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ABSTRACT

Estimating the degree of sleepiness from the human speech
is an emerging research problem with straightforward appli-
cations. In this study, we employ the x-vector approach, cur-
rently the state-of-the-art in speaker recognition, as a neural
network feature extractor to detect the level of sleepiness of
a speaker. Besides using different corpora for fitting the x-
vector DNN, we also experiment with adding noise and re-
verberation to the training samples. According to our exper-
imental results for the publicly available Dusseldorf Sleepy
Language Corpus, utilizing x-vector embeddings as features
for Support Vector Regression consistently leads to competi-
tive performance scores in sleepiness detection. In particular,
we present the highest Spearman’s correlation coefficient on
the public corpus that was achieved by a single method.

Index Terms— computational paralinguistics, speech
processing, sleepiness, x-vectors, DNN embeddings

1. INTRODUCTION

Excessive lack of sleep may lead to poor performance in daily
activities, can contribute to accidents, and eventually lead to
mortality. The most common causes of excessive daytime
sleepiness (hypersomnia) are sleep deprivation and disorders
like apnea (cessation of breathing) and insomnia (the inability
to stay or fall asleep) [1]. The National Sleep Foundation of
the United States, in their Sleep in America Poll for 2020 1,
found that almost half of Americans report feeling sleepy be-
tween three and seven days per week. The mentioned argu-
ments make the detection and monitoring of sleepiness crucial
for reducing the risks of having fatal accidents (e.g., when op-
erating machinery or driving vehicles). Also, it may be ben-
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2020: https://www.sleepfoundation.org/wp-content/uploads/2020/03/SIA-
2020-Q1-Report.pdf?x90960

eficial for the early detection of specific neurological prob-
lems. Sleepiness is not a condition in itself; it is seen a symp-
tom caused by an underlying problem such as a neurological
disease [2, 3], to name an example. A non-invasive way to
monitor and control the degree of sleepiness could be by us-
ing the speech of the subject, which could help in automatic
risk detection while driving and in similar situations.

From the aspect of machine learning and feature extrac-
tion techniques utilized, estimating the degree of sleepiness
of the speaker belongs to the general area of computational
paralinguistics. The tasks in this field focus on modeling non-
verbal latent patterns in the speech that go beyond the linguis-
tic approach. The captured speaker-traits are used in various
tasks. E.g., assessing the self-affect of individuals [4], screen-
ing neurological diseases such as Mild Cognitive Impairment
(MCI) [5], and psychological disorders like depression [6].
Also, in miscellaneous tasks, like estimating the conflict in-
tensity [7] or determining personality traits of a speaker [8].

Former state-of-the-art approaches for speaker recogni-
tion (e.g. i-vectors [9]) were also exploited in computational
paralinguistics and give relevant performances for classifying
the cognitive load [10], or estimating the speaker’s age [11]
using the speech. The current state-of-the-art technique for
speaker recognition is the so-called x-vector approach [12],
which employs a Deep Neural Network to map variable-
length utterances to fixed-dimensional embeddings (i.e. x-
vectors). A handful of previous studies exploited x-vector
embeddings in computational paralinguistics tasks. For in-
stance, to classify emotion from the speech of subjects [13],
or to screen neuro-degenerative diseases like Alzheimer’s
Disease [14], and Parkinson’s Disease [15].

In this study, we employ x-vectors to estimate the degree
of sleepiness from the recorded speech of subjects. Based on
the methodology outlined in [12], we will adopt the DNN ar-
chitecture described there. We train the network from scratch
employing the train and development sets of the SLEEP Cor-
pus. The DNN extracts the final neural network embeddings,
which are utilized by a Support Vector Regression (SVR) for
the estimation. The methodology we present in this study
gives the highest Pearson’s correlation coefficient value ob-
tained by a standalone method on the public SLEEP Corpus.
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2. DATA

Here, we make use of the SLEEP (Dusseldorf Sleepy Lan-
guage) Corpus. The corpus comprises the recordings of 915
German speakers, 364 females, 551 males, from 12 to 84
years of age, with a mean age of 27.6. The utterances were
recorded with 44.1 kHz and downsampled to 16 kHz, using a
quantisation of 16 bit. The audios were made in quiet rooms
with similar acoustic conditions. The subjects were asked to
read passages and carry out speaking tasks. Likewise, the
subjects were asked to speak about, for example, their last
weekend or to describe a picture; this resulted in spontaneous
narrative speech. It contains 5564, 5328 and 5570 utterances,
training, development and test sets, respectively; all three sub-
sets contain recordings of just below six hours, leading to 17
hours and 35 mins of speech overall.

