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Abstract. In human speech, laughter has a special role as an impor-
tant non-verbal element, signaling a general positive affect and coop-
erative intent. However, laughter occurrences may be categorized into
several sub-groups, each having a slightly or significantly different role
in human conversation. It means that, besides automatically locating
laughter events in human speech, it would be beneficial if we could auto-
matically categorize them as well. In this study, we focus on laughter
events occurring in Hungarian spontaneous conversations. First we use
the manually annotated occurrence time segments, and the task is to
simply determine the correct laughter type via Deep Neural Networks
(DNNs). Secondly we seek to localize the laughter events as well, for
which we utilize Hidden Markov Models. Detecting different laughter
types also poses a challenge to DNNs due to the low number of training
examples for specific types, but this can be handled using the technique
of probabilistic sampling during frame-level DNN training.

Keywords: Laughter events · Deep Neural Networks ·
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1 Introduction

Laughter is one of the most interesting and important aspects of complex human
behaviour [25]. But why do humans have an ability to laugh, what is the evo-
lutional purpose of laughter, and how did it develop during our evolution? To
answer these questions, the function of laughter has to be analyzed from the
perspective of human behaviour. It has been shown that there are many types
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of laughter depending on the approach used in the analysis. Based on the vocal-
production mode, laughter can be realized as voiced or unvoiced, and there are
intervals where a participant both speaks and laughs, known as speech-laughs
(see e.g. [18]). Unvoiced laughter is acoustically similar to breathing. Voiced
laughter was found to be a more relevant predictor of emotional involvement in
speech than general laughter. Other types of laughter may be voiced song-like,
unvoiced grunt-like, unvoiced snort-like and mixed sounds [3,14]. The types of
laughter may be differentiated by considering the emotion of the speaker as well;
for example hearty, amused, satirical and social laughs [23]. At least 23 types of
laughter have been identified (hilarious, anxious, embarrassed, etc.), where each
laughter type has its own social function [21].

More recently, there has been more interest in creating automatic classifiers
that are able to differentiate laughter types based on acoustics, facial expressions
and body movement features (e.g. [2,15,31]). The laughter detector developed
by Campbell et al. [6] can automatically recognize four laughter types based on
the speaker’s emotion in Japanese (the identification rate is greater than 75%).
The results of Galvan et al. also supported the possibility of automatical dis-
crimination among five types of acted laughter: happiness, giddiness, excitement,
embarrassment and hurtful [7]. In their study, automatic recognition based only
on the vocal features achieved higher accuracy scores (70% correct recognition)
than by using both facial and vocal features (60%) or just facial features alone
(40%).

In a previous study ([22]), we discriminated laughter based on the perceived
sound according to the identity and/or number of participants (test person, other
person(s), both), and according to the connection between laughter and speech.
We distinguished five types of laughter, namely

(i) single laughter (S): only the speaker’s laughter can be heard,
(ii) overlapping laughter (O): two or more speakers’ laughter occur at the same

time,
(iii) laughter during the speech of others (D): the test person’s laughter is heard

while another participant or participants are speaking,
(iv) laughed speech (P): the speaker’s laughter co-occurs with their own speech,
(v) mixed (M): a mixture of the previous three categories (ii) + (iii) + (iv).

These five categories of laughter may be associated with various functions in
conversations. Single laughter may be a sincere emotional expression or reaction
to one’s own message or the others’ message. Overlapping laughter may indicate
a cooperative act. Laughter during the speech of others may be a sign of attention
or a feedback to their message as a backchannel. Laughed speech may express the
fact that the speaker intends to refine or moderate the content of their message.
A mixed type of laughter has diverse functions in conversation.

Laughter – due to its various functions – contributes to the organisation of
conversation. We can get closer to understanding the structure of the conver-
sation by analysing laughter types. However, to do this, first they have to be
located and identified. In this study we seek to automatically classify laugh-
ter segments as one of these five pre-defined categories; to do this, we borrow



124 G. Gosztolya et al.

Table 1. Some important properties of the different laughter types in the dataset used.

