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Abstract: Background: The development of automatic speech recognition (ASR) technology allows 
the analysis of temporal (time-based) speech parameters characteristic of mild cognitive impairment 
(MCI). However, no information has been available on whether the analysis of spontaneous speech can 
be used with the same efficiency in different language environments. 
Objective: The main goal of this international pilot study is to address the question of whether the 
Speech-Gap Test® (S-GAP Test®), previously tested in the Hungarian language, is appropriate for and 
applicable to the recognition of MCI in other languages such as English. 
Methods: After an initial screening of 88 individuals, English-speaking (n = 33) and Hungarian-
speaking (n = 33) participants were classified as having MCI or as healthy controls (HC) based on Pe-
tersen’s criteria. The speech of each participant was recorded via a spontaneous speech task. Fifteen 
temporal parameters were determined and calculated through ASR. 
Results: Seven temporal parameters in the English-speaking sample and 5 in the Hungarian-speaking 
sample showed significant differences between the MCI and the HC groups. Receiver operating charac-
teristics (ROC) analysis clearly distinguished the English-speaking MCI cases from the HC group based 
on speech tempo and articulation tempo with 100% sensitivity, and on three more temporal parameters 
with high sensitivity (85.7%). In the Hungarian-speaking sample, the ROC analysis showed similar 
sensitivity rates (92.3%). 
Conclusion: The results of this study in different native-speaking populations suggest that changes in 
acoustic parameters detected by the S-GAP Test® might be present across different languages. 
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1. INTRODUCTION 

Language changes occur in various types of neurocogni-
tive disorders and are sensitive indicators of cortical dys-
function [1, 2]. The characteristic disruption in the language 
domain has been identified not only in different stages of 
dementia [3, 4], but also in its prodromal stage, mild cogni-
tive impairment (MCI) [5]. However, recognition of the first  
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clinical manifestations is still challenging since patients of-
ten do not recognize or minimize their deficits. In the early 
diagnostic procedure, there is an increasing need for non-
invasive and cost-effective tools to identify individuals with 
minor neurocognitive disorders [4]. Since subtle changes in 
language and communication abilities may be apparent in the 
early course of such disorders [6], the detection of linguistic 
impairment could be a viable screening option [7-9]. Re-
cordability of spoken language gives an opportunity to easily 
collect speech recordings, as biological samples. The pur-
pose of our research group was to develop a new mobile 
application that would be capable of recording the examined 
person’s telephone conversation and then analyzing the 
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acoustic properties of spontaneous speech. Using this infor-
mation technology (IT) technique, an individual can be ex-
amined through everyday activity, namely, a telephone con-
versation which is an ecologically valid way of assessment, 
decreases the time spent on neuropsychological tests, and 
eliminates test-induced anxiety for the user. 

The first interest of our research team (beginning the now 
10-year long research project on exploring the association 
between language function and cognition) was to identify 
speech parameters that might distinguish Hungarian patients 
with mild Alzheimer’s disease (AD) from healthy controls 
(HC). Significant differences between the mild AD and the 
HC groups regarding speech tempo and hesitation ratio were 
first published by our research team [10]. However, in this 
early study, the transcription and annotation of speech sig-
nals were performed manually using the Praat software tool 
[11]. As the manual calculation of acoustic biomarkers is 
extremely time-consuming, its applicability in recognizing 
mild stages of cognitive deficits in clinical routine is rather 
limited. 

However, the deterioration of acoustic language parame-
ters can also be examined by implementing automatic speech 
recognition (ASR) techniques. ASR is a relatively simple 
and reliable method that has the potential to analyze large 
language datasets rapidly using machine-learning methods. 
Based on this technology, our research team developed the 
Speech-Gap Test®(S-GAP Test®) which identifies temporal 
(time-based) speech parameters using the extracted phonetic-
level segmentation produced by ASR. In earlier studies ap-
plying the S-GAP Test®, we were able to distinguish MCI 
patients from HC subjects [12-17] based on several temporal 
parameters which demonstrated that the proposed acoustic 
characteristics indeed carry clinically relevant information in 
spontaneous speech [13]. 

