational paralinguistics, we found it

straightforward to use a heuristical feature selection

method. We applied a greedy algorithm: we started with

an empty set of selected features and then initiated an

iterative process. For each step, we extended our set of

selected features with the next feature to be examined. If

the quality of clustering improved significantly by using

this extended feature set, we kept the given feature;

otherwise we discarded it. (The quality of clustering was

measured via the entropy metric.) This was repeated

until all features were tested. As we used K-means,

which is a stochastic method, we repeated this step

several times for each feature and averaged out the

resulting entropy scores (see Algorithm 1).

Note that, since this algorithm invokes K-means

several times, its overall execution time can be quite

large (although, of course, it depends on the initial

feature set size, the number of examples and the number

of speakers). In our opinion this is not a serious draw-

back, though, since this algorithm has to be applied only

once, as it is applied only in the model training. Fur-

thermore, as in practice this method tends to select quite

compact feature sets (see Sect. 5), this huge number of

K-means clustering steps is all performed in a low-di-

mensional feature space, reducing the overall time

requirement of the feature selection process. Of course,

relying on clustering methods with a quicker conver-

gence (e.g., [21, 39]) might result in a significant speed-

up. A further source of speed improvements might be the

use of some more robust clustering algorithm (e.g.,

[3, 23, 44]), since K-means is known for its sensitivity

for random cluster center initialization [4]. In this case,

to reliably estimate the potential of the actual feature set,

it is enough to perform a few steps of clusterings (i.e.,

the parameter itnum in Algorithm 1 can be reduced).

However, now we would like to concentrate on the

efficiency of this feature selection scheme; therefore, the

investigation of the different clustering algorithms

applied is beyond the scope of the paper.

2.3 Feature ordering

In our greedy feature selection algorithm the order of the

features is quite important because a selected feature can-

not be discarded later. Instead of using a random ordering

of features, we decided to examine the more promising

features first. Therefore we took the feature vectors of two

speakers and calculated the correlation of each feature with

the change of speaker: we set up a vector which contained

zeros for one speaker and ones for the other and took the

correlation value of each feature vector with this vector.

We repeated this for every speaker pair, and the absolute

values of the resulting correlation values were averaged

out. Then the features were sorted according to their

averaged correlation score in descending order, and this

order was used in the feature selection method; this way,

features having a higher correlation were examined first.

Note that this is equivalent to sorting the features based on

the average difference between any two speaker-wise mean

values after standardization, provided that each speaker has

the same number of utterances.

2.4 Clustering the test set

The final step needed to actually employ our method in

practice is to cluster the test set. However, no matter how

carefully we pick our features, K-means will remain a

stochastic clustering method. For classification methods, to

achieve stability, it is common to train several models and

use some voting scheme to combine their output; for

clustering, however, it is not that straightforward to do.
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For this task we decided to adapt the consensus clus-

tering mechanism proposed by Fred and Jain [12]. We first

performed clustering M times. Then we defined the C co-

association matrix, where for each utterance pair i and j, ci;j
denotes how many times they fell into the same cluster.

Clearly, the higher this value is, the more likely i and

j should fall into the same final cluster. Next, we used

agglomerative hierarchical clustering [27], based on the ci;j
scores. Agglomerative hierarchical clustering has the

advantage that it can work by using just the distance

between the individual examples and it does not require the

coordinates of these instances. Given the distance

d(i, j) between each element pair i and j, we have in gen-

eral three possible ways to define the distance between two

clusters (i.e., element sets) A and B:

DSðA;BÞ ¼ minfdði; jÞ : i 2 A; j 2 Bg ð4Þ

is the single-linkage criterion, which takes the minimum of

the cluster-wise element distances. The complete-linkage

criterion takes the maximum of these scores, i.e.,

DCðA;BÞ ¼ maxfdði; jÞ : i 2 A; j 2 Bg: ð5Þ

Lastly, average-linkage clustering (or UPGMA, [41]) takes

the mean of the individual distance values, i.e.,

DAðA;BÞ ¼
1

jAj � jBj
X

i2A

X

j2B
dði; jÞ: ð6Þ

Fred and Jain proposed applying single-linkage clustering,

which (given that we calculate d(i, j) from ci;j in a mono-

tonic, decreasing way) is equivalent to thresholding the ci;j
scores [12]. However, single-linkage clustering has the

drawback that it tends to create quite long and distorted

clusters instead of compact ones. In our case this means

that, if we have an utterance which is similar to the utter-

ances of two speakers, it is likely that all utterances of both

speakers will be linked via this utterance, which might

prove to be suboptimal. Therefore, we decided to test all

three variants.

