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Abstract

Phoneme classification is a classification sub-task of automatic speech recognition (ASR), which is essential in order to achieve
good speech recognition accuracy. However, unlike most classification tasks, besides finding the correct class, providing good
posterior scores is also an important requirement of it. Partly because of this, formerly Gaussian Mixture Models, while recently
Artificial Neural Networks (ANNs) are used in this task, while other common machine learning methods like Support Vector
Machines and AdaBoost.MH are applied only rarely. In a previous study, we showed that AdaBoost.MH can match the
performance of ANNS in terms of classification accuracy, but lags behind it when utilizing its output in the speech recognition
process. This is in part due to the imprecise posterior scores that AdaBoost. MH produces, which is a well-known weakness of
this method. To improve the quality of posterior scores produced, it is common to perform some kind of posterior calibration.
In this study, we test several posterior calibration techniques in order to improve the overall performance of AdaBoost. MH. We
found that posterior calibration is a good way to improve ASR accuracy, especially when we integrate the speech recognition

process into the calibration workflow.

Keywords Speech recognition - Phoneme classification - Phoneme probability estimation - Posterior calibration -

AdaBoost. MH

1 Introduction

In the automatic speech recognition (ASR) task, we are
given a sound recording of a speech of an user (an utter-
ance), and our aim is to produce its written transcription.
Although it is undoubtedly a machine learning task, over the
decades researchers have developed dedicated tools for it,
most notably the Hidden Markov Model (HMM) (Morgan
and Bourland 1995). This is mainly because speech recog-
nition is special in the sense that it has to handle an input of
a varying size, and the output is not of fixed length either.
To overcome this, the input is usually divided into small,
equal-sized portions, but the sequence of these samples still
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has to be processed jointly. Hence, general purpose machine
learning algorithms are rarely used for speech recognition,
and when they are, they are usually applied just for phoneme
classification. In this task, each small portion of the speech
signal (frame) has to be identified as one of the possible
phonemes in the given language.

A second reason is that, compared to usual learning tasks,
speech recognition databases have rather specific machine
learning characteristics. Firstly, there are a fair number of
classes (e.g. phonemes distinguished in the given language).
Secondly, there are usually very few features: the very
popular MFCC + A + AA feature set (containing the mel-
frequency spectral coefficients, their first- and second-order
derivatives) consists of only 39 features for a frame (Rabiner
and Juang 1993). This set can be expanded with some other
attributes; still, the size of the feature set rarely exceeds a few
hundred. But most importantly, a typical speech recognition
database contains at least several hours of recordings (nowa-
days hundreds of hours is not uncommon), which leads to
literally millions of training examples. This set-up is quite
rare in machine learning, and most classification algorithms
cannot easily handle such a huge amount of data. It is more
typical to have significantly fewer training examples that are
described by a large feature vector, and which belong to one
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of the few classes, as in Bodndr and Nyl (2015) and Kaya
et al. (2015). Such tasks arise in speech technology as well,
e.g. in speaker recognition (van Leeuwen et al. 2006), emo-
tion detection (Gosztolya et al. 2013; T6th et al. 2012) and
laughter detection (Gosztolya 2015; Gosztolya et al. 2016,
2013; Gupta et al. 2013; Neuberger and Beke 2013).

Furthermore, we perform speech recognition to get the
transcript of the whole utterance, so the point of phoneme
classification is to lead to high-precision transcriptions. To
this end, the frame-level results of phoneme classification are
combined, which is usually performed via a HMM. For this
step, for each frame, their posterior probability estimates are
used instead of the resulting classes (e.g. phonemes). This
means that phoneme classification has another requirement:
besides achieving a good frame-level classification accuracy,
italso has to provide precise class conditional probability val-
ues. [This is the reason why this task is also called phoneme
posterior estimation (Imseng et al. 2011).]

For the above reasons, usually Gaussian Mixture Models
(GMM) (Duda and Hart 1973) and Artificial Neural Net-
works (ANN) (Bishop 1995; Morgan and Bourland 1995)
are applied to estimate the posteriors in phoneme classifi-
cation. Support Vector Machines [SVMs (Scholkopf et al.
2001)] and variants of AdaBoost (e.g. Friedman et al. 2000;
Schapire and Freund 2012; Schapire and Singer 1999) have
typically become more popular in those tasks where the clas-
sification accuracy is the main target performance metric.
Although these methods tend to provide only inaccurate pos-
terior estimates, they achieved state-of-the-art classification
performance in several such tasks, clearly because perfect
classification in multi-class classification does not require
the precise estimate of posteriors for every class, but only the
maximum of the posterior estimates should be accurate.

In a previous study (Gosztolya 2014), we applied both
SVM and AdaBoost.MH in the phoneme classification task,
and we found that they can compete with ANN in terms of
frame-level classification accuracy. However, when we com-
bined the frame-level outputs in a HMM and evaluated the
utterance-level results, they slightly lagged behind neural net-
works. This is also in accordance with the general experience
that the posterior scores of AdaBoost.MH are quite impre-
cise. And although sophisticated methods are available to
calibrate the raw posterior outputs of AdaBoost.MH into nor-
malized class conditional probability values, we only applied
a very simple posterior processing method.