Among the most informative temporal parameters, articu-
lation and speech tempo, number and length of silent/filled 
pauses, and length of utterance were measured. Articula-
tion/speech tempo is the number of phonemes per second 
during speech excluding/including hesitations, respectively. 
Hesitation is defined as the absence of speech and has two 
categories: silent pauses (silences that are not attributable to 
articulation constraints) and filled pauses (vocalizations like 
‘uhm’, ‘er’). A novelty of our studies was the focus on both 
silent and filled pauses along with the measurement of sepa-
rated articulation and speech tempo. As our database of MCI 
patients was continuously growing and machine learning 
techniques were also exploited, the differentiation between 
MCI subjects and control probands gradually became more 
accurate (sensitivity: 81.3%; specificity: 66.7%) [16]. 

It is a basic requirement for diagnostic procedures used 
for the detection of MCI to be internationally applicable 
[18]. Particularly, in the case of procedures testing linguistic 
functions, the question arises of whether they have similar 
sensitivities in different languages. A recent systematic re-
view emphasized that the methodology of speech-based 
studies in different native languages is quite heterogeneous 
[19]. Until now, phonetical-phonological analyses of speech 
for the assessment of cognitive impairment have been inde-
pendently performed on native speakers of languages such as 
Chinese [20], English [21-27], French [28-31], Greek [32], 

Hungarian [13, 16, 17, 33, 34], Italian [35], Japanese [36-
39], Persian [40], Spanish [2, 41-44], Swedish [45, 46], or 
Turkish [47]. However, until our present investigation, no 
information has been available on how the temporal charac-
teristics of spontaneous speech compared between MCI vs. 
HC subjects in different language environments. 

The main goal of this international pilot study was to ex-
plore the S-GAP-related temporal parameters of spontaneous 
speech in the English language with the purpose of MCI de-
tection, and to address the methodological question of 
whether the S-GAP Test®, previously tested for Hungarian 
speakers, is appropriate for the recognition of speech param-
eters indicating MCI in the English language. Comparison of 
speech data obtained from native English- and Hungarian-
speaking populations and assessing the effectiveness of the 
S-GAP Test® in these two different language environments 
would be the first step in the international application of this 
MCI-screening method. An IT application based on the S-
GAP Test® could be a low-cost, non-invasive, and non-
stressful method that could be applied in a rapid and easy 
way, without personal contact, and in a large population. The 
need for noncontact, remote assessment has also gained spe-
cial urgency in light of the current COVID-19 pandemic. 

2. MATERIALS AND METHODS 

2.1. Participants and Study Design 

Elderly individuals were recruited in parallel at two insti-
tutions: 1) Memory Disorders Center of the Department of 
Psychiatry, New York State Psychiatric Institute and Colum-
bia University (New York, NY, USA) and 2) Memory Clin-
ic, Department of Psychiatry, University of Szeged (Szeged, 
Hungary). 

The ethnicity of the participants was not an inclusion or 
exclusion criterion and differed across the two study sites. 
The Hungarian participants were all Caucasian, while in the 
English-speaking group at Columbia University the individ-
uals were Caucasian (69.7%), African-American (24.2%), 
and Hispanic (6.1%). 

From the two outpatient clinics, a total of 88 individuals 
were recruited, 66 of whom were eligible for final inclusion 
(Fig. 1). Both the English-speaking (n = 33) and Hungarian-
speaking (n = 33) participants were classified as either MCI 
or as HC. The classification was based on Petersen’s criteria 
[48] in both languages, with the Mini-Mental State Examina-
tion (MMSE) [49] serving as a measure for objective cogni-
tive impairment (30-28 points: HC; 27-24 points: MCI). 

To get an overview of participant characteristics and eli-
gibility data, an interview focused on demographic features 
and medical history, as well as a brief neuropsychological 
test battery was administered (including the MMSE, the 
Clock Drawing Test (CDT) [50] and the Geriatric Depres-
sion Scale (GDS). All individuals were screened for possible 
dementia using the MMSE and those with a score under 24 
were not involved in further participation. Corresponding to 
institutional protocols, the possibility of depression was also 
evaluated based on the 30-items [51] or the 15-items [52] 
version of the GDS (GDS-30/GDS-15; for the English-
speaking/Hungarian-speaking sample, respectively): patients 
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scoring above 10 on GDS-30 or above 5 on GDS-15 were 
excluded. 

