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Abstract

Parkinson’s Disease (PD) is a neuro-degenerative disorder that
affects primarily the motor system of the body. Besides other
functions, the subject’s speech also deteriorates during the dis-
ease, which allows for a non-invasive way of automatic screen-
ing. In this study, we represent the utterances of subjects hav-
ing PD and those of healthy controls by means of the Fisher
Vector approach. This technique is very common in the area
of image recognition, where it provides a representation of the
local image descriptors via frequency and high order statistics.
In the present work, we used four frame-level feature sets as
the input of the FV method, and applied (linear) Support Vec-
tor Machines (SVM) for classifying the speech of subjects. We
found that our approach offers superior performance compared
to classification based on the i-vector and cosine distance ap-
proach, and it also provides an efficient combination of machine
learning models trained on different feature sets or on different
speaker tasks.
Index Terms: Parkinson’s Disease, Fisher Vector encoding,
speech analysis, automatic screening

1. Introduction
Shaking, rigidity, slowness of movement, and speech difficul-
ties are some of the classic symptoms that affect the motor sys-
tem, caused by a decrease of dopamine-producing neurons [1].
Such pathologies are often related to one of the most common
neuro-degenerative disorders, that is, Parkinson’s Disease. A
person suffering from Parkinson’s is prone to develop changes
and disorders in speech and swallowing. This can occur at any
time during the disease, but it generally appears as the dis-
ease advances. Commonly, the speech of the patient is also
affected in terms of its tone, volume, and rate, which leads to
dysprosody. Words comprising the speech of the subject may be
slurred or mumbled. Additionally, typical articulatory problems
exhibited by PD patients are referred to as dysarthia. Also, the
speech can fade away at the end of the sentences; likewise, pa-
tients may speak slowly and with a breathy kind of speech [1, 2].

Utilizing Computer Tomography (CT) and Magnetic Res-
onance Imaging (MRI), the brain scans of people can be har-
nessed to diagnose PD. However, their results usually appear to
be normal which makes it difficult for physicians to give an ac-
curate diagnosis. Currently, there is no existing standard blood
or laboratory tests that can be utilized to diagnose PD. Hence,
the diagnosis, which sometimes may not be the most accurate,
is often made based on the medical history of the patient and/or
a neurological examination. In some cases, signs and symptoms
of PD may be catalogued as the result of normal aging. Limita-
tions within the commonly used process to assess patients with

PD include the high cost and the lack of efficiency when eval-
uating the disease. This process generally has two main draw-
backs: it greatly depends on the expertise of the clinician, which
is subjective; and the limitation of taking the patient to the clinic
to try out exhaustive medical assessments and screenings [3].

There is a need to develop quick, reliable and non-invasive
ways to diagnose PD. Thus, automatic speech analysis has been
utilized in many medical branches in order to tackle the above-
mentioned obstacles by offering accurate and non-expensive so-
lutions that are able to assess the diagnosis of different neuro-
degenerative diseases by the use of speech recordings. The most
common scenarios include Alzheimer’s [4, 5, 6] and Parkin-
son’s Disease [7, 8], where the performance of different speech
processing techniques such as i-vectors or ASR-based features
(e.g. speech tempo or hesitation ratio) are applied.

Here, we will utilize the FV approach [9], which is an en-
coding method originally developed to represent images as gra-
dients of a global generative GMM of low-level image descrip-
tors. These new features are fed into a (linear) SVM [10] clas-
sifier in order to evaluate their capability to automatically dis-
criminate between PD patients and Healthy Controls (HC). We
will show that the proposed approach gives a better performance
than for instance, using i-vectors, and provides a simple-yet-
effective way of combining the predictions with other methods.
To the best of our knowledge, this is the first study that focuses
on making use of FV representation in order to detect speech
impairments of PD patients.

2. The Fisher Vector approach
The Fisher Vector approach is an image representation that
pools local image descriptors (e.g. SIFT, describing occur-
rences of rotation- and scale-invariant primitives [11]). In con-
trast with the Bag-of-Visual-Words (BoV, [12]) technique, it as-
signs a local descriptor to elements in a visual dictionary, ob-
tained via a Gaussian Mixture Model for FV. Nevertheless, in-
stead of just storing visual word occurrences, these representa-
tions take into account the difference between dictionary ele-
ments and pooled local features, and they store their statistics.
A nice advantage of the FV representation is that, regardless of
the number of local features (i.e. SIFT), it extracts a fixed-sized
feature representation from each image.

