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Summary: The performance of speech recognition systems has greatly improved with the introduction of Deep Neural 
Network (DNN) acoustic models. However, making these systems robust against all possible kinds of environmental 
conditions is still an important research topic. The adversarial multi-task DNN training method was proposed recently, and it 
has already been successfully applied to increase the domain and noise robustness of DNN acoustic models. Here, we evaluate 
the efficiency of this training method in increasing the speaker-invariance of a speech recognition system that is based on a 
convolutional neural network (CNN). Moreover, we propose a solution to handle those cases where speaker labels are not 
available for the training dataset. In the supervised case we report relative error rate reductions of 3-4 %. With the unsupervised 
method the improvements are somewhat smaller, but consistent across all tested parameter values. 
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1. Introduction 
 

The introduction of deep learning in speech 
recognition has significantly reduced the error rate of 
speech recognition systems [1]. However, improving 
the robustness of these recognizers to various 
environmental factors is still in the focus of research 
[2], as the performance of current systems may drop 
drastically in different background noise, in 
reverberant environments, or simply with different 
speaker accents, just to name but a few possible 
adversarial conditions. 

The sensitivity to these environmental factors can 
partly be explained by the fact that neural networks are 
inclined to overfit the actual training data, which 
reduces their generalization ability. Regularization 
methods are frequently applied to tackle this  
overfitting phenomenon. For example, it is frequently 
observed that presenting multiple tasks to the network 
at the same time – known as multi-task training  
[3] – also has a regularization effect. That is, having to 
solve two (or more) similar, but slightly different tasks 
at the same time forces the network to find a more 
general and more robust inner representation.  
Multi-task training has been successfully applied in 
several speech recognition studies [4, 5]. 

While multi-task training seeks to minimize the 
error of both tasks, there is a newer variant of the 
method known as adversarial multi-task training. 
Here, the error of the secondary task is maximized. 
With this modification, we expect the network to find 
an inner representation that is invariant with respect to 
the secondary task [6]. In speech technology, 
adversarial multi-task training has mostly been applied 
to increase the noise-robustness of DNN-based 
acoustic models [7, 8], as sensitivity to the background 
noise of the actual application domain is perhaps the 
most common adversarial factor. But we can also find 

examples where it is used to make the system less 
sensitive to other factors like accented speech [9]. 

The performance of speech recognizers may also 
vary significantly among speakers. In this paper, we 
seek to apply the adversarial multi-task training 
method to alleviate this issue. Our starting point will 
be the recent study of Meng et al. [10]. In contrast with 
their study, here we work with convolutional neural 
nets instead of fully connected DNNs. As the 
convolutional structure already makes the network less 
sensitive to speaker variance, it is not clear whether 
adversarial training can reduce this sensitivity any 
further. A second difference is that here we use the 
TIMIT database, which contains shorter samples from 
significantly more speakers than the corpus used 
in [10], so the task is presumably more difficult. 

The approach of Meng et al. assumes that  
speaker-level annotation is available for the training 
data, permitting supervised training. However, most of 
the datasets available for training speech recognizers 
do not contain any information about the speakers. 
Thus, we also describe an experiment where we apply 
a clustering method which assigns the files to 
automatically designed speaker clusters, and the CNN 
is trained using these cluster labels. We will refer to 
this method as the unsupervised version of the 
approach. 

 
 

2. Adversarial Multi-task Training 
 

In multi-task training we train the neural network 
to solve multiple (in this case two) tasks in parallel, 
based on the same set of input features [6]. The two 
tasks should be related, but slightly different.  
Multi-task training requires a special network 
architecture where the network has separate output 
layers dedicated to the two tasks, and the uppermost 
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hidden layers are also task-specific. However, there is 
only one, shared input layer, and the lowermost hidden 
layers are also shared between the two tasks. The 
multi-task DNN architecture is illustrated in Fig. 1. 

 

 
 

Fig. 1. Architecture of the (adversarial) multi-task deep 
neural network. 

 
In our case, one of the output layers is trained to 

recognize the context-dependent (CD) states of the 
Hidden Markov Model (HMM) speech recognizer. 
The other, secondary output layer is trained to identify 
the speaker label of the actual training sentence. 
During multi-task training, we minimize the error 
functions (LCD and LS) of the two output layers 
simultaneously. Thus, during the backpropagation 
training process we have to sum the error values of the 
two branches when they reach the shared layers. This 
means that λ = 1 in the formula of Fig. 1. The fact that 
the lower layers are shared between the two tasks 
forces the network to find a hidden representation that 
is useful for minimizing both error functions. 