Inclusion/exclusion criteria were the same at both sites. 
Inclusion criteria were a minimum age of 60 years, a mini-
mum of 8 years of formal education, and English/Hungarian 
as native language (corresponding to the country of recruit-
ment; bilingualism was not taken into account). Exclusion 
criteria included major hearing problems (e.g. uncorrected 
hearing loss), manifest speech problems (any form of apha-
sia), significant articulation problems (e.g. stutter), history of 
a substance use disorder, previous CT/MRI showing evi-
dence of significant abnormality suggesting another potential 
etiology for MCI or dementia (e.g. micro- or macrohemor-
rhages, lacunar infarcts or single large infarct), evidence of 
cerebral contusion, encephalomalacia, aneurysm, vascular 
malformations, or clinically significant space-occupying 
lesions. 

2.2. S-GAP Protocol and Preparation of Speech Samples 

Following the clinical evaluation, speech samples were 
obtained from all participants. Spontaneous speech was elic-
ited in the following way: Investigator 1, pointing to a mo-
bile phone, informed the participant that a colleague (Inves-
tigator 2) would call from another room and provide instruc-
tions for a new task. Investigator 1 also told the participant 
that the conversation would be recorded and the task would 
only take a few minutes. Investigator 2 called the mobile 
phone, and after introduction, asked the participant to talk 
about his/her previous day. The standardized instruction was: 
‘Please tell me about your previous day in as much detail as 
you can.’ After the instruction, the investigators could not 
give verbal prompts, nor could they repeat the instruction; 

they remained silent throughout the call until the participant 
finished the task. 

Each participants monologue was recorded by a call re-
corder application installed on the mobile phone device. The 
obtained recordings were then converted into an uncom-
pressed PCM mono, 16-bit wav format with a sampling rate 
of 8,000 Hz. A professional expert linguist (I.H.) checked 
the quality of the recordings. 

2.3. Analysis of Speech Samples 

Pauses were defined as the disruption of speech for more 
than 30 ms (either silent segments in the case of silent-, or 
vocalizations in the case of filled pauses). Both silent and 
filled pauses were identified in each recording using ASR 
technology. Our ASR system was built on a modified ver-
sion of the HTK tool [53], where we used the Hidden Mar-
kov model, but replaced the acoustic model with a Deep 
Neural Network (DNN) based one. This way, we utilized a 
standard HMM/DNN hybrid model, which is known to out-
perform traditional HMM models [54]. To realize the DNN 
acoustic model, we employed a custom DNN implementa-
tion [55] written in Visual C++ and utilized the CUDA li-
brary to speed up both model training and evaluation. 

As acoustic features, we were using 40 raw Mel-
frequency filter bank energy values along with the global 
log-energy, which was extended with the first and second-
order derivatives (“FBANK + Δ + ΔΔ”), resulting in 123 
acoustic features overall. Training and evaluation were done 
on a 150 ms (15 frames) wide sliding window, leading to 
1,845 input neurons in the actual acoustic models. Then the 
acoustic model DNNs contained 5 fully connected hidden 
layers, each consisting of 1,024 neurons employing the 

 
Fig. (1). Flowchart of participants’ inclusion and exclusion process. Abbreviations: HC: healthy control; MCI: mild cognitive impairment. 
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ReLU activation function [56], while they have a softmax 
final layer with a number of neurons equal to the phonetic 
units in the given language. The DNN acoustic models were 
trained for phoneme identification on two audio datasets 
consisting of spontaneous speech (as this type is expected to 
contain filled pauses), to match the language used by the 
subjects. For the speech samples in English, a subset of the 
TEDlium speech corpus [57] was used (100 speakers, ap-
proximately 15 hours of recording). For the Hungarian 
speech samples, a subset of the BEA corpus was employed 
(116 speakers, approximately 44 hours of recording) [58]. 
Before training, both corpora were down sampled to 8,000 
Hz to match the sampling rate of the recordings in the study. 