The goal of calibration is to turn the output scores of a
classifier into valid posterior class probability estimates. The
output scores of a classifier might mainly be uncalibrated if
the learning method seeks to minimize quality measures like
the zero-one error, which do not demand precise posterior
estimates. Consider the classification rule of, for example,
AdaBoost. MH which is a multi-class boosting implemen-
tation, or multi-class SVM (Crammer and Singer 2001),
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which consists of predicting the label which has the high-
est output score. Thus, achieving low multi-class zero-one
error does not require good posterior estimates. This kind of
inconsistency of output scores has methodological roots and
various calibration techniques had been devised to handle
it (Niculescu-Mizil and Caruana 2005; Platt 2000).

Calibration techniques play an important role in many
machine learning applications. For example in classifier com-
bination, the outputs of various classifiers need to be compa-
rable on an absolute scale (Busa-Fekete et al. 2013) or in all
learning tasks where the evaluation metric applied requires
accurate modelling of posterior probabilities like instance-
wise F-measure (Waegeman et al. 2014) or cross-entropy
performance. Methodologies that are based on some calibra-
tion technique can achieve state-of-the-art results in many
cases (Busa-Fekete et al. 2013; Drish 2001; Niculescu-Mizil
and Caruana 2005; Zadrozny and Elkan 2001). Motivated
by this fact, we decided to apply some popular calibration
techniques to AdaBoost.MH in phoneme classification.

The structure of this paper is as follows. First, we introduce
the speech recognition problem and explain the importance
of the phoneme classification task in its workflow (see Fig. 1).
Then, we briefly describe the AdaBoost.MH algorithm and
the variant that we applied (AdaBoost. MH.BA). Next, we
proceed to posterior calibration, where we describe the stan-
dard methods tested. After, we turn to the testing part, where
we describe the experimental set-up, then present and anal-
yse the results. Lastly, we draw our conclusions and make
some suggestions for future study.

2 The speech recognition task

In the speech recognition problem, we have a speech signal
represented by a series of observations (frames) A = ay ... a;
and a set of possible phoneme sequences (words or word
sequences) denoted by W. Our task is to find the most prob-
able word or word sequence w € W for the given speech
signal, i.e.

w = arg max P(w|A). )
weW

This, using Bayes’ theorem, is equivalent to the maximiza-
tion problem

W = arg max w 2)
weW P(A)

Noting that P(A) is the same for all w € W, we get

w = arg max P(A|w)P(w). 3)
weW
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Fig.1 Flow diagram of automatic speech recognition

The two factors represent two different sub-tasks of our prob-
lem: P(A|w) (the acoustic model) describes the relation
between the speech signal and the word, while P (w) is the
probability of w, being completely independent of the utter-
ance A, and it is called the language model (Jelinek 1997).
These models can be treated separately; in our study, we will
focus on the first one.

Defining the word w as a phoneme sequence o1, ..., 0y,
allows us to divide A into nonoverlapping segments A, . . .,
A,, each A; belonging to the corresponding phoneme o;.
(As A = ay...a;, we can define A; as Aj_y+1---a; with
0=t <t < --- < t, = t. The small, equal-sized a;
speech signal parts are the frames.) Then, making the com-
mon assumption that the phonemes are independent, we have

P(Alw) =[] P(Ajlo)). “

j=1

Next, we will also assume that the @; frames are independent
of each other. Although this assumption (owing to the con-
tinuous movement of the lips, the vocal chords and so on) is

actually false, it allows us to simplify our model further by
using the formula

tj

P(Ajlojy=[] Plalo). )

k:l‘_,‘_1+1

Combining Eq. (4) and Eq. (5), we can write
t

P(Alw) =[] Pailo). (6)
i=1

where j is the index of the phoneme assigned to the ith frame
(a;) (e. tj—1 < i < t;j). The sequence of the o; states
which maximized this formula is usually found via a Hidden
Markov Model (HMM; Morgan and Bourland 1995).

The general workflow of automatic speech recognition is
showninFig. 1. Notice thateach a; frame has the same length,
so we can extract the same number of features from them,
and the P(a;lo;) likelihoods can be estimated via standard
machine learning methods. But Eq. (6) also implies that the
role of acoustic model is not to classify the frames, but to
reliably estimate these P(a;|o;) conditional likelihoods.

3 The phoneme classification sub-task

Besides the number of training examples and the size of the
feature vector, there are other special characteristics of the
phoneme classification task. Next we will describe the main
points where it differs from a standard classification task and
the way we will evaluate the results.

3.1 Tri-state phoneme representation

Firstly, it is common to define multiple classes (called states)
for the same phoneme. The reason for this is that usually
only the middle of an uttered phoneme is clear-cut, whereas
the first and last parts are mixed with the neighbouring
phonemes. Therefore, it seems sensible to assign a sepa-
rate class for each part (tri-state set-up; Rabiner and Juang
1993). During recognition, these states have to be processed
in an increasing order, which also defines a minimal length
of each phoneme (T6th et al. 2005). From a machine learn-
ing viewpoint, however, having multiple states introduces a
correlation in the classes. Generative models such as GMM
can easily handle this set-up, as they build a separate model
for each class, independently of the others. However, if we
shift to a discriminative classification technique, which seeks
to find the only correct class label, their interpretation is not
that plausible any more.
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3.2 Dataset division

To perform speech recognition, a quite complex system has
to be built that has a lot of parameters. To handle this
in a fair way, the set of examples is usually divided into
three parts. Phoneme classification methods are trained using
the training set, and the rest of parameters are tuned on
the development (or validation) set. The accuracy of the
speech recognizer configuration is evaluated on the fest set,
using the parameter values obtained previously. In our case,
AdaBoost.MH was trained on the training set, and we set the
parameters of the calibration techniques on the development
set. This set-up also has the advantage that we can measure
the robustness of any improvement by examining how much
of the improvement achieved on the development set could
be transferred to the test set.