Laughter type All laughter

types

All utterances

Single Over-

lapping

During

other

Laughed

speech

Mixed

Total duration (m:ss) 2:12 2:13 4:17 1:52 1:27 12:01 147:36

% of duration 1.50% 1.50% 2.90% 1.26% 0.98% 8.14% 100.00%

Avg. duration (ms) 594 1087 937 1017 1887 930 —

Median duration (ms) 480 910 805 875 1620 740 —

No. of occurrences 223 122 274 110 46 775 —

% of occurrences 28.8% 15.7% 35.4% 14.2% 5.9% 100.0% —

Frequency (1/s) 1.51 0.83 1.86 0.75 0.31 5.25 —

tools from Automatic Speech Recognition (ASR) such as acoustic feature sets
and Deep Neural Networks (DNNs, [17]) for frame-level classification. To address
both the classification and the location problems, in the second part of our study
we combine the outputs of our frame-level DNNs with a Hidden Markov Model
(HMM). However, as in laughter detection only a fraction of the training data
corresponds to laughter, we shall use the sampling technique called probabilistic
sampling [19] to assist frame-level DNN training.

2 The Recordings Used

Here, we used a part of the BEA Hungarian Spoken Language Database [9].
It is the largest speech database in Hungarian, which contains 260 h of mate-
rial produced by 280 speakers (aged between 20 and 90 years), recorded in a
sound-proof studio environment. In the present study we could use only the
subset which had annotated laughter types at the time of writing, a total of 62
recordings of spontaneous conversations. The recordings lasted 148 min in total,
from which we assigned 100 min (42 utterances) to the training set, while 20
and 27 min were assigned to the development set and the test set (10 recordings
each). The segment boundaries of laughter segments were identified by human
transcribers. Overall the total duration of laughter was 12 min, taking up 8.1%
of all the utterances; of course, the different types of laughter were unevenly
distributed.

Some main characteristics of the different laughter types in this dataset can be
seen in Table 1. Unfortunately, the corpus we used is not very large, but it is typical
in the area of laughter identification, especially if we can use only the utterances
which have annotations about the types of laughter events. Surprisingly, the five
types are roughly balanced when measured in total duration, the shortest sub-type
(Mixed) taking up roughly 1% of the total playing time, and the most common one
(During others’ speech) comprised 2.9% of all the utterances. The main difference
comes from the average duration and frequency of the types: the most frequently
occurring laughter type was Single, but these laughter events were the shortest
ones as well, whileMixed types occurred only once in three minutes of conversation,
but then lasted for almost two seconds on average.
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3 DNN Training by Probabilistic Sampling

For our experiments we borrowed techniques from Automatic Speech Recogni-
tion (ASR) such as Deep Neural Networks and Hidden Markov Models. Following
standard ASR techniques, DNNs were used to provide a posterior probability
estimate for each 10 ms for each utterance (i.e. for each frame). However, DNNs
work best when they can be trained on hundreds or even thousands of hours of
speech data (see e.g. [20]), and this amount is typically not available for laughter
corpora. A further difference is that in ASR the classes are more-or-less uniformly
present among the training frames, while in laughter detection only 4–8% of the
duration corresponds to laughter, and the vast majority of training data belongs
to the non-laughter class (i.e. other speech, silence and background noise). When
we split the laughter class into several new classes, this class imbalance grows
further.

The simplest solution for balancing the class distribution is to downsample
the more frequent classes. This, however, results in data loss, hence it may also
result in a drop in accuracy especially as our training set was quite small in the
first place. A more refined solution is to upsample the rarer classes: we utilize
the examples from these classes more frequently during training. A mathemat-
ically well-formulated upsampling strategy is the method called probabilistic
sampling [19,29]. Probabilistic sampling selects the next training example fol-
lowing a two-step scheme. First we select a class according to some probability
distribution, then we pick a training sample from the samples that belong to
this class. For the first step, we assign the following probability to each class:

P (ck) = λ
1
K

+ (1 − λ)Prior(ck), (1)

where Prior(ck) is the prior probability of class ck, K is the number of classes and
λ ∈ [0, 1] is a parameter. When λ = 0, the above formula returns the original class
distribution, so probabilistic sampling will behave just as conventional sampling
does. When λ = 1, we get a uniform distribution over the classes, so we get totally
balanced samples with respect to class frequency. Selecting a value for λ between
0 and 1 allows us to linearly interpolate between the two distributions. According
to our previous results, using probabilistic sampling can aid DNN training when
the task is to detect laughter events [13] as well as other phenomena with rate
occurrences such as filler events [12].