The degree of sleepiness of the subjects was assessed us-
ing the Karolinska Sleepiness Scale (KSS) [16]. Each subject
reported their sleepiness level on the Karolinska Sleepiness
Scale (KSS): from 1 (extremely alert) to 9 (very sleepy). At
the same time, two observers assigned posthoc observer KSS
ratings. The average of both scores was the reference sleepi-
ness value [17]. Later, this corpus was included in the Inter-
speech Computational Parainguistic Challenge in 2019 [17].

3. FEATURE EXTRACTION AND METHODOLOGY

3.1. Frame-level Representations

The well-known Mel-Frequency Cepstral Coefficients (MFCC)
representations are utilized in this study. 20 MFCCs are ex-
tracted from the recordings using a frame-length of 25ms and
a window step size of 10ms.

3.2. Deep Neural Network Embeddings

The x-vector approach can be thought as of a neural network
feature extraction method that provides fixed-dimensional
embeddings for variable-length utterances. Such a system can
be viewed as a feed-forward Deep Neural Network (DNN)
that computes such embeddings.

3.2.1. DNN Architecture

Table 1 describes the structure of the DNN. The frame-level
layers have a time-delay architecture. Let us assume that t
is the actual time step. At the input, the frames are spliced
together; namely, the input to the current layer is the spliced
output of the previous layer (i.e. input to layer frame3 is the
spliced output of layer frame2, at frames t − 3 and t + 3).
Next, the stats pooling layer gets the T frame-level activa-
tions of the last frame-level layer (frame5), aggregates over
the input segment, and computes the mean and the standard
deviation. The mean and the standard deviation are nothing
but segment-level statistics. These stats are concatenated and

Table 1. DNN architecture of the x-vector system, consist-
ing of five frame-level layers, a statistics pooling layer, two
segment-layers and a final softmax layer. N represents the
number of training speakers in the softmax layer. This archi-
tecture is based on the one described by Snyder et al. [18].

Layer Layer context Tot. context In, Out

frame1 [t-2, t+2] 5 120, 512
frame2 {t-2, t, t+2} 9 1536, 512
frame3 {t-3, t, t+3} 15 1536, 512
frame4 {t} 15 512, 512
frame5 {t} 15 512, 1500

stats pooling [0, T} T 1500T, 3000
segment6 {0} T 3000, 512
segment7 {0} T 512, 512
softmax {0} T 512, N

used as input for the next segment6 and segment7 layers, re-
spectively. The last layer is the softmax output layer, which is
discarded after training the DNN. The x-vectors embeddings
can be extracted from any of segment layers. [12, 18]. Instead
of predicting frames, the DNN is trained to predict speakers
from variable-length utterances utilizing a multi-class cross
entropy objective function (more details in [18]).

3.2.2. The x-vector

The embeddings produced by this network capture informa-
tion from the speakers over the whole audio-signal. Such em-
beddings are called x-vectors and they can be extracted from
any segment layer; that is, either segment6 or segment7 layers
(see Table 1). Normally, embeddings from the segment6 layer
give a better performance than those from segment7 [12]. In
this study, these type of representations can capture meaning-
ful information from each utterance. This type of embedding
may help us to discriminate better the utterances since the
characteristics are acquired at the utterance level rather than
at the frame-level. For this, we used the Kaldi Toolkit.