The FV approach has been shown to be quite promising in
image representation [9]. Despite the fact that just a handful
of studies use FV in speech processing, e.g. for categorizing
audio-signals as speech, music and others [13], for speaker ver-
ification [14, 15], and for determining the food type from eating
sounds [16], we think that FV can be harnessed to improve clas-
sification performance in audio processing.
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Figure 1: Generic methodology applied in our work.

2.1. Fisher Kernel

Named after the statistician Ronald Fisher [9], the Fisher Ker-
nel (FK) seeks to measure the similarity of two objects from a
parametric generative model of the data (X) which is defined as
the gradient of the log-likelihood of X:

GXλ = 5λ log υλ(X), (1)

where X = {xt, t = 1, . . . , T} is a sample of T obser-
vations xt ∈ X , υ represents a probability density function
that models the generative process of the elements in X and
λ = [λ1, . . . , λM ] ′ ∈ RM stands for the parameter vector
υλ [17]. Thus, such a gradient describes the way the parameter
υλ should be changed in order to best fit the data X . A novel
way to measure the similarity between two points X and Y by
means of the FK can be expressed as follows [9]:

KFK(X,Y ) = GX′λ F−1
λ GYλ . (2)

Since Fλ is positive semi-definite, Fλ = F−1
λ . Eq. (3) shows

how the Cholesky decomposition F−1
λ = L′λLλ can be utilized

to rewrite the Eq. (2) in terms of the dot product:

KFK(X,Y ) = GX′
λ G Y

λ , (3)

where
GX
λ = LλG

X
λ = Lλ 5λ log υλ(X). (4)

Such a normalized gradient vector is the so-called Fisher Vector
of X [17]. Both the FV GX

λ and the gradient vector GXλ have
the same dimension.

2.2. Fisher Vectors

Let X = {Xt, t = 1 . . . T} be the set of D-dimensional local
SIFT descriptors extracted from an image and let the assump-
tion of independent samples hold, then Eq. (4) becomes:

GX
λ =

T∑
t=1

Lλ 5λ log υλ(Xt). (5)

The assumption of independence permits the FV to become a
sum of normalized gradients statistics Lλ5λ log υλ(xt) calcu-
lated for each SIFT descriptor. That is:

Xt → ϕFK(Xt) = Lλ 5λ log υλ(Xt), (6)

which describes an operation that can be thought of as a higher
dimensional space embedding of the local descriptors Xt.

In simple terms, the FV approach extracts low-level local
patch descriptors from the audio-signals’ spectrogram. Then,

with the use of a GMM with diagonal covariances we can model
the distribution of the extracted features. The log-likelihood
gradients of the features modeled by the parameters of such
GMM are encoded through the FV [17]. This type of encoding
stores the mean and covariance deviation vectors of the compo-
nents k that form the GMM together with the elements of the
local feature descriptors. The image is represented by the con-
catenation of all the mean and the covariance vectors that gives
a final vector of length (2D + 1)N , for N quantization cells
and D dimensional descriptors [17, 18].

The FV approach can be compared with the traditional en-
coding method called BoV (Bag of Visual Words), and with
a first order encoding method like VLAD (Vector of Locally
Aggregated Descriptors). In practice, BoW and VLAD are out-
performed by FV due to its second order encoding property of
storing additional statistics between codewords and local fea-
ture descriptors [19]. Here, we use FV features to encode the
MFCC features extracted from audio-signals of HC and PD sub-
jects. FV allows us to give a complete representation of the
sample set by encoding the count of occurrences and high order
statistics associated with its distribution.

3. System description
The architecture designed in our study consists of the follow-
ing parts: (1) VAD-based segmentation, (2) feature extraction,
(3) fitting a GMM to the local image features, (4) construction
of the (audio) word dictionary by means of the GMM, that is,
the encoded FV that now represents the global descriptor of the
original spectrum, and (5) SVM classification. (See Fig. 1).