In the case of adversarial multi-task training, the 
goal is to minimize the error of the main task, and 
maximize the error of the secondary task at the same 
time. Ganin et al. proposed the following solution for 
this [6]: we will keep minimizing the error of the  
task-specific layers. However, when the error 
backpropagation reaches the shared layers, the sign of 
the error for the secondary task is flipped, which is 
technically realized by using a negative λ value. This 
modification practically turns minimization into 
maximization with respect to the shared layers. This 
way, the network will seek a shared hidden 
representation that is optimal for solving the first task, 
but contains no useful information for solving the 
secondary task. As in our case the secondary task is 
speaker identification, the optimal hidden 
representation would be totally speaker-invariant, and 
the classification error rate of the secondary branch 
would be 100 %. 

In his original paper, Shinohara suggested 
introducing the adversarial secondary task only 
gradually by slowly increasing the (absolute) value of 
λ [7]. That is, in the kth training iteration the value of 
λ would be set to 

 
 

  )1,min(
c

k
k , (1) 

which means in practice that λ attains its final value 
after c training epochs. He proposed setting c to 10, but 
we also experimented with the value of 7, as we 
observed that during the backpropagation process the 
halving of the learning rate typically starts after  
6-7 training epochs. 

Another meta-parameter of the model is the 
number of layers in the network, and their division 
between the shared and the task-specific parts. As in 
our previous studies (see e.g. [11]) we obtained the 
best results with 4-5 hidden layers, here we worked 
with a network depth of 4 hidden layers. As regards the 
depth where the two branches should join, it seems 
reasonable that having more shared layers is better 
when the two tasks are quite similar, while quite 
different tasks would require more task-specific layers. 
However, the optimal structure can only be found 
experimentally. For example, in an earlier paper where 
the tasks were relatively different, we found an early 
division to be optimal [12]. For the actual speech plus 
speaker recognition task, Meng et al. applied a network 
with 2 shared and 2-5 task-specific layers [10]. In the 
pilot tests we obtained the best results with 3 joint and 
1-1 task-specific layers, so we present detailed results 
only with this network architecture. 
 
 
3. Experimental Set-up 
 

The neural network model we applied here 
contained convolutional neurons in its lowest layer, 
which performs convolution along the frequency axis 
(for more details, see our earlier study [11]). The 
shared part consisted of three hidden layers, while the 
task-specific parts contained one hidden layer for both 
tasks. All fully connected hidden layers contained 
2000 rectified linear (ReLU) neurons. The main output 
layer consisted of 858 softmax neurons, corresponding 
to the context-dependent states of the hidden Markov 
model speech recognizer. The output layer for the 
secondary task contained 462 softmax neurons, and it 
was trained to discriminate the speakers of the training 
dataset. The training was performed using the standard 
backpropagation algorithm with a mini-batch size of 
1000 training vectors. The learning rate was fixed at a 
value of 0.001 until the training error kept decreasing 
on the validation set. Afterwards, the learning rate was 
halved in each training epoch. The cost function 
applied was the standard cross-entropy error rate for 
both output layers, measured at the level of the training 
vectors (acoustic data frames). As the task of the CNN 
is framewise classification, in some cases we will 
directly report the frame error rates obtained. The 
speech recognition system applies the standard 
HMM/DNN hybrid scheme to convert the frame-level 
probability estimates into a sequence of phones [11]. 
To evaluate the accuracy of the whole speech 
recognizer, we will report the phone error rates 
attained. 

As the training database we used the TIMIT 
English speech corpus, which contains speech samples 
from 462 speakers in the training subset. The core test 
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set we used here contains samples from 24 speakers 
who are separate from the training set. As the 
development set, we randomly held out the samples of 

44 speakers from the train set, which roughly 
corresponds to 10 % of the training material. 
 

 

 
 

Fig. 2. The error curve for the secondary task on the train set (left), and the error curve for the main task on the development 
set (right) as a function of the number of training iterations. 

 
 
4. Results and Discussion 
 

Fig. 2 shows a typical example of how the  
(frame-level) classification error rate of the CNN 
changes during the training epochs. On the left we 
plotted the error rate of the secondary (speaker 
classification) task on the train set. We note that the 
secondary output will not be used by recognizer, so we 
plotted it only to gain an insight into what happens 
during adversarial multi-task training. The figure on 
the right shows the error for the main task – in this case 
on the development set, as this is the value that we seek 
to minimize. When λ = 0, the secondary branch of the 
network is allowed to learn, based on the hidden 
representation formed in the uppermost shared hidden 
layer, but it cannot modify this representation. Hence, 
we called this case the ‘passive learning’ scenario, and 
the result obtained in this configuration for the main 
task will serve as our baseline. We observe that in this 
case the speaker classifier branch can achieve an error 
rate below 30 % on the train set, while the error curve 
for the main output stops just below 35 %. By setting 
λ = 1, we get a classic multi-task model. In this case 
the training error rate of the secondary branch goes 
down to 3 %, but the price is that the error rate of the 
main task increases to 39 %. In the last experiment, we 
let the system run in multi-task mode for 2 iterations 
(to aid visualization), but then we turned on adversarial 

training by setting λ to -0.1. As the result, the 
corresponding error curve on the left quickly raises to 
the 70-90 % range, and remains there until the end of 
training. However, adversarial training has a beneficial 
effect on the main task, as the corresponding error 
curve goes slightly below that of the baseline (passive) 
model on the right. 