This ASR model was used to perform phoneme-level 
recognition, in which we also treated filled pauses as a spe-
cial "phoneme". As language models, we employed simple 
phone bigrams both for English and Hungarian. This proce-
dure produces a time-aligned phoneme sequence for each 
recording; that is, it supplies a hypothesis of the sequence of 
phones uttered, along with the starting and ending time indi-
ces. From this output, the 15 S-GAP parameters can be ob-
tained via simple calculations (e.g. by counting the number 
of pauses and the total number of phones, and dividing the 
two values by each other; or by doing the same with the total 
duration of the pauses and all phones). We measured the 
accuracy of this workflow on a holdout set of the BEA cor-
pus, consisting of 3 hours and 23 minutes, containing the 
speech of 10 subjects. Based on this, Pearson’s correlation 
values of the speech tempo attributes calculated by our 
workflow and those derived from the transcripts were 0.857, 
while for articulation tempo this value was 0.866, indicating 
a precise (although not perfect) estimation. Most of the mis-
matching values were present in short speech segments: 
evaluating these values only for the segments with at least 2 
seconds of duration led to Pearson’s correlation values of 
0.914 and 0.920, for articulation tempo and speech tempo, 
respectively. Furthermore, silent pauses were almost perfect-
ly detected (precision: 96.1%, recall: 94.9%, F-measure: 
95.5), while filled pauses were also identified with a high 
performance (precision: 83.2%, recall: 69.6%, F-measure: 
75.8). In most cases, filled pauses were confused with pro-
longations of certain phonemes (e.g. m / n / a), which are 
acoustically similar and are often used by the speakers for 
similar purposes as filled pauses [59, 60]. 

The output of the ASR system was the phonetic segmen-
tation and labeling of the input signal, which included filled 
pauses. Based on this output, we extracted 15 S-GAP-related 
temporal speech parameters using simple calculations (Table 
1). 

2.4. Statistical Analysis 

Descriptive statistics were used to examine the demo-
graphic, neuropsychological, and speech characteristics of 
participants. In both the English- and Hungarian-speaking 
samples, comparisons between the MCI vs. HC groups were 
executed using either the independent samples t-test/Welch’s 
t-test (based on equality of variances), the Mann-Whitney U 
test (for cases when the normality assumption was not ful-
filled according to the Shapiro-Wilk test of normality) or the 
Chi-square test (for categorical variables). For the examina-
tion of inter-language differences (English-speaking HC vs. 

Hungarian-speaking HC; English-speaking MCI vs. Hungar-
ian-speaking MCI), independent samples t-test/Welch’s t-test 
or the Mann-Whitney U test was carried out. 
Table 1. List and definitions of the 15 S-GAP-related tem-

poral parameters of spontaneous speech. 

S-GAP-related  
Parameters 

Description 

Utterance length (s) Total length of the utterance (s) 

Articulation tempo (1/s) 
Total number of phonemes (without hesita-

tions) (count) / 
total length of the utterance (s) 

Speech tempo (1/s) 
Total number of phonemes (including 
hesitations) (count) / total length of the 

utterance (s) 

Silent pause occurrence 
rate (%) 

Total number of silent pauses (count) x 
100 / 

total number of phonemes (count) 

Filled pause occurrence 
rate (%) 

Total number of filled pauses (count) x 
100 / 

total number of phonemes (count) 

Total pause occurrence 
rate (%) 

Total number of silent and filled pauses 
(count) x 100 / 

total number of phonemes (count) 

Silent pause duration rate 
(%) 

Total length of silent pauses (s) x 100 / 
total length of the utterance (s) 

Filled pause duration rate 
(%) 

Total length of filled pauses (s) x 100 / 
total length of the utterance (s) 

Total pause duration rate 
(%) 

Total length of silent and filled pauses (s) x 
100 / 

total length of the utterance (s) 

Silent pause frequency 
(1/s) 

Total number of silent pauses (count) / 
total length of the utterance (s) 

Filled pause frequency 
(1/s) 

Total number of filled pauses (count) / 
total length of the utterance (s) 

Total pause frequency 
(1/s) 

Total number of silent and filled pauses 
(count) / 

total length of the utterance (s) 

Silent pause average 
duration (s) 

Total length of silent pauses (s) / 
total number of silent pauses (count) 

Filled pause average 
duration (s) 

Total length of filled pauses (s) / 
total number of filled pauses (count) 

Total pause average dura-
tion (s) 

Total length of silent and filled pauses (s) / 
total number of silent and filled pauses 

(count) 

Abbreviations: s: second. 