The remaining step is to define the d(i, j) distance values

based on the ci;j scores. We may have some straightforward

expectations for this distance function; one is that when the

examples i and j fall into the same cluster every time (i.e.,

ci;j ¼ M), their d(i, j) distance should be zero (this

requirement implies that for each instance i, dði; iÞ ¼ 0

holds as well). Furthermore, it is also reasonable to expect

that when ci;j ¼ 0 (i.e., the two instances were never

assigned to the same cluster), d(i, j) should be a very large

value, and d(i, j) should be monotonic in the function of ci;j
in the range ½1;M � 1�. A straightforward choice is to apply

the (negative) logarithm of ci;j=M (see e.g., [5, 20]). Since

for computational reasons we wanted to avoid taking the

logarithm of zero, we applied the function

dði; jÞ ¼ � log
ci;j þ 1

M þ 1
; ð7Þ

which satisfies all our expectations listed above (i.e., if

ci;j ¼ M, dði; jÞ ¼ 0; dði; iÞ ¼ 0; it takes a large value when

ci;j ¼ 0; and it is monotonic for all possible values of ci;j).

3 Experimental setup

3.1 The iHEARu-EAT corpus

The iHEARu-EAT database [28] contains the utterances of

30 people recorded while speaking during eating. Six

types of food were used along with the ‘‘no food’’ class,

resulting in seven classes overall. The recordings contain

both read and spontaneous speech. For each speaker and

food type, seven utterances were recorded; some subjects

refused to eat certain types of foods, resulting in a total of

1414 utterances. Twenty speakers were assigned to the

training set with a total of 945 utterances, while 10

formed the test set, which consisted of 469 utterances (see

Table 1). Although this dataset can be used primarily to

test machine learning and signal processing techniques,

Hantke et al. also anticipated several possible future

applications [28].

3.2 The Cognitive Load with speech and EGG

corpus

The Cognitive Load with Speech and EGG database [48]

serves to evaluate algorithms to detect the capability of the

working memory of speakers during speech. It contains the

utterances of 26 native Australian English speakers (20

male and 6 female) performing ‘‘span’’ tasks which require

participants to remember a number of concepts or objects

in the presence of distractors. The speakers had to perform

three types of tasks. The first one (reading sentence)

required them to read a series of short sentences, indicate

whether each was true or false and then remember a single

letter presented briefly between sentences. Three different

Cognitive Load level was defined: low when remembering

after one sentence, medium after remembering after two

sentences and high after the third, fourth and fifth sentence.

The remaining two tasks were variants of the Stroop test

[43]: the speakers had to name the font color of words

corresponding to different color names. In the low level,

the words and the colors were congruent, while in the

medium and high level they were not. In the Stroop time

pressure task, in the high level the participants had to do

this in a very short period of time (0.8 s), while in the

Stroop dual task they had to perform a tone-counting task

in the high level besides naming the font color.
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This dataset was later used in the Interspeech ComParE

2014 Cognitive Load Sub-Challenge [36]. Note that since

the three tasks performed were different by nature, it is

advised to train distinct classifier models for them. How-

ever, due to the distribution of utterances (see Table 1), this

results in fairly tiny datasets for the two Stroop tasks: from

the 1674 utterances of the training set, 1350 belong to the

reading span sentence task, while 162–162 recordings

contain speech recorded during the two Stroop tests.