4. EXPERIMENTAL SETUP

4.1. DNN Training Data

We trained different x-vector Deep Neural Network models
(i.e. extractors) using two distinct datasets. First, we used the
data of the training and development sets of the SLEEP corpus
combined (10892 utterances, 11 hours and 39 mins). Second,
to experiment with the independence of the x-vectors from
different recording and speaking conditions (e.g., language),
we trained the extractor (DNN) on another corpus (also for
speaker recognition). We used a subset of 60 hours (10636
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Table 2. Results of the experiments on the SLEEP Corpus
given in Spearman’s Correlation Coefficient. We show the re-
sults of former studies as well. The * means that the scores
were achieved by a fusion of the best configurations. In con-
trast, the rest of the scores were obtained by applying a single
approach. The x-vectors scores are given in accord with the
corpus used to train the DNN they were extracted with.

ComParE 2019 Features [17] Dev Test

ComParE Functionals .251 .314
Bag-of-Audio-Words (BoAW) .250 .304
AuDeep .261 .310
Three-wise fusion* — .343

Former Studies

Gosztolya* [20] .367 .383
Yeh et al.* [21] .373 .369
Amiriparian et al.* [22] .320 .367
Wu et al.* [23] .326 .365
Elsner et al. [24] .290 .335
Fritsch et al.* [25] .317 .325

DNN Embeddings (x-vectors)

SLEEP Corpus train-dev (12h) .303 .365
SLEEP Corpus train-dev (augmented) .275 .324
BEA Corpus (60h) .287 .313
BEA Corpus (augmented) .256 .301
SWBD + SRE (pre-trained model, [12]) .300 .355

utterances) of the BEA Corpus, which contains Hungarian
spontaneous speech (for more details, see [19]). This corpus
has a relevant size (in comparison with the SLEEP Corpus),
which is convenient when training DNNs.

4.2. Data Augmentation

It is a standard practice to employ data augmentation when
training x-vector DNNs in order to improve the noise robust-
ness of the model [12]. From the original training data, two
augmented versions are added. From additive noises and re-
verberation, two of the following types of augmentation are
chosen randomly: babble, music, noise, and reverberation.
The first three types correspond to adding or fitting noise to
the original utterances. The fourth one involves a convolution
of room impulse responses with the audio, i.e. reverberation.
The reader can see [12] for more details about the augmenta-
tion strategies used in this study. This process increased the
DNN training sets to 52982 utterances (over 56 hours) and
to 52636 utterances (293 hours), SLEEP and BEA corpora,
respectively. Our goal is to evaluate the contribution of the
augmentation techniques to the overall performance scores.

4.3. Deep Neural Network Embeddings

The segment6 layer of the DNN is used to compute the 512-
dimensional neural network embeddings, (i.e. x-vectors).
In addition to the four x-vector training variations described
above (SLEEP Corpus train-dev, SLEEP Corpus train-dev
(augmented), BEA Corpus and BEA Corpus (augmented)),
we employ the publicly available, pre-trained x-vector model
described by Snyder et al. [12]. The model was fitted on
English speech, specifically, employing a combination of
a portion of Switchboard (SWBD) with a subset of the
NIST SRE corpus. This model can be downloaded from
https://kaldi-asr.org/models/m3. Next, we
also utilize this pre-trained model to extract x-vector embed-
dings from the SLEEP Corpus (pre-trained x-vector DNN).
We aim to discover the differences amongst the DNN perfor-
mances when using corpora that differ in both duration and
language from the SLEEP Corpus.

4.4. Regression and Evaluation

Support Vector Regression (SVR) was utilized to estimate the
degree of sleepiness of the speakers. DNN embeddings were
standardized by removing the mean and scaling to unit vari-
ance before training the model. We relied on the libSVM im-
plementation [26] with a linear kernel (nu-SVR method); the
C complexity parameter was set in the range 10−5, . . ., 101,
based on the performance on the development set. Before
rounding to the nearest integer in the 1 . . . 9 scale, first we
linearly transformed the predictions to have the same mean
and standard deviation as those of the labels of the training
set; transformation parameters were set on the development
set. Spearman’s Correlation Coefficient is the performance
metric employed in this regression task (see more in [17]).