Receiver operating characteristics (ROC) analysis was 
applied to assess which S-GAP-related parameters have the 
most promising classification abilities based on their area 
under the curve (AUC) in the two languages. Sensitivity and 
specificity (true positive rate and true negative rate) were 
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calculated using threshold values that yielded the highest 
possible sensitivity (while keeping specificity above 50%). 
For comparison of the S-GAP parameters’ classification 
ability between the two languages, the comparison of the 
independent ROC curves module of the MedCalc software 
was used. 

All statistical analyses were performed using SPSS v.24 
(SPSS Inc., Chicago, IL, USA), except for the inter-language 
comparison of AUCs for which MedCalc v.19.4 was applied 
(MedCalc Software Ltd., Ostend, Belgium). For all statistical 
comparisons, the level of significance was set at the 0.05 
level. 

3. RESULTS 

3.1. Demographics and Neuropsychological Test Perfor-
mances 

Detailed demographic characteristics and neuropsycho-
logical test scores of all groups (means and standard devia-
tions) are presented in Table 2. Regarding demographics 
(gender, age, and years of education) and the CDT test, there 
were no statistically significant differences between the MCI 
and the HC group in either languages. However, regarding 
the other neuropsychological tests, MCI patients showed 
significantly poorer performance in the MMSE than HCs 
(English-speaking sample: U = 62.500; Z = -2.703; p = 
0.009; Hungarian-speaking sample: U = 0.000; Z = -4.879; p 
< 0.001), and they also had higher scores in the GDS in both 
languages (English-speaking sample: U = 71.000; Z = -
2.277; p = 0.024; Hungarian-speaking sample: U = 59.000; Z 
= -2.736; p = 0.008). 

3.2. S-GAP-related Temporal Parameters and Sensitivity 
Measures in the English-Speaking Sample 

Regarding the English-speaking sample, 7 of the total 15 
S-GAP-related temporal parameters displayed significant 
differences between the MCI and the HC groups. Patients 

with MCI showed significantly lower articulation tempo and 
speech tempo as well, while they produced a significantly 
higher occurrence rate of total pauses, duration rate of silent 
pauses and total pauses, as well as the average duration of 
silent pauses and total pauses (Table 3). 

To determine which S-GAP-related temporal speech pa-
rameters would be the most precise in classifying patients, 
ROC analysis was executed. The ROC analysis revealed that 
the following 8 parameters had statistically significant classi-
fication abilities (starting with the highest AUC): speech 
tempo, articulation tempo, total pause duration rate, silent 
pause duration rate, silent pause average duration, total pause 
average duration, total pause occurrence rate, and filled 
pause occurrence rate. Sensitivity was above 90% both for 
speech tempo (sensitivity: 100%; specificity: 63.2%) and for 
articulation tempo (sensitivity: 100%; specificity: 57.9%).  

Sensitivity and specificity measures of the statistically 
significant S-GAP-related temporal parameters (calculated 
using threshold values optimal for early screening) are de-
tailed in Table 4; ROC curves are plotted in Fig. (2). 

3.3. S-GAP-related Temporal Parameters and Sensitivity 
Measures in the Hungarian-Speaking Sample 

Regarding the Hungarian-speaking sample, 5 of the total 
15 S-GAP-related temporal parameters turned out to be sta-
tistically different between the MCI and the HC group. MCI 
patients’ utterance length was significantly shorter, while a 
higher duration rate of silent pauses and total pauses, as well 
as a higher average duration of silent pauses and total pauses 
characterized their speech (Table 5). 

With regard to the ROC analysis, the following 5 param-
eters turned out to be statistically significant (from highest to 
lowest AUCs): silent pause duration rate, utterance length, 
total pause duration rate, silent pause average duration, and 
total pause average duration. Sensitivity was above 90% in 

Table 2. Means (standard deviations) of participants’ demographic characteristics and neuropsychological test scores in the Eng-
lish-speaking and Hungarian-speaking samples. 