3.3 The classification methods used

Our study focuses on the speaker clustering method pro-

posed; however, to achieve a state-of-the-art classification

accuracy, it is also essential to apply efficient classification

methods. To this end, we experimented with three algo-

rithms: support-vector machines (SVM) [35] with a linear

kernel, AdaBoost.MH [34] and deep rectifier neural net-

works (DNN) [13]. Although baseline SVM results for

ComParE [36, 37] are usually reported using the Weka

package [25], we used the implementation of libSVM [6]

instead, as in our previous experiments [14, 15] we got

consistently better results with it. Furthermore, we used

multiboost [2] for AdaBoost.MH and our custom imple-

mentation for DNN, which achieved outstanding accuracy

scores on several tasks and datasets (e.g., [22, 46]).

The fact that we applied a wide variety of machine

learning methods made it possible to tell whether applying

speaker clustering and then cluster-wise normalization is a

robust procedure (i.e., it can assist several entirely different

algorithms). In addition, we tested the combination of the

three classifier methods, as it might reinforce the strong

points of the individual classifiers.

There exist many classifier combination methods (see

e.g., [11, 17, 32]). However, the focus of this paper is

speaker clustering; therefore, we did not want to perform

experiments comparing the performance of many combi-

nation techniques, setting their meta-parameters, etc. To

this end, we experimented with a simple procedure, which

turned to be quite robust and effective in our previous

paralinguistic studies (e.g., [19, 22]). Namely, first we

calculated the output posterior probabilities for all classi-

fication methods for all examples and classes. In the next

step we transformed these scores so as to have the same

standard deviation for each classifier method and averaged

out these normalized values. Then, for each instance we

chose the class for which this averaged posterior value was

the highest. By transforming the output scores so as to have

the same standard deviation we practically took an

unweighted mean of the individual classifier scores;

although this approach may turn out to be somewhat sub-

optimal, we found this method to be quite robust.

3.4 Experimental setup

Our experiments followed the setup of [36] and [37]: we

used 6373 features overall, extracted by using the open-

SMILE tool [10]. The feature set includes energy, spectral,

cepstral (MFCC) and voicing-related low-level descriptors

(LLDs), from which specific functionals (like the mean,

standard deviation) are computed to provide utterance-

level feature values. The accuracy of classification was

primarily measured via the Unweighted Average Recall

(UAR) metric, being the mean of the class-wise recall

scores; this is the de facto standard evaluation metric on

these datasets [28, 36, 37], and it is widely used in com-

putational paralinguistics. For the sake of completeness, we

also listed the standard accuracy scores, although (as the

distribution of the classes is quite balanced for both data-

sets) they were similar to the corresponding UAR scores.

We performed speaker-wise cross-validation (CV) on the

training set for meta-parameter setting (complexity C for

SVM, stopping iteration for AdaBoost.MH and number of

hidden layers and neurons for DNN), which is the de facto

standard for these datasets, and computational paralin-

guistics in general; then used the meta-parameters found

optimal for the test set. We trained an SVM for the whole

training set, while for AdaBoost.MH and DNN we evalu-

ated all our models trained in CV mode to make predictions

for the test set.

We performed speaker clustering to be able to normalize

the feature vectors speaker-wise. Therefore, to measure the

effectiveness of this strategy, we applied three normaliza-

tion strategies: in the first one, no speaker-wise normal-

ization was performed, but the whole set was standardized

to have a zero mean and unit variance (global). Next, we

Table 1 The number of

speakers and utterances in the

Eating Condition and Cognitive

Load datasets

Dataset Task No. of speakers No. of utterances

Train Test Total Train Test Total

Eating Condition 20 10 30 945 469 1414

Cognitive Load Reading sentence 18 8 26 1350 600 1950

Stroop dual task 18 8 26 162 72 234

Stroop time pressure 18 8 26 162 72 234

All 18 8 26 1674 744 2418
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standardized the feature vectors belonging to each speaker

independently (speaker-wise). The scores obtained this

way represent the optimal classification scores that could

be achieved using this strategy, but this approach assumes

that we know the speakers even for the test set. Therefore,

we had a third category (clustering), where we performed

speaker clustering: we performed feature selection on the

training set (see Sect. 2.2) and then clustered the test set

(see Sect. 2.4). Afterward we standardized the feature

vectors of the test set cluster-wise and evaluated our clas-

sifiers on the feature vectors obtained. (We did not train

new models in this case, but used the ones created in the

Speaker-wise case instead.) If our scores fell close to those

got by the speaker-wise strategy, then our speaker clus-

tering method significantly improved the classifier

performance.