3.1. Data

We performed our experiments using the PC-GITA speech cor-
pus [20], which contains the recorded speech of 100 Colombian
Spanish speakers (50 PD patients and 50 HC). All of the pa-
tients were evaluated by a neurologist. The subjects were asked
to perform four different tasks during the recordings: six diado-
chokinetic (DDK) exercises (e.g. the repetition of the sequence
of syllables /pa-ta-ka/), monologue speeches, text reading, and
ten short sentences.

3.2. Feature Extraction

Following the study of [21], we performed our experiments us-
ing four different feature sets. The first consisted of 20 MFCCs,
obtained from 30 ms wide windows; and the rest of the feature
sets were built by articulation, phonation, and prosody, respec-
tively. Before extracting the features we performed speech/non-
speech segmentation by means of Voice Activity Detection
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Table 1: Results obtained for the various tasks and feature sets

Task Features Acc. F1 AUC

DDK

MFCC 78% 0.78 0.834
Articulation 70% 0.70 0.782
Phon./Artic. 62% 0.62 0.737
Prosody 62% 0.62 0.666

Monologue

MFCC 80% 0.80 0.880
Articulation 76% 0.76 0.847
Phon./Artic. 70% 0.70 0.749
Prosody 58% 0.58 0.621

Read text

MFCC 76% 0.76 0.848
Articulation 80% 0.80 0.848
Phon./Artic. 72% 0.72 0.758
Prosody 78% 0.78 0.798

Sentences

MFCC 80% 0.80 0.891
Articulation 76% 0.76 0.834
Phon./Artic. 76% 0.76 0.804
Prosody 62% 0.62 0.684

(VAD), and also by voiced/unvoiced using the auto-correlation
method from Praat [22]. For articulation evaluation, the first
22 Bark bands (BBE) in voiced/unvoiced and unvoiced/voiced
transitions were treated as features [23]. Features obtained from
phonation and articulation in voiced segments constitute a 14-
dimensional vector with 30 ms of windows analysis and 5 ms
of time shift. These features contained log-energy, pitch (F0),
first and second formants (F1, F2) together with their first and
second derivatives, Jitter and Shimmer. Prosody information
was represented by means of the approach introduced in [24];
hence, we got a 13-dimensional feature vector formed by us-
ing the number of voiced frames per segment and the 12 coef-
ficients. To construct the FV representation, we experimented
withN = 2, 4, 8, 16, 32, 64 and 128 Gaussian components. We
utilized the VLFeat library in order to get the fisher vectors [25].

3.3. Classification

SVM was utilized to classify audio-signals into the PD and HC
class labels. SVM was found to be robust even with a large
number of dimensions and it was shown to be efficient when
used with FV [17, 26] due to it being a discriminative classifier
that provides a flexible decision boundary. We used the libSVM
implementation [27] with a linear kernel, as suggested in [9];
theC complexity parameter was set in the range 10−5, . . ., 101.

The PC-GITA dataset is not large enough to define sepa-
rate train, development and test sets; so in order to avoid any
form of peeking, we performed the experiments in a speaker-
independent 10-fold nested cross-validation (CV) setting; each
fold contained the utterances of 5 PD and 5 HC speakers. Clas-
sification was made by using the SVM model trained on 9 folds
(i.e. 90 speakers) and to get the right meta-parameters, we per-
formed another CV over the 90 speakers of the training folds.
After determining the optimal N (number of Gaussian compo-
nents for FV) and C (SVM complexity) meta-parameters, we
trained a SVM model with the 90 speakers using these meta-
parameter values. This way, we obtained predictions for all
speakers without relying on any kind of data or information
about the given subject.

Figure 2: Achieved AUC values as a function of N for the four
speaker tasks, when using the MFCC feature set.

3.4. Evaluation

The decisions made by the SVM were used to calculate the Area
Under the Receiver Operating Characteristics Curve (AUC),
which is a widely used statistic for summarizing the perfor-
mance of automatic classification systems in medical applica-
tions. In addition, we calculated the classification accuracy and
F-measure (or F1) scores. These metrics were calculated by
choosing the decision threshold along with the Equal Error Rate
(EER). Since the class distribution was balanced, classification
accuracy and F1 score were identical in each case. During the
nested cross-validation procedure we determined the optimal
meta-parameters as those that led to the highest AUC value.