3.3 Evaluation

For standard classification tasks, usually just the classifica-
tion accuracy is used for evaluation, calculated as the ratio
of correctly classified examples. If the classes are unbal-
anced, we can calculate classification accuracy for each class,
and then, we take the mean of these values; for information
retrieval tasks, usually precision, recall and F-measure are
computed (Manning et al. 2008).

However, phoneme classification is performed not to iden-
tify frames, but utterances. Although during training it is
common to measure (and optimize for) frame-level accuracy,
it is feasible to switch to utterance-level accuracy in the latter
steps. Another reason for doing this is that the exact bounds
between the consecutive phonemes cannot be decided objec-
tively within one-frame precision (which is usually only 10
ms).

For the above reasons, phoneme classification accuracy is
calculated at the utterance level. Given the transcriptions of
the utterance and the phoneme sequence we got via speech
recognition, first we calculate the phoneme-level edit dis-
tance (Levenshtein 1966) of the two phoneme sequences;
i.e. we construct the resulting sentence from the real tran-
script by inserting and deleting phonemes, and replacing one
phoneme with another one. These operations have some cost
(we used the common values of 3, 3 and 4, respectively), so
we choose an operation set that has the lowest overall cost.
Now we can calculate the accuracy metric as

N-S—-D-1

Accuracy = N

, @)

where N is the total number of phonemes in all the original
utterances, S is the number of substitutions, D is the number
of deletions and 7 is the number of insertions.
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4 AdaBoost.MH

Next, we will give a brief description of the AdaBoost. MH
algorithm. Let X = (x1, ..., X) be the observation matrix,
where x(] ) are the elements of the d-dimensional observation
vectors x; € R?. Furthermore, let Y = (¥1,...,yn) be a
label matrix of dimension n x K, where y; € {+ 1, — 1}X.
In a multi-class classification task, one and only one of the
elements of y; is +1; we will denote the index of the correct
class by £(x;).

The goal of the AdaBoost.MH algorithm (Schapire and
Singer 1999) is to return a classifier f: X — RX with a
small Hamming loss'

Ru (£, WD

n K
) = Z Z wl.(’lz)]l {sign(fe(T)(Xi)) i yi,e}

i=1 =1
(®)

by minimizing its upper bound (the exponential margin loss)

R. (f(T)’ W(l)

Zwa?exp( FO i), ©)

i=1 (=1

where fy(x;) is the £th element of f(x;). The user-defined
weights W = [w (1)] are usually set either uniformly to

1
i) = 1/(nK), (10)
or, in multi-class classification, to

w) = % if ¢ = £(x;) (ie.if yj o = 1),
Wie = L (11)
2”(K ) otherwise (i.e. if y; p = — 1)

to create K well-balanced one-against-all classification prob-
lems. AdaBoost.MH builds the final classifier f as a weighted
sum of base classifiers h): X — RX returned by a base
learner algorithm Base(X, Y, W(’)) for each iteration 7. In
general, the base learner should seek to minimize the base
objective

n K

W) =33 wilexp

i=14¢=1

— he(Xi)Yie)- (12)

In our tests, we used discrete AdaBoost.MH, in which the
vector-valued base classifier h(x) is represented as

h(x) = avp(x), 13)

! The indicator function T{A} is 1 if its argument A is true and 0 oth-
erwise.
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where o € RT is the base coefficient, v e {+1, —1}K is
the vote vector and ¢(x): R? — {41, —1} is a scalar base
classifier. It can be shown that to minimize (12), one has to
choose a v and a ¢ that maximize the edge

n K
Y= wievepX)yie- (14)
i=1 =1
The optimal coefficient is then

11
@ =~log—7. (15)
2 1—y

The simplest scalar base learner used in practice is the deci-
sion stump, a two-leaf decision tree having the form

1 ifx@ > p,
@jp(x) = (16)

—1 otherwise,

where j is the index of a feature and b is the deci-
sion threshold. Although boosting decision stumps often
yields satisfactory results, state-of-the-art performance is
usually achieved by using decision trees as base learners,
parametrized by their number of leaves.

In the boosting framework, the decision stump is trained
by using an exhaustive search which consists of computing
the edge for each possible cut of each feature based on the
training data and then picking the cut which maximizes the
edge. As this learning procedure might be computationally
expensive, we opted for an accelerated version of this training
procedure. In this version, not all of the features are explored
for each boosting step, but only a subset of them which was
found to be useful in previous iteration steps. Since decision
trees can be viewed as a set of stumps called in a recursive
fashion, this idea can be extended to decision trees as well.
We opted for this heuristical variation since its performance
was reported to be on par with ADABOOST.MH, but it is an
order of magnitude faster.

5 Posterior calibration

We shall assume that a multi-class classification algorithm
such as AdaBoost.MH provides vector-valued multi-class
discriminant functions in the form f: X — RX, where X
is the input space (in our case the space of phonemes repre-
sented by a real-valued feature vector) and K is the number
of classes (now phoneme states). Elements of these vector-
valued discriminant functions will be denoted by f(x) =
(A1), ..., frX).