4 Results

4.1 Feature selection

Figure 1 shows the distribution of the correlation values

between the features and the speaker change both for the

Eating Condition and the Cognitive Load datasets. It is clear

that most features correlate with the speaker change only

slightly, but there are some attributeswhich have a correlation

value of about 0.8. It can also be seen that the distribution of

correlation of features is fairly similar for the two datasets.

Figure 2 shows the entropy and purity scores we got on

the training set during the feature selection process and the

number of features selected. It can be seen that using the

correlation-based feature order was more effective than

relying on a random feature order. This can also be

observed from the selected feature subset sizes: when using

the random order, the greedy feature selection method

chose 87 and 72 features, Eating Condition and Cognitive

Load datasets, respectively, while when we utilized the

correlation-based feature ordering method described in

Sect. 2.3, these values were just 28 and 40.

Examining Fig. 2 it is also quite clear that, for both

datasets, most of the attributes are selected from the 100

top-ranking features, and these features are responsible for

the bulk of the entropy and purity score improvements.

This in our opinion means that the construction of the

feature ordering described in Sect. 2.3 is an efficient pro-

cedure. Later a few other features were added by the

algorithm, but all the attributes were picked from the

highest ranked 500 attributes. Note that we examined all

the 6373 features, but displayed only the first 1000, since

no features were selected in the remaining region.

4.2 Clustering results

Table 2 lists the entropy and purity scores on the test set

after performing clustering and after applying the three

variations of consensus clustering described in Section

2.4. The scores achieved via standard K-means clustering

could be improved significantly by feature selection:

although using the random feature order was only moder-

ately successful for the Cognitive Load dataset, for the

Eating Condition task it proved to be very effective. Over

these scores, the same feature selection method along with

the correlation-based feature ordering approach could

improve the scores further significantly (Cognitive Load)

or just slightly (Eating Condition). Among the consensus

clustering criteria, the most successful strategy proved to

be the UPGMA one, achieving an entropy score of 0.0684

and a purity value of 95:95% on the Eating Condition

dataset, while these scores were 0.1554 and 83:56% with-

out consensus clustering, entropy and purity, respectively.

On the Cognitive Load dataset the effectiveness of this

consensus clustering method is even more clear: the scores

of 0.0278 and 98:79% (entropy and purity, respectively)
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Fig. 1 The distribution of the correlation values of the features and the speaker change for both datasets a Eating Condition and b Cognitive

Load

Pattern Anal Applic

123



reflect an almost perfect clustering of the yet unseen

speakers of the test set. (We should mention, though, that

on this dataset the complete-linkage criterion produced

exactly the same final clustering.)

The results of the first step of clustering evaluation

(the ci;j scores) on the test set of the Eating Condition

dataset can be seen in Fig. 3a; the darker a point, the

higher the corresponding ci;j score is. Evidently, most of

the utterances belonging to a given speaker were mapped

into the same cluster (see the rectangles near the diag-

onal). A number of utterances were assigned to the

wrong speakers (these form small straight lines). Some

speakers (e.g., the second and the sixth) were found to

be pretty similar and were confused several times, being

indicated by gray boxes; these, however, usually could

be eliminated in the second step of clustering aggrega-

tion (see Fig. 3b–d).

The superiority of the UPGMA criterion can be seen

in Fig. 3 as well. By applying the average-linkage cri-

terion, only a few utterances were assigned to wrong

speakers, while the single-linkage and even the com-

plete-linkage methods merged the utterances of two

speakers (the second and the tenth, and the second and

the fifth one, single-linkage and complete linkage,

respectively). The case of the single-linkage clustering is

perhaps the more interesting one, as visually these two

speakers are not that similar in the co-association matrix.