4. Results
Table 1 lists the results we obtained for the different speaker
tasks and the different frame-level feature sets, the best values
for a given task being shown in bold. We observe that the best
scores in each case were gotten with the MFCC feature set (ex-
cept for the ‘Read text’ task, where the accuracy and F1-scores
appeared to be higher with articulatory features along with an
identical AUC score). Although this was the case in our earlier
studies as well (see [21]), where we relied on i-vectors, now the
difference is significantly larger. This is probably because the
FV approach assumed that the frame-level feature values could
be modeled along with a diagonal covariance matrix. This as-
sumption is quite realistic for MFCCs and, perhaps, for the filter
bank values, of the voiced/unvoiced transitions (i.e. the articu-
latory features), but it may not be true for the phonational and
prosodic attributes.

In the next experiment, we focused on the trends in the op-
timal number of Gaussian components (i.e. N ) for the tasks.
We tried out all the possibleN values, and then just the C com-
plexity parameter was determined in a nested CV. (Of course,
this was not a completely fair setup from a machine learning
perspective. Still, in our opinion, this small amount of ‘peek-
ing’ was both necessary and acceptable in this scenario. Then
we could focus on classification performance as a function of
N .) Fig. 2 shows the AUC scores for the MFCC features. In
general, using fewer GMMs (N ≤ 16) led to a sub-optimal per-
formance, excepting the DDK task, where we can see a close-to-
optimal AUC value even for N = 16. For the Monologue task,
N = 32 components were needed for optimal performance,
whileN = 64 andN = 128 were enough for the Read text and
the Sentences tasks, respectively. AUC scores were above 0.8
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Table 2: Results obtained when combining the different feature
sets for the ‘Monologue’ task

Features Acc. F1 AUC
MFCC 80% 0.80 0.880
MFCC + Articulation 84% 0.84 0.908
MFCC + Phon./Artic. 78% 0.78 0.871
MFCC + Prosody 78% 0.78 0.878
MFCC + Artic. + Phon./Artic 82% 0.82 0.897
MFCC + Artic. + Prosody 84% 0.84 0.900
All feature sets 82% 0.82 0.895

for three tasks even for N = 4; as it meant 104-176 attributes
for each subject, we achieved relatively high classification per-
formance even with this compact representation.

5. Classifier Combination
For i-vectors the straightforward ‘classification’ approach is to
compare the i-vector of the test speaker with the reference i-
vector by taking the cosine distance. This approach has a solid
mathematical basis and it tends to perform well in practice but
it makes the predictions hard to combine with other methods or
feature sets. Here, we used a standard SVM, which generates
class-wise posterior estimates that provide a simple way of clas-
sifier combination by taking the mean of two or more posterior
vectors (late fusion [28]).

We will demonstrate the effectiveness of this strategy with
two short examples. Instead of applying more classification al-
gorithms, we will focus on combining the different feature sets
and tasks. We will apply late fusion by taking the weighted
mean of the posterior estimates with an increment of 0.05;
and similar to our earlier experiments, weights are determined
in a nested cross-validation process. We choose the feature
sets or tasks by applying the Sequential Forward Selection
(SFS, [29, 30]) approach. First we start with the feature set/task
that has the highest metric value. Then we try adding all the
remaining feature sets/tasks one by one, and select the one that
leads to the highest improvement in the AUC score. Values ex-
ceeding the initial feature set/task are shown in bold.

5.1. Results with Feature Set Combination

Table 2 shows the results obtained for the Monologue task. Note
that the results regarding the MFCC feature set improve when
articulatory features are added: the classification accuracy rose
from 80% to 84%, the corresponding F1 value went up from 0.8
to 0.84, and the AUC value of the PD class also rose from 0.880
to 0.908. However, adding more feature sets proved futile: al-
though the accuracy and F-measure values remained constant
even after utilizing the prosodic features as well, the AUC score
fell to 0.900. Still, the 0.908 score achieved by fusing the pre-
dictions got from the first two feature sets brought an improve-
ment of 20% in terms of the RER.