A widely used performance evaluation metric in multi-
class classification is the zero-one error, which is zero if an

instance to be classified is correctly classified and one oth-
erwise. Because of the nonconvexity of the zero-one error,
so-called surrogate functions are used that give an upper
bound for the error function, and more importantly, they are
convex and thus are easy to optimize. For example, in the
case of AdaBoost this surrogate function is the exponential
loss, whereas Hinge loss is used for SVM. As an artefact
of the application of such a surrogate function, the learning
algorithms force discrimination by pulling the scores f;(X)
away from zero. This means that direct (linear) conversion
into class probabilities usually does not produce good esti-
mates (Mease et al. 2007). This phenomenon is especially
pronounced in the case of AdaBoost, because exponential
loss increases sharply with negative margins (Niculescu-
Mizil and Caruana 2005). At the same time, the score vector
usually represents the order of the probability values rather
well, so a simple nonlinear, monotonic function can trans-
form the scores into good probability estimates. The process
of learning this nonlinear function from held-out data is
called calibration (Platt 2000). For the overall scheme of
posterior calibration in ASR, see Fig. 2.

Next we will describe several calibration techniques,
some of which were inspired by classical techniques tuned
for squared error and cross-entropy (Niculescu-Mizil and
Caruana 2005; Wu et al. 2004). The output scores of the
AdaBoost. MH are real values (¢ RX), but our goal is to
obtain probabilities for each class. Therefore, the calibration
function we shall consider is of the form F: RX — [0, 1]¥;
the kth component of F is denoted by Fj and, with a
slight abuse of notation, its argument is denoted here by
f1, ..., fx € R (without indicating the dependence on x).

Note that most methods have parameters, which in theory
can be set independently for each class. However, there is
a large number of classes present in our case, meaning that
there is a high risk of overfitting; so we decided to utilize a
shared parameter vector for each class. This also simplifies
our notation; as F| = F, = --- = Fg, we can simply write
F(f).

5.1 Linear scaling

Linear scaling consists of a linear mapping of each output
score f1, ..., fk. It can be written in the form of

F(fi, . fi) = max {0, afi + b}, (17

where a, b € R are the parameters to be tuned. Since Eq. (17)
is a convex function, the parameters a and b of the linear
calibration function can be easily found by minimizing the
squared error between the calibrated posterior estimates and
the labels.
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Fig.2 Workflow of the
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5.2 Logistic correction

Logistic correction specifically targets AdaBoost. As
described in Sect. 4, AdaBoost.MH builds its final model
as the weighted sum of base classifiers. Assuming that the
output of the ith base classifier for input x [i.e. h®)(x)] falls
in the range [— 1, 11X and its weight o; is nonnegative, the
output of the boosted model with 7" base classifiers for class
k will be

T
fi®) =" ain (). (18)
i=1

Friedman et al. (2000) showed that, in the binary case, dis-
crete AdaBoost builds an additive logistic regression model
by minimizing the expected exponential loss on the popula-
tion level. For this, the weak learner needs to find the weak
classifier which minimizes the weighted error also at a pop-
ulation level in each boosting iteration, where the weights
are exponentially proportional to the negative margin of the
current strong classifier. Next we are going to discuss how
this result can be translated into the multi-class framework.

The population-level loss optimization of AdaBoost. MH
had already been investigated with real-valued base clas-
sifiers by Friedman et al. (2000). Their analysis relies on
a decoupling technique which consists of adding a virtual
feature to the feature space that encodes the class label.
Our analysis essentially differs from theirs, because first, we
assume discrete multi-class weak classifiers, and second our
analysis is tailored to the algorithm presented in Sect. 4 which
uses some initial weighting over the labels. We will assume a
weighting function in the formof I: {— 1, 1}X x[K] — R,.
However, the main steps of our analysis follow the one given
in Theorem 1 of Friedman et al. (2000).

Proposition 1 Assume an arbitrary weighting function in the

form of I: {— 1, 1}X x [K] — R which assigns a posi-
tive weight to the Lth component of a label vector'y. Then,
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AdaBoost.MH optimizes the multi-class exponential loss

K
J(f) =E [Z I(y, £) exp(— yefe(X))} (19)

=1

at the population level when the initial weighting was chosen
according to 1(_, .). O

The proof of Proposition 1 is deferred to Appendix A.

Note that using AdaBoost results in an estimate for f*, the
risk minimizer, using exponential loss based on a finite data.
In a recent study (Bartlett and Traskin 2007), consistency of
AdaBoost for the binary case has been proved; moreover, the
rate of convergence was also computed under mild condi-
tions. This means that the classifier output by AdaBoost is
a “good” estimate of f* on a large enough training data. To
extend their result to the multi-class case is beyond the scope
of this current study.

We discuss here the two most widely used initial weighting
functions: uniform weighting can be defined as 7, (y, ¢) = 1
forall 1 < ¢ < K, while the one-against-all initial weight-
ing can be given as

Lo(y. ©) =T{ye = I} + g1 {ye = — 1}. (20)
Note that these weighting functions are the population-level
counterparts of those given in Egs. (10) and (11). Next, we
will compute the optimal solution of the multi-class expo-

nential loss with these weighting functions, which can then
be used to devise a reasonable calibration function.