However, for single-linkage just one utterance which is

similar to the utterances of both speakers is enough to

link these two speakers.
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Fig. 2 The entropy and purity scores as a function of examined features and the effect of the number of selected features on the training set

a Eating Condition and b Cognitive Load

Table 2 Entropy and purity

scores obtained on the two

datasets by applying the

different consensus clustering

strategies

Dataset Clustering type Training Test

Entropy Purity (%) Entropy Purity (%)

Eating Condition Single (closest, Eq. 4) – – 0.1226 87.42

Complete (farthest, Eq. 5) – – 0.0972 91.26

UPGMA (average, Eq. 6) – – 0.0684 95.95

No consensus clustering (average) 0.0785 87.41 0.1554 83.56

Random feature order (average) 0.1555 79.39 0.1738 82.21

All features (average) 0.5232 38.91 0.5286 48.52

Cognitive Load Single (closest, Eq. 4) – – 0.1003 86.83

Complete (farthest, Eq. 5) – – 0.0278 98.79

UPGMA (average, Eq. 6) – – 0.0278 98.79

No consensus clustering (average) 0.1141 84.93 0.1485 83.22

Random feature order (average) 0.3443 60.13 0.3319 63.76

All features (average) 0.6185 33.95 0.4412 55.31
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4.3 Classification results

Table 3 lists the accuracy and UAR scores obtained for the

Eating Condition dataset. In the cross-validation setting,

speaker-wise normalization improved the accuracy scores

by roughly 10%, depending on the classification method

applied (this is equivalent to a 25–33% relative error

reduction (RER) score). Performing speaker-wise normal-

ization on the test set, using the real speaker IDs (speaker-

wise case), resulted in a 7–10% increase in the accuracy

scores (19–27% RER). When we performed speaker-wise

feature standardization on the test set using the predicted

speaker IDs, we got somewhat lower accuracy scores,

depending both on the classification method used and the

consensus clustering criterion applied: the UAR scores

varied between 69.2 and 73.7%, while accuracy lays in the

range 69.9–74.2%. These scores are all well above (by

6–7%) the baseline scores for all three classifier methods

just as their combination, so it seems that using the pro-

posed speaker clustering method and performing cluster-

wise feature standardization is an effective way of

improving accuracy scores in paralinguistic tasks. As for

the different clustering aggregation criteria, clearly single-

linkage clustering performed the worst. Surprisingly, by

performing complete-linkage clustering we could match or,

in the case of SVM, even outperform the scores got by

performing UPGMA, despite the better entropy and purity

values produced by the latter approach. This could be

because in this task we wanted to detect an acoustic phe-

nomenon, so it is enough if we form clusters containing

(a) (b)

(d)(c)

Fig. 3 The speaker clustering process displayed on the test set of the

Eating Condition dataset. Each row and column correspond to one

utterance. The more frequently two utterances were assigned to the

same cluster, the darker the corresponding point is in the co-

association matrix (a). After the consensus clustering step with the

different criteria (b)–(d), a point is black if the two corresponding

utterances fell into the same final cluster and white otherwise a co-

association matrix, b single-linkage criterion, c complete-linkage

criterion and d average-linkage criterion
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similarly sounding utterances. This is not necessarily so,

though, for tasks where the phenomenon we seek to detect

is speaker-dependent; for example, two speakers having a

similar voice do not necessarily have a similar short-term

memory. Therefore, in our opinion, the best strategy is to

utilize the method which leads to the most precise clus-

tering, which here was UPGMA.

We performed our classification experiments on the Cog-

nitiveLoaddataset byusing support-vectormachines only, for

three reasons. Firstly, on the Eating Condition dataset this

method performed best among the three classification algo-

rithms tested. Secondly, this dataset consists of utterances

where the speakers performed three entirely different tasks,

which required the trainingof separatemodels for them. In our

opinion, the results of three classification models for all three

tasks mean such a high amount of resulting scores which is

quite hard to present and analyze. Thirdly, two of the three

tasks have an unusually low number of examples; although

both AdaBoost.MH and DNN are capable of producing

competitive results on such tiny machine learning datasets

(see e.g., [18]), SVM is clearly the most robust of the three

under these circumstances.