5.2. Results with Task Set Combination

Table 3 lists the accuracy, F-measure and AUC scores we ob-
tained when combining the posterior estimates for the different
speech tasks besides articulatory features. We got the highest
results on the ‘Read text’ task. It actually matched the perfor-
mance of MFCCs in terms of the AUC, while the accuracy and
F1 values appeared to be higher. Besides ‘Read text’, using

Table 3: Results obtained when combining the different tasks
for the articulatory features

Features Acc. F1 AUC
Read text 80% 0.80 0.848
Read text + DDK 76% 0.76 0.860
Read text + Monologue 84% 0.84 0.878
Read text + Sentences 74% 0.74 0.862
Read text + Monol. + DDK 82% 0.82 0.892
Read text + Monol. + Sentences 76% 0.76 0.867
All tasks 80% 0.80 0.877

the ‘Monologue’ task resulted in a performance improvement,
while incorporating the ‘DDK’ task as well increased the AUC
value even further (although the classification accuracy and F1

dropped slightly), leading to a 29% of RER score.
Overall, we achieved significant improvements in both

cases by training SVMs for the task-feature set pairs indepen-
dently, and taking the weighted mean of the posterior estimates.
The combination of weights were determined in nested cross-
validation, so it was free of peeking. Our results indeed confirm
the flexibility of FV representations. For state-of-the-art perfor-
mance, it might worth combining different classifiers as well.

6. Conclusions
Parkinson’s Disease, a chronic neuro-degenerative disease, is
often difficult to diagnose accurately. A non-invasive and
promising procedure for assessing and diagnosing Parkinson’s
is the automatic analysis of speech of the subject. Our study
showed how useful are FV over i-vectors as features in the as-
sessment of PD via the analysis of speech. We used the PC-
GITA dataset to classify PD and HC subjects. Samples com-
prising such dataset were segmented, and cepstral, articulatory,
phonological and prosodic features were extracted from the
voiced parts. These features were represented by FV-encoding
and were classified using Support-Vector Machines. This work-
flow produced a high-precision classification performance.

The first experiments revealed that MFCC features per-
formed the best in three of the four tasks. The task ’Sen-
tences’ became the leader in terms of the AUC, with a score
of 0.891. In the subsequent experiments, we showed that the
predictions obtained for the different frame-level feature sets
and tasks could be combined, allowing an even higher classifi-
cation performance. This way, our AUC scores improved even
further, and we got 0.908 with the combination of MFCCs with
articulatory features for the ’Monologue’ task, while using the
articulatory features, but incorporating the predictions for the
tasks ‘Read text’, ‘Monologue’ and ‘DDK’, also led to a sig-
nificant improvement over relying on the ’Read text’ task only.
Using different feature sets and/or tasks is not the only possible
combination approach possible. Another promising line of re-
search is to apply other machine learning methods, and combine
their predictions. This, however, is the subject of future works.
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tos, C. Atkinson-Clement, J. Carvalho, P. Welby, P. Oliveira et al.,
“Dysarthria in individuals with Parkinson’s disease: a protocol for
a binational, cross-sectional, case-controlled study in French and
European Portuguese (fralusopark),” BMJ open, vol. 6, no. 11, p.
e012885, 2016.

[3] D. G. Theodoros, G. Constantinescu, T. G. Russell, E. C. Ward,
S. J. Wilson, and R. Wootton, “Treating the speech disorder in
Parkinon’s disease online,” Journal of Telemedicine and Telecare,
vol. 12, no. 3 suppl, pp. 88–91, 2006.

[4] A. Satt, R. Hoory, A. König, P. Aalten, and P. H. Robert, “Speech-
based automatic and robust detection of very early dementia,” in
Proceedings of Interspeech, Singapore, 2014, pp. 2538–2542.

[5] M. Shahbakhi, D. T. Far, E. Tahami et al., “Speech analysis for
diagnosis of Parkinson’s disease using genetic algorithm and sup-
port vector machine,” Journal of Biomedical Science and Engi-
neering, vol. 7, no. 4, pp. 147–156, 2014.

[6] G. Gosztolya, V. Vincze, L. Tóth, M. Pákáski, J. Kálmán, and
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