Proposition 2 The multi-class exponential loss

K
J@) =E [Z I(y, ©) exp(— ye fe (x))}

=1
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with I,(y, £) = 1 forall 1 < { < K is minimized by

where 1 <i < K. Thus,

1
1 +exp(=2f;(x))’

pi(x) = 21

Furthermore, J(f) with uniform initial weighting defined in
(20) is minimized by

i = s10g X Ligek .
2 1—pix) 2
where 1 <i < K. Thus,

1
1+ exp(log(K — 1) —2£;(x))’

pi(x) = (22)

Proof One may compute the partial derivative of the condi-
tional expectation written as
X}

with respect to fy(x). Then, one can obtain the result by
setting the partial derivatives to zero. O

K
E [Z 1(y. £) exp(— ye fe(x))

(=1

Note that the uniform and one-against-all initial weight-
ings result in very similar probability estimates, given in
Egs. (21) and (22), respectively, the difference being a con-
stant offset in terms of the output score of the strong classifier.
This suggests that a logistic correction of the output scores of
AdaBoost in the form of Eqs. (21) and (22) results in precise
posterior estimates. In practice, it may worth reparametriz-
ing the sigmoid function by introducing a bias term which
might lead to better performance. Hence, we can generalize
this formula to

1

log -
EE o 10 = T arms

» fx) (23)

where a, b € R are parameters. The calibration function was
fitted in a standard L2 set-up by minimizing the squared loss.

5.3 Platt scaling

Platt originally used a sigmoid function to map the outputs of
an SVM to posterior scores (Platt 2000). A similar solution
can be applied for AdaBoost as well. In this formulation, we
expect the raw (uncalibrated) outputs of AdaBoost to lie in the
range [— 1, — 1], which can be achieved in a straightforward

way by dividing the values in Eq. (18) by the sum of the «;
values. That is,

T . .
f(x) = == (24)

To get calibrated probability values, we pass the output of
boosting through a sigmoid function; that is,

1

P(y=1Jx) = —1 +eaf(X)+b’

(25)

where the parameters a and b are fitted using maximum like-
lihood estimation on a calibration set. Therefore, in the binary
case (i.e. y; is either zero or one), a and b are solutions to the
minimization problem

T
arg min —Zyilog(p,-)ﬂl—yolog(l—pi)}, (26)

i=1
where

1

= T 27)

Pi

The straightforward generalization of Eq. (26) for the multi-
class case is

T
arg 1211}51 {— glog(py,.)} . (28)

5.4 Isotonic regression

Another posterior calibration technique we tested is Iso-
tonic Regression (Robertson et al. 1988; Zadrozny and Elkan
2001). This method just assumes that

yi=m) + €, (29)

where m is an isotonic (monotonically increasing) function.
Given the f; and y; vectors of the training set, we have to find
an isotonic function m for which the € values are minimal;
that is,

i = argmin Y (y; — m()>. (30)

A piecewise constant solution for /i can be found in linear
time by applying the Pair Adjacent Violators (PAV) algo-
rithm (Ayer et al. 1955).
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Table 1 Some key properties of
the TIMIT and the Hungarian

No. of speakers

No. of utterances Total length (m:s) No. of frames

Numbers speech database

TIMIT
Training set 440
Development set 22
Test set 24
Total 486
Hungarian Numbers
Training set 10
Development set
Test set
Total 20

3520 179:01 1,074,130
176 8:27 50,693
192 9:39 57,919

3888 187:28 1,124,823
520 9:42 58,165
100 4:19 25,867
100 4:10 25,006
720 18:10 109,038

6 Experimental set-up
6.1 Databases

We performed our experiments on two databases. (For the key
properties of the two corpora, see Table 1.) The first one was
the TIMIT dataset (Lamel et al. 1986), which contains the
utterances of North American speakers. All the 61 phonemes
were used in a tri-state set-up, resulting in 183 classes overall.
The second dataset used in our tests contained recordings
of Hungarian Numbers; since in this dataset there were 33
phonemes defined, we had 99 classes overall.

6.2 Training parameters

Training of AdaBoost was carried out using the standard
MFCC + A + AA feature set (Rabiner and Juang 1993),
which contains 12 Mel-spectral cepstral coefficients along
with energy, and the first- and second-order derivatives (39
attributes overall). To improve the performance, we included
the feature vectors of the 8 preceding and 8 following frames,
while keeping the original class label. These features were
extracted by the HTK toolkit (Young et al. 2006). To evaluate
a posterior matrix, we performed a search using a HMM with
constant state transition probabilities and calculated the accu-
racy metric described in Eq. (7) for the resulting phoneme
sequence.

We tested simple decision stumps and decision trees
with 8 leaves as base learners (being the standard size,
e.g. Busa-Fekete and Kégl 2009), using the implementation
multiboost (Benbouzid etal. 2012). We performed train-
ing for 100,000 iterations, evaluating the models after every
10,000 iterations for both methods and data subsets for the
TIMIT corpus, while for the Hungarian Numbers corpus,
since we had much less training data there, we trained our
models for 50,000 iterations. For further details of the train-
ing process, see Gosztolya (2014).
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6.3 Baseline methods

AdaBoost.MH constructs the final classifier by calculating a
weighted sum of /; base classifiers, each one returning an
output score for all the classes in the range [— 1, 1]. This
means that we get values in the range [0, 1] by dividing the
resulting output scores by twice the sum of the «; base classi-
fier weights and adding 0.5. This quite trivial posterior cali-
bration method served as our baseline with the constraint that
the resulting values had to be transformed to sum up to one.