Table 4 shows the accuracy scores we got on the three

tasks of the Cognitive Load dataset and the results

combined for the whole database. Note that our baseline

scores (global strategy) are somewhat lower than those of

the ComParE Challenge, which is due to the different SVM

implementation (Weka vs. libSVM). Against our baseline,

speaker-wise standardization brought a 3.2–20.9%

improvement in terms of UAR, being equivalent to 8–37%

RER. (For the whole database, the 5:3% improvement

(13% RER) is also significant.) The majority of these

improvements could be achieved via the speaker clustering

method proposed as well: by applying the single-linkage

criterion the UAR scores improved by 2.2–18.1% (5–32%

RER), while the complete-linkage and average-linkage

criteria brought improvements of 2.9–20.9% (7–37%

RER). For the whole Cognitive Load dataset, speaker

clustering and cluster-wise standardization with the

UPGMA criterion improved the baseline UAR score of

59.5–64.2%, meaning 11.6% in terms of relative error

reduction.

A further observation is that the proposed method seems

to be insensitive to the number of clusters: in the training

set—on which we performed feature selection—we had 20

speakers, while we had 10 speakers in the test set; never-

theless, the accuracy scores obtained on the latter one are

quite convincing.

Table 3 Accuracy and UAR scores obtained for the different machine learning methods and normalization techniques on the Eating Condition

dataset

Normalization method Classification method CV Test

Acc. (%) UAR (%) Acc. (%) UAR (%)

Global (baseline) SVM 61:7 61:4 66:7 66:1

AdaBoost.MH 64:0 63:6 64:5 64:5

DNN 60:5 60:1 64:8 64:2

Combination 64:3 64:0 67:2 66:2

Speaker-wise SVM 74:5 74:3 75:7 75:2

AdaBoost.MH 73:0 72:8 74:4 73:8

DNN 70:7 70:5 71:6 71:0

Combination 74:5 74:4 75:7 75:2

Clustering Single (Fred and Jain, [12]) SVM – – 72:3 71:7

AdaBoost.MH – – 69:9 69:3

DNN – – 69:9 69:4

Combination – – 69:9 69:2

Complete SVM – – 74:2 73:7

AdaBoost.MH – – 72:5 71:9

DNN – – 70:1 69:5

Combination – – 72:1 71:4

Average (UPGMA) (proposed) SVM – – 73:1 72:6

AdaBoost.MH – – 72:3 71:7

DNN – – 70:8 70:1

Combination – – 73:6 73:0

ComParE 2015 Challenge baseline [37] – 61:3 – 65:9
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5 The selected features

The proposed feature selection method chose a subset of

28 and 40 features for the Eating Condition and the

Cognitive Load dataset, respectively, which are pretty

compact subsets of the 6373-component original feature

set. Next, we will examine what type of features was

chosen; we will follow the division described in [9],

treating MFCC independently of other spectral features,

and F0 independently of other prosodic features. The

distribution of the features can be seen in Fig. 4. It is not

surprising that F0 has a much larger share (10 and 15%) in

the selected subsets than in the original feature set (3%),

since F0 is known to be very speaker-dependent. Most (61

and 53%) of the remaining selected features are MFCC-

related, while only a few spectral features are used and the

attributes related to voice quality (e.g., jitter, shimmer)

were all (Eating Condition) or almost completely (Cog-

nitive Load, 7%) discarded.

Interestingly, F0-based features have roughly the same

proportion in the top-ranked 100 features as they do in the

final subset. It seems that although F0 plays an important

role in discriminating between the different speakers, these

features are highly redundant. Nevertheless, MFCC occupies

a much bigger part of the selected subset than its portion in

even the top-ranked 100 features. This tells us not only that

MFCCs contain valuable speaker-related information, but

also that these features are less correlated with each other

than other types of attributes in the full feature set.