4 Classification Experiments

In the first series of experiments we just classify the laughter occurrences into
one of the five types, relying on the manually annotated starting and ending
points of the laughter segments. We simply trained our DNNs at the frame level
and took the product of their output likelihoods, as in our previous studies we
found that this approach worked quite well (see e.g. [11]). Following the results
of preliminary tests, we divided the frame-level posterior estimates of the DNNs
by the original class priors, which is common in HMM/DNN hybrids [4].
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Fig. 1. Recall scores for the five laughter types on the development set as a function
of λ.

Table 2. Some notable classification accuracy scores on the test set.

Acc. (%) Recalls (%)

Classification method Mean Median

DNN with full sampling (baseline) 37.2 22.7 5.1

λ = 0.1 35.3 28.8 28.0

DNN + probabilistic sampling λ = 0.6 32.4 27.2 26.1

λ = 1.0 30.1 28.3 30.5

4.1 DNN Parameters

We applied a DNN that had rectified linear units as hidden neurons [8,28] for
frame-level classification. We used our custom DNN implementation [16], which
achieved the best accuracy score published so far on the TIMIT database [27].
We employed DNNs with 5 hidden layers, each containing 256 rectified neurons.
We applied the softmax function in the output layer. We used 40 mel filter
bank energies as features along with first and second order derivatives, extracted
using the HTK tool [30]. Training was performed on a sliding window containing
20 neighbouring frames from both sides, following the results of preliminary
tests. Note that this sliding window size is quite large compared to ones used in
speech recognition; but for laughter detection, using this many frames is clearly
beneficial (see e.g. [5,11]).
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4.2 Probabilistic Sampling

We evaluated the probabilistic sampling technique by varying the value of λ
in the range [0, 1] with a step size of 0.1. To reduce the effect of DNN random
weight initialization, we trained five DNN models for each λ value; then we chose
the value of λ based on the results obtained on the development set.

4.3 Evaluation

Since this was simply a classification task, we could have measured efficiency
using the standard classification accuracy metric. However, it is well known that
when class distribution is uneven, classification accuracy is biased towards the
classes having more examples. Therefore we decided to calculate the recall of
each laughter type. Afterwards, we aggregated the five recall values into one
accuracy score via a simple arithmetic mean and median.

4.4 Results

Figure 1 shows the recall values got on the development set for all laughter types
as a function of the λ parameter of probabilistic sampling. It is quite apparent
that the values are not really consistent without applying probabilistic sampling
(shown as λ = 0): actually no examples were classified as laughter types S, D and
M. Using larger values for λ tends to balance the recall values of the five kinds of
laughter, which is also reflected in the mean and median values. In our opinion,
when the task is to identify the occurrences of distinct laughter sub-classes, the
performance of an approach is more accurately described by the mean and even
more so by the median of the recall values than traditional classification accuracy
scores. Clearly, for values λ ≥ 0.5 our approach works well for all laughter types,
while it leads to a lower classification accuracy score.

Table 2 lists the accuracy, mean and median recall scores we got on the test
set for some notable values of λ. (Values exceeding the baseline score are shown
as bold.) Notice that the baseline case has the highest classification accuracy
score (37.2%), but the low mean and especially the median recall value (5.1%)
suggests a highly uneven behaviour. Overall, like that for the development set,
all values of λ ≥ 0.1 give a similar performance, which is significantly better
than that for the baseline DNNs trained without probabilistic sampling.

5 Experiments with a Hidden Markov Model

Laughter (segment) classification is a simplified task in the sense that we rely
on segment starting and ending points marked by human annotators. In the last
part of our study we perform laughter detection, where, besides laughter types,
we also have to find the locations of the different occurrences. We will do this by
incorporating our likelihood values supported by DNNs into a Hidden Markov
Model (HMM). In this set-up, the state transition probabilities of the HMM
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practically correspond to a state-level bi-gram language model. Following the
study of Salamin et al. [26], we calculated the model from statistics of the training
set; the weight of this language model was determined on the development set,
individually for the five DNN models trained.
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Fig. 2. Segment-level F1 scores measured on the development set.