As a reference, we also tested a search method that uses
no posterior scores at all. For this, for each a; frame we chose
the phoneme state (i.e. class) which was considered the most
probable by AdaBoost.MH; then, our search algorithm just
relied on these frame-level class labels. This dynamic search
method sought to minimize the number of substituted frame
labels, with the restrictions that the first frame of the utterance
had to be a first state of some phoneme, the last frame had to
be a final state of some phoneme and the three states of any
phoneme had to be present in increasing order.

6.4 Normalization

For a given frame, a classifier method is expected to return
P(0j|a;) values which sum up to one. However, after poste-
rior calibration, where we fit a function to the raw f (x) output
values of AdaBoost.MH, this requirement is unlikely to be
satisfied. To ensure that this property holds for every case,
we inserted another step into our workflow; namely, we nor-
malized the values got by applying the methods presented in
Sect. 5 to sum up to one. Of course, calculating the values
for any error function was carried out only after performing
this normalization step.

6.5 Parameter optimization

From the methods applied, the two baseline techniques and
isotonic regression had no parameter at all. The remaining
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Table 2 Phonetic accuracy
scores obtained by using the
different calibration methods

and parameter optimization
techniques on the TIMIT dataset

Optimization Calibration method Stumps Trees
Dev. (%) Test (%) Dev. (%) Test (%)
Frame-level Linear scaling 68.85 66.17 75.49 72.89
Logistic correction 68.90 66.11 75.55 73.01
Platt scaling 68.87 66.41 75.59 73.05
Isotonic regression 68.88 66.53 75.70 73.14
Speech recognition Linear scaling 68.85 66.17 75.50 73.08
Logistic/Platt 69.12 66.40 75.98 73.33
No calibration (baseline) 68.82 66.14 75.52 72.82
Without posterior scores 65.91 63.68 74.09 70.76

three methods all had two parameters [see Eqs. (17), (23]
and (25)). For such a small number of parameters, the most
straightforward way of optimizing the parameters is to apply
a grid search (Ensor and Glynn 1997).

Platt’s method in fact has the same transformation function
as logistic regression does; the difference is the error func-
tion to be optimized and that Platt proposed to utilize gradient
descent to get the best parameter setting. Unfortunately, as we
had to perform normalization after calculating the sigmoid
function in Eq. (25), we cannot calculate the derivatives; so
we applied grid search here as well. We treated the two meth-
ods as distinct, though, as they had different error functions.

The standard approach for parameter optimization in
posterior calibration methods is to do it in an example-
based fashion, e.g. via Eq. (28) for Platt scaling. Now,
however, we are not interested in some frame-level accu-
racy score, as we seek to improve utterance-level phonetic
accuracy instead, which involves combining the frame-level
calibrated likelihoods. Therefore, we experimented with a
further optimization approach: we performed posterior cali-
bration (involving normalization) for all frames, and then, we
performed the HMM search. We chose the calibration meta-
parameter vector for which the accuracy of the phoneme
sequences returned for all utterances was the highest. We will
refer to this procedure as “optimization by speech recogni-
tion” or simply by “ASR” later on.

As logistic regression and Platt’s calibration differed only
in the example-level error function, they were practically
identical in this case, leaving us with just two methods (i.e.
linear and logistic/Platt’s).

7 Results
7.1 TIMIT corpus
Table 2 shows the phonetic accuracy scores we got by using

the different posterior calibration methods for both base
learners tested. It can be seen that there is a big gap between

utilizing the information stored in the posterior scores and
just using the class label of each frame (“Without poste-
rior scores” case): it leads to an improvement of 2.5-3% for
decision stumps and 2-2.5% for decision trees. The baseline
scores (“No calibration”) are surprisingly good, especially
considering the simplistic nature of this process.

However, except for a few cases, the posterior calibration
methods were able to outperform the baseline scores, some-
times quite significantly. Among the approaches, perhaps
linear scaling was the least effective, which can be explained
by its simplicity. Transforming the raw classifier outputs via
a sigmoid function, however, seems to be a good approach,
while isotonic regression performed surprisingly well. In our
opinion, this is because this method has no meta-parameters
at all; and since we have relatively few data in the develop-
ment set, the meta-parameters of the calibration techniques
can be tuned only in a way which is moderately robust. Iso-
tonic correction, however, had no meta-parameter to set, and
therefore, it could lead to a more robust calibration model.

Among the two optimization categories, the direct opti-
mization of speech recognition accuracy resulted in higher
scores than optimizing some frame-level (example-based)
function. Even for the quite simple linear scaling method,
we got a 0.2% improvement in the case of decision trees in
the test accuracy, and for the logistic/Platt scaling case the
improvement was 0.3% on the test set, which meant a relative
error reduction (RER) score of 1%. The reason for it is prob-
ably that it makes sense to directly optimize for the accuracy
of our whole (speech recognition) system instead of some
intermediate step (e.g. frame-level classification accuracy).
Overall, we managed to improve the accuracy scores over the
baseline by 1-2% relative error-wise, which is a significant
achievement by speech recognition standards.