6 Conclusions

In this study we proposed a speaker clustering method

intended for paralinguistic audio tasks, based on the idea of

feature selection and utilizing the standard K-means clus-

tering method. To be able to efficiently examine the feature

subsets, we defined an ordering of features based on their

correlation with speaker change and opted for a greedy

feature selection technique. With this approach we were

Table 4 Accuracy and UAR

scores obtained by using SVM

and the different normalization

techniques on the Cognitive

Load dataset

Performed task Normalization method CV Test

Acc. (%) UAR (%) Acc. (%) UAR (%)

Reading sentence Global (baseline) 60:7 58:7 62:3 60:2

Speaker-wise 64:8 62:9 64:8 63:4

Clustering Single – – 64:0 62:4

Complete/average – – 64:5 63:1

ComParE 2014 Challenge baseline – 61:2 – 61:5

Stroop dual task Global (baseline) 63:0 63:0 44:4 44:4

Speaker-wise 78:4 78:4 65:3 65:3

Clustering Single – – 62:5 62:5

Complete/average – – 65:3 65:3

ComParE 2014 Challenge baseline – 63:5 – 56:9

Stroop time pressure Global (baseline) 73:5 73:5 66:7 66:7

Speaker-wise 84:0 84:0 75:0 75:0

Clustering Single – – 72:2 72:2

Complete/average – – 72:2 72:2

ComParE 2014 Challenge baseline – 74:6 – 66:7

All tasks Global (baseline) 62:2 60:7 61:0 59:5

Speaker-wise 68:0 66:8 65:9 64:8

Clustering Single – – 64:7 63:5

Complete/average – – 65:3 64:2

ComParE 2014 Challenge baseline – 63:2 – 61:6

0 0.2 0.4 0.6 0.8 1
Distribution of LLDs

Selected CL

Selected EC

Top 100 CL

Top 100 EC

Top 500 CL

Top 500 EC

Full

Cepstral
Prosodic
F

0

Spectral
Voice quality

Fig. 4 The distribution of the feature subsets for the Eating Condition

(EC) and the Cognitive Load (CL) datasets
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able to efficiently cluster the yet unseen speakers in the test

set, and by applying cluster-wise feature vector normal-

ization, we were able to reduce classification error by about

25% for several different classification methods. An

interesting question concerns the corpus dependence of the

selected feature subset; however, this falls outside the

scope of this study.
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Arroyave JR, Nöth E, Zhang Y, Weninger F (2015) The

INTERSPEECH 2015 computational paralinguistics challenge:

Nativeness, Parkinson’s & Eating Condition. In: Proceedings of

Interspeech, pp 478–482

Pattern Anal Applic

123



38. Schuller B, Steidl S, Batliner A, Vinciarelli A, Scherer K,

Ringeval F, Chetouani M, Weninger F, Eyben F, Marchi E,

Salamin H, Polychroniou A, Valente F, Kim S (2013) The

Interspeech 2013 computational paralinguistics challenge: social

signals, conflict, emotion, autism. In: Proceedings of Interspeech,

Lyon, France, pp 148–152

39. Sculley D (2010) Web-scale k-means clustering. In: Proceedings

of WWW, Raleigh, North Carolina, USA, pp 1177–1178

40. van Segbroeck M, Travadi R, Vaz C, Kim J, Black MP,

Potamianos A, Narayanan SS (2014) Classification of Cognitive

Load from speech using an i-vector framework. In: Proceedings

of Interspeech, Singapore, pp 671–675

41. Sokal RR, Michener CD (1958) A statistical method for evalu-

ating systematic relationships. Univ Kans Sci Bull

28(1):1409–1438

42. Steinhaus H (1956) Sur la division des corp materiels en parties.

Bull Acad Pol Sci C1 III. (IV):801–804

43. Stroop JR (1935) Studies of interference in serial verbal reac-

tions. J Exp Psychol 18(6):643–662
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