Having found that adversarial training can outper-
form the standard multi-task training approach, we 
looked for the optimal parameter values. Table 1 
shows how the parameters λ and c influence the error 
rates of the speech recognizer. As regards the main 
task, we report phone recognition error rates (PhER) 
from the full system on the development and test sets, 
while for the secondary task we report only frame-
level error rates (FrER) of the neural network on the 
train set, as this output is not used by the recognizer. 
To reduce the effect of random initialization, we report 
the average scores of repeating the training 3 times. 
The results indicate that the error rate of the secondary 
task consistently increased as λ increased, just as 
expected. Moreover, compared to the baseline, the 
recognition error rate also consistently improved for all 
λ values both on the development and test sets, 
reaching the optimum at λ = -0.15 and c = 10. The 
relative error rate reduction lay between 3 % to 4 % on 
average, and it was 4.2 % in the best case. 
 

 
Table 1. The frame error rates of the CNN (secondary task, train set) and the phone error rates of the speech recognizer 

(main task, development and test sets). 
 

Parameters FrER (train set, 
secondary task) 

PhER  
(dev. set, main task) 

PhER  
(test set, main task) λ c 

0 (baseline) 36 % 16.6 % 18.8 % 
-0.03 7 57 % 16.3 % 18.3 % 
-0.06 7 73 % 16.2 % 18.4 % 
-0.10 7 82 % 16.1 % 18.3 % 
-0.10 10 79 % 16.0 % 18.0 % 
-0.15 10 85 % 16.2 % 18.1 % 
-0.20 10 90 % 16.3 % 18.2 % 
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Table 2. The error rates of the speech recognizer  
as a function of the number of clusters. 

 

No. of 
Clusters 

Parameters Phone Error Rate (%) 

c λ dev. set test set 

– baseline 16.6 % 18.8 % 

50 7 -0.10 16.3 % 18.6 % 

100 10 -0.15 16.0 % 18.0 % 

150 10 -0.10 16.0 % 18.3 % 

200 10 -0.10 16.2 % 18.4 % 

250 10 -0.10 16.0 % 18.3 % 

 
 
5. Unsupervised Case 
 

The TIMIT corpus is an old-fashioned database in 
the sense that its content was carefully planned, and it 
also contains a detailed description of the speakers. 
Nowadays, we use much larger databases and we 
prefer to record these under realistic application 
conditions. Unfortunately, speaker annotation is not 
available for most of the newer databases. In these 
cases, we cannot directly apply the adversarial training 
method, as the missing speaker labels must be replaced 
by some other training targets. A possible solution is to 
use automatically determined labels. Here, we utilized 
a refined version of the unsupervised speaker 
clustering algorithm called bottom-up Hierarchical 
Agglomerative Clustering with a Generalized 
Likelihood Ratio (GLR) [13-15] for this purpose. This 
algorithm arranges the files into clusters, based on the 
similarity of the speakers’ voices. The only assumption 
of the algorithm is that each file contains the voice of 
only one speaker, which is satisfied in the case of 
TIMIT, where each file contains a single sentence. The 
only meta-parameter of the algorithm is the number of 
clusters. We set this parameter to 50, 150, 150, 200 and 
250, and then we repeated the DNN training 
experiment, but this time using the speaker clusters as 
training targets. Table 2 shows the results we obtained, 
for each cluster size reporting the score of just the best 
performing meta-parameters. As we can see, the 
improvements and the best result on the development 
set were comparable to those for the supervised 
method. On the test set, the decrease in the error rate 
was the same in the best case, though slightly less on 
average. However, the improvement was consistently 
present for all cluster sizes used. 
 
 
6. Conclusions 
 

Here, we evaluated the adversarial multi-task 
training method proposed by Meng et al. within the 
framework of CNNs. Moreover, we found a way to 
make the method work when speaker annotation is not 
available. We found that the adversarial training 
method is beneficial for CNNs as well, and that our 
unsupervised training approach can attain error rate 

reductions that are comparable to those of the original 
method. 
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