The phonetic accuracy scores on both the development and
test sets as a function of the stopping iteration are shown in
Figs. 3 and 4 for decision stumps and decision trees as base
learners, respectively. When using the decision stumps as
base learners, the optimum on the development set is around
50,000-60,000 iterations; after that, the phonetic accuracy
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Fig.3 Phonetic accuracy scores got from applying the different posterior calibration methods as a function of the AdaBoost.MH halting iterations
on the development set (up) and on the test set (down) of the TIMIT corpus, when using decision stumps as base learners

starts to worsen. Surprisingly, on the test set the optimal
phonetic accuracy scores appear around 20,000-30,000 iter-
ations, but the values in the latter iterations are only slightly
lower. When we applied decision trees, the accuracy scores
display a general increasing trend, indicating that 100,000 or
more iterations are required to achieve optimal phoneme clas-
sification scores. (In some cases, the actual optimum could
be just before that, though.) In our opinion, this reflects the
fact that phoneme classification is such a complex task that is
cannot be efficiently handled by simple decision stumps, but
it is worth employing the slightly more complicated (small)
decision trees instead.

Regarding the posterior calibration methods, it is quite
apparent that the logistic/Platt method (optimized via ASR)
performs consistently better than the others using both base
learners on both sets. Apart from this, after optimizing in
the example-based manner, the methods which utilize the
posterior scores produce quite similar accuracy scores.

Overall, it is clear that the accuracy scores could be
improved significantly by posterior calibration. Although an
improvement of 0.5% (2% RER) may not seem high by
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machine learning standards, it is still a significant one in
ASR, reflecting a definite improvement in the recognition
performance. This is especially true if we consider that it was
achieved by applying a simple transformation of the raw out-
put scores of a classifier, which is computationally extremely
cheap.

7.2 Hungarian Numbers corpus

Table 3 shows our results obtained for the Hungarian Num-
bers corpus. Overall, our key findings are similar as those
on the TIMIT dataset: decision trees are more effective as
base learners than decision stumps are, and using posterior
estimates (even if they are the standard ones) leads to higher
accuracy scores than relying only on the optimal frame-level
phonetic labels.

Regarding the posterior calibration techniques, they led to
improvements in the phonetic accuracy in almost every case,
using linear calibration with decision stumps as base learners
being the only exception. In general, linear calibration per-
formed worst: even with decision trees, the improvement in
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Fig.4 Phonetic accuracy scores got from applying the different posterior calibration methods as a function of the AdaBoost.MH halting iterations
on the development set (up) and on the test set (down) of the TIMIT corpus, when using decision trees as base learners

Table 3 Phonetic accuracy
scores obtained by using the
different calibration methods

and parameter optimization
techniques on the Hungarian
Numbers dataset

Optimization Calibration method Stumps Trees
Dev. (%) Test (%) Dev. (%) Test (%)
Frame-level Linear scaling 50.18 59.41 56.72 65.30
Logistic correction 50.55 59.52 57.09 65.63
Platt scaling 50.37 59.81 57.09 65.52
Isotonic regression 50.22 59.93 57.20 65.56
Speech recognition Linear scaling 50.37 59.74 56.87 65.48
Logistic/Platt 50.78 59.96 57.72 65.81
No calibration (baseline) 50.19 59.41 56.54 65.19
Without posterior scores 49.70 58.11 55.72 63.82

the test set is only 0.11%, which is hardly significant. Logis-
tic correction and Platt’s scaling methods, being inherently
similar, led to similar accuracy scores as well, but isotonic
regression turned out to be the most effective method again.

Furthermore, we found using speech recognition to fine-
tune the calibration meta-parameters beneficial for this
dataset as well. Although the amount of improvement which
can be obtained via linear calibration is limited, fitting a sig-
moid function to the raw outputs of AdaBoost.MH proved to

be beneficial: the accuracy scores improved by 0.55% and
0.62%, using decision stumps and decision trees as base
learners, respectively.

8 Calibration time requirements

For any machine learning technique, besides accuracy, its
execution time is also quite important. Therefore, it is worth
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Table4 Average time of finding the optimal calibration parameters for
the Hungarian Numbers dataset, using decision trees as base learners

Optimization Calibration method Time (s)

Frame-level Linear scaling 6.33
Logistic correction 1315.98
Platt scaling 9.30
Isotonic regression 27.03

Speech recognition Linear scaling 25.25
Logistic/Platt 5550.05

examining the computational cost of the different calibra-
tion methods applied. Since our study is an application-
oriented one, we were interested in the actual execution times
measured instead of theoretical computational complexity.
Furthermore, notice that the actual posterior transformation
methods (see Sect. 5) do not require that much calculation: in
fact, they are practically negligible compared to evaluating a
machine learning method such as Deep Neural Networks or
AdaBoost.MH, or to the other components of a speech recog-
nition framework. However, the time requirement of finding
their optimal meta-parameters (e.g. a and b of Platt’s method,
or the piecewise linear function used in isotonic regression)
might be quite time-consuming. Therefore, in the following,
we will present the measured wall-clock times of parameter
calibration.

We will present the values measured for the decision trees
case for the Hungarian Numbers corpus; of course, the scores
appeared to be similar when using decision trees. For the
TIMIT corpus, the times were similar, but proportionally
larger, since it had a larger development set (see Table 1)
used in the posterior calibration process.

Table 4 shows the measured meta-parameter setting times.
We can see that the scores vary to a high extent; the main
reason for it is the number of parameter variations which had
to be tested. Linear scaling was quite quick in this aspect,
but it also led to the worst scores of all the techniques tested.
For Platt scaling, the use of optimization for meta-parameter
setting speeded up the calibration process, while for logistic
correction, we had to use grid search. Isotonic regression was
also relatively fast.