5. RESULTS AND DISCUSSION

Table 2 outlines the Spearman’s correlation coefficient scores
got by the x-vectors embeddings. Overall, x-vector features
extracted employing the SLEEP train-dev model gave better
performances. These features achieved a .303 and a .365 of
CC score on dev and test, respectively. However, using the
augmented version of this model resulted in a decrease of the
CC scores in both dev and test sets (.275 and .324). A simi-
lar situation occurred in the BEA Corpus model, namely, its
augmented version led to a decrease in the CC scores. On
dev, CC went from .287 to .256; and from .313 (no augmen-
tation) to .301 (augmented) on the test set. Although augmen-
tation gives more diversity to the original data and attempts to
make the models more robust. Here, the results indicate that
the DNN was able to capture more meaningful information
from the non-augmented versions than from their noise-robust
counterparts. That is, adding noises and reverberation to this
particular datasets could have caused the DNN to learn from
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Fig. 1. Confusion matrix for the best results on the test set.

non-relevant information, resulting in a poorer mapping (i.e.,
x-vector embeddings) for the specified task.

Meanwhile, although the x-vector pre-trained model pro-
duced better results (.355 of CC on test), its performance
could not reach that of the SLEEP train-dev extractor. This
could be attributed to a language-dependant situation (i.e. the
pretrained model was fitted using English corpora). It appears
that, for this particular case, the model trained with in-domain
data (i.e. using the SLEEP corpus) was able to generate better
representations than the pre-trained model which was trained
with huge data amounts of different domain data.

In Table 2 we also compare our performance scores with
those of previous studies and official baselines on the same
task. It can be seen that the proposed DNN embeddings were
capable of outperform all the baseline scores of the Inter-
speech 2019 ComParE Challenge [17]. Moreover, it is evident
that most of the former studies achieved their best results by
relying on a fusion of the scores. In detail, in [20], a combina-
tion of Fisher Vectors, BoAW, and the ComParE functionals
is carried out for their final CC scores (.383). (Note that this
score was improved to .387 by training ensembles of classi-
fiers [20].) In [21], the authors employ attention networks and
adversarial augmentation, in the end, their best results (.369
of CC on test) are achieved by a fusion of neural network
models. In [22], a .367 of CC was obtained by an early fusion
of the learnt representations from attention and sequence to
sequence autoencoders. Fisher Vector encodings were fused
with the outputs of the ComParE Functionals in [23] to get a
.365 of CC. In both [24] and [25], CNNs were exploited in
an end-to-end deep learning approach: no fusion techniques
are executed in the former study to get a .335 of CC; in the
latter, a fusion of their CNN models was made to get a .325
of CC score. However, in our study, x-vector representations
are still competitive and even outperform some of the former
studies without the need for any kind of fusion strategy.

Fig. 1 displays the confusion matrix of our best configu-
ration. The figure tells us that categories 3, 5, 6, 7, 8 had simi-
larly high accuracies. This means that the model was capable
of distinguishing a large variety of categories including one
of the extreme labels (8), the slightly extreme classes (3 and
7), as well as the middle categories (5 and 6). As for the ex-
treme labels 1, 2 and 9, the scores are much lower. Perhaps
this is due to the number of samples for these classes: these
three categories represent approximately 13% of the number
of samples in the dataset. Moreover, it seems that the model
tends to overestimate the sleepiness level of the speaker, as
we observed higher values mainly above the main diagonal.

6. CONCLUSIONS AND FUTURE WORK

This study investigated deep neural network embeddings for
estimating the degree of sleepiness from speech. We em-
ployed five different DNN models to map utterances to fixed-
sized representations (i.e. x-vectors). Utilizing the SLEEP
and BEA corpora, two models were fitted using augmented
data, and two with no augmentation. The fifth model used
was the pre-trained DNN from [12]. Our findings indicate
that the augmentation strategies applied on both corpora did
not give any improvements: the quality of the embeddings
extracted using the augmented models only reduced the final
scores. Furthermore, it appears that making use of in-domain
data causes the extractors (DNN models) to generate more
meaningful features than just using out-of-domain data. In
specific, we achieved the best performance employing the x-
vector features computed via the SLEEP Corpus model.

In contrast to former studies, we did not rely on fusion
strategies yet the results are competitive. More generally,
we demonstrated that our methodology, besides surpassing
the performances of various previous works, also produce
the highest Spearman’s CC score via a standalone (single)
method for this particular task. In the future, we will fur-
ther investigate the domain- and language-dependency of the
DNN extractors using bigger datasets.
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