Table 3. Some notable segment-level F1 scores obtained on the test set.

F1(%)

Sampling approach S O D P M Mean Median

DNN (baseline) 18.3 14.1 0.0 5.2 2.2 8.0 5.2

DNN + prob. sampling, λ = 0.4 23.0 19.5 19.0 8.7 6.1 15.3 19.0

DNN + prob. sampling, λ = 1.0 14.5 19.4 16.8 10.1 7.3 13.6 14.5

5.1 Evaluation Metrics

We opted for the information retrieval (IR) metrics of precision, recall and their
harmonic mean, F-measure (or F1). To decide whether two occurrences of events
(i.e. a laughter occurrence hypothesis returned by the HMM and one labeled by
an annotator) match, there is no de facto standard in the literature. In this study
we required that the two occurrences intersect (as in [10] and [24]), while their
centre also had to be close to each other (within 500 ms, as in [1]). Furthermore,
following the work of Salamin et al. [26], we calculated these metrics at the frame
level as well. Since the optimal meta-parameters (λ and language model weight)
may differ in the two (evaluation) approaches used, we set them independently.
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5.2 Results

Figures 2 and 3 show the averaged F1 scores got on the development set at the
segment level and frame level, respectively. It can be seen that the smaller λ
values (λ ≤ 0.3 and λ ≤ 0.4, at the segment and frame level, respectively) led
to quite low F1 values for some laughter types, while for larger λ parameters we
had a more balanced behaviour. This is also reflected in the mean and median
F1 scores. At the segment level, optimality is achieved with λ = 0.4, while at
the frame level it is with λ = 0.1 (mean) and with λ = 0.5 (median).
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Fig. 3. Frame-level F1 scores measured on the development set.

Table 4. Some notable frame-level F1 scores obtained on the test set.

Sampling approach F1(%)

S O D P M Mean Median

DNN (baseline) 23.1 15.8 0.0 8.1 10.1 11.4 10.1

DNN + prob. sampling, λ = 0.1 22.6 24.0 9.4 6.9 7.4 14.1 9.4

DNN + prob. sampling, λ = 0.5 15.8 14.6 14.8 10.0 6.7 12.4 14.6

DNN + prob. sampling, λ = 1.0 13.4 14.4 12.6 9.4 7.2 11.4 12.6

Overall, the F1 scores seem to be somewhat low, even after applying prob-
abilistic sampling. In our opinion, however, these are quite realistic scores, for
two reasons. Firstly, even when we treat laughter as one class, we get F1 values
between 40 and 60% (see e.g. [10,13,26]), which is likely to be reduced further
when we split the laughter class into several sub-classes. Secondly, recall that
the laughter sub-types were defined based on the relation between the laughter
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event and the other speaker’s speech. This, combined with the large duration
of laughter events, eventually leads to mixed laughter occurrences. For example,
in an overlapping laughter event both the speakers are probably not laughing
for the whole duration, but in some parts only one of them is (while the other
speaks or remains silent). This, however, is quite hard to detect at the frame
level.

Examining Tables 3 and 4 (containing the interesting F1 scores obtained on
the test set at the segment level and frame level, respectively), we see that
the F1 value of the Mixed laughter type is the lowest, which is probably due
to the latter phenomenon. Overall, the F1 values are more balanced for the
different laughter types when using probabilistic sampling, and when we use the
λ values found optimal on the development set, we get better results than either
without probabilistic sampling or with uniform sampling (i.e. λ = 1). We got
the highest frame-level mean F1 value in the case where the mean was highest
on the development set (λ = 0.1), and the same holds for the median (λ = 0.5).
Overall, optimizing for the median led to a more balanced performance than
optimizing for the mean, which led to a mixture or relatively high and low F1

values.

6 Conclusions

In this study we sought to detect and identify multiple laughter types in Hungar-
ian spontaneous conversations. We performed simple classification experiments
and those where the location of laughter occurrences had to be determined as
well. Overall, we found that the median of F1 scores characterizes performance
better than the arithmetic mean does, and the technique of probabilistic sam-
pling aids the training of frame-level DNNs in the task of laughter sub-group
classification, where the training data has a highly imbalanced class distribution.
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