It is also quite clear that incorporating the speech recog-
nition system into the function to optimize adds quite a large
overhead to the whole calibration process, as the measured
times are cca. 4 times higher than the corresponding the
frame-level ones are. On the other hand, the resulting accu-
racy values were also higher. Inspecting this table, however,
we can see that the high performance of using the “logistic /
Platt” approach and setting its @ and b parameters via speech
recognition is paired with quite high execution times as well.
Therefore, relying on isotonic regression seems to be a good
compromise, as it also led to high accuracy scores, but its
execution time appeared to be quite low.
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9 Conclusions

The standard workflow of automatic speech recognition
relies heavily on the phoneme classification or phoneme
posterior estimation sub-task. There, machine learning meth-
ods are used to provide local probability estimates for the
phonemes of the given language. Since in a latter step
these local estimates are combined to form utterance-level
hypotheses of what the speaker said, it is quite important
that the machine learning method used should not only find
the correct phoneme from the local information, but the pos-
terior estimates it returns should be precise as well. In an
earlier study we showed that AdaBoost.MH, an iterative
meta-learning algorithm can be effectively used in speech
recognition; however, it is well known that the likelihoods
this machine learning method supplies are quite imprecise.
In this study, we applied several state-of-the-art posterior
calibration methods to correct the tendency of the posterior
scores returned. In the end, we found that by using these
techniques, significant improvements can be achieved in the
utterance-level accuracy of speech recognition. In our opin-
ion, these improvements are even more valuable since the
calibration methods utilized have quite low computational
costs. We also found that instead of setting the parameters of
the calibration approaches at the example level as is common
in machine learning, it is worth incorporating parameter opti-
mization into the speech recognition process, as the accuracy
scores obtained this way were notably higher.
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A Proof of Proposition 1

Proof Let us assume a strong classifier £ (x). Then, we
seek to find weak classifier h(.) such that J (") + ch) is
minimized. By using the linearity of the expectation, one
may consider the second-order expansion of J(f1) + ch)
for fixed c € Ry and h(x) = (0, ...,0) as

JED 4+ ch)

K
E [Z 1(y, &) exp(— ye(f" () + chz(X))):|

=1

=Y E[15. 0exp—ye( £ 30 + che))]

K
=1
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where the last equation holds because h¢(x) € {— 1, 1} and
ye¢ € {—1, 1}. This means that minimizing the multi-class
exponential loss with respect to h is equivalent to maximizing
the weighted expectation

K
E [Z w(x, y, E))’ehz(x)i| (31)

=1

where
wixy. ) = 1y Oexp (= ye /7 09)

Note that the weak learner maximizes the edge given in (14)
computed on a finite dataset, which is an estimate of the
weighted expectation.

The label distribution in the multi-class case for fixed
x is a multinomial distribution with (p1, ..., px) € Ak,
where Ak is the K dimensional probability simplex. Note
that (p1, ..., px) depends on x, but with a slight abuse of
notation we shall not indicate this dependence if x is fixed
and this does not lead to any confusion. We shall write
(p1(X), ..., px(x)) to denote the dependence on x.

Recall that the goal is to maximize the weighted expecta-
tion given in (31). As a next step we are going to compute the
form of the optimal weak classifier. Let us define the vector
€y as

L,
(4 /=
(N4 -1,

Furthermore, assume that we are | given a weak classifier h(.)
such that h7(x) = 1 for some £ and h¢(x) = O otherwise.
Then, the numerator of (31) can be written for a fixed x with
a label distribution (py, ..., px) as

L=v

otherwise

K
E [Z w(x. y. £)yehe (x>|x}

=1

=Y [w(x, er, Ohe(x) = Y w(x, e¢, ()hy (x)}

(=1 U
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K K K
=Y ) wxe, ) =2 prw(x, e, )
{=1/¢0=1 =1
+2| prwx.ep. D) — Y pow(x. e, KA)} (32)
0£0

Since only the last term depends on 7, the optimal classifier
can be written in the form

Z(X) = argmax <,k

Pew(X, €0, £) = Y pr()w(x, ey, £)
UL
= argmax; ., [pe(X)w(X, e, £)],

and hence, the optimal classifier h(x) can be written in the
form of

h0) [1, if £=T00 33

— 1, otherwise

Considering (32) over the joint distribution of the labels and
features, we get that the classifier which is in the form of (33)
minimizes the population-level edge defined as

K
y*=E [Z w(x, y, e)yehe(x)} :

=1

where the expectation is taken over the joint distribution.
As a next step, one can determine the optimal coefficient
c of h(.) given in (33) by optimizing J (£ + ch):

K
¢ = argminE |:Z w(X,y, £)exp(— cyghg(x)):|

O<c =1

K
< argminE |:Z w(x,y,£) <1++M(X) exp(—c)
O<c =1
+—1 — yéhl @) exp(c))]
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Then, one can compute analytically that the right-hand side
is minimized by

11 1+ p*
= — 10 s
¢ 2 gl—y*

where y* is the population-level edge. Note that the
AdaBoost. MH computes the coefficient of the weak clas-
sifier in a similar way by using the edge on a finite training
data instead of taking the population-level edge. The rest of
the proof regarding the weight update is analogous to that of
Theorem 1 in Friedman et al. (2000). O
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