English-Speaking Sample - Hungarian-Speaking Sample 

HC 
(n = 19) 

MCI 
(n = 14) 

- 
HC 

(n = 20) 
MCI 

(n = 13) 

- Demographic characteristics - 

5/14 6/8 Gender (male/female) 3/17 4/9 

74.47 (7.321) 72.36 (6.857) Age (years) 69.90 (5.609) 73.77 (4.969) 

17.84 (3.532) 16.79 (3.118) Education (years) 13.15 (2.455) 11.77 (2.743) 

- Neuropsychological test scores - 

29.16 (1.015) 27.71 (1.773) MMSE 28.85 (0.813) 26.31 (0.751) 

8.89 (1.197) 9.21 (1.188) CDT 7.60 (3.152) 7.92 (2.178) 

3.16 (2.853) 5.50 (2.822) GDS-30 / GDS-15 1.65 (1.387) 2.77 (1.013) 

Abbreviations: HC: healthy control; MCI: mild cognitive impairment; MMSE: Mini-Mental State Examination; CDT: Clock Drawing Test; GDS-30: Geriat-
ric Depression Scale (30-item); GDS-15: Geriatric Depression Scale (15-item). 
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Table 3. Descriptive statistics (means and standard deviations) and group comparisons in the English-speaking sample using the 
independent samples t-test / Mann-Whitney U test. 

English-Speaking Sample M (SD) Test STATISTICS 

S-GAP-Related Parameters 
HC 

(n = 19) 
MCI 

(n = 14) 
t-test / 

Mann-Whitney U TEST 
p 

Utterance length (s) 275.33 (120.02) 201.94 (135.07) U = 82.000; Z = -1.858 0.065 

Articulation tempo (1/s) 8.88 (1.21) 6.78 (1.32) t(31) = 4.732 0.000* 

Speech tempo (1/s) 10.07 (1.10) 8.02 (1.34) t(31) = 4.810 0.000* 

Silent pause occurrence rate (%) 9.43 (3.17) 12.11 (4.35) U = 85.000; Z = -1.748 0.084 

Filled pause occurrence rate (%) 2.55 (1.08) 3.63 (1.73) U = 79.000; Z = -1.967 0.050 

Total pause occurrence rate (%) 11.98 (3.55) 15.75 (4.34) t(31) = -2.736 0.010* 

Silent pause duration rate (%) 31.43 (8.72) 45.61 (12.05) t(31) = -3.927 0.000* 

Filled pause duration rate (%) 5.64 (3.23) 6.56 (5.22) U = 126.000; Z = -0.255 0.815 

Total pause duration rate (%) 37.07 (9.27) 52.17 (11.23) t(31) = -4.228 0.000* 

Silent pause frequency (1/s) 0.93 (0.30) 0.95 (0.28) t(31) = -0.139 0.890 

Filled pause frequency (1/s) 0.25 (0.09) 0.28 (0.14) U = 122.000; Z = -0.401 0.706 

Total pause frequency (1/s) 1.18 (0.33) 1.24 (0.30) t(31) = -0.453 0.653 

Silent pause average duration (s) 0.34 (0.07) 0.51 (0.18) t(15.802) = -3.108 0.007* 

Filled pause average duration (s) 0.21 (0.05) 0.21 (0.09) U = 105.000;Z = -1.020 0.321 

Total pause average duration (s) 0.31 (0.05) 0.44 (0.14) t(15.968) = -3.007 0.008* 

Abbreviations: M: mean; SD: standard deviation; HC: healthy control; MCI: mild cognitive impairment; *p-values indicating statistically significant differ-
ences (level of significance was set at p < 0.05). 

Table 4. Accuracy measures of S-GAP-related temporal parameters with statistically significant classification ability in the Eng-
lish-speaking sample using ROC analysis. 

English-Speaking Sample Accuracy Measures 

S-GAP-Related Parameters p AUC 95% CI- 95% CI+ 
Threshold 

Value 
Sensitivity 

(%) 
Specificity 

(%) 

Speech tempo (1/s) 0.000 0.891 0.784 0.998 9.843 100 63.2 

Articulation tempo (1/s) 0.000 0.891 0.779 1.000 8.772 100 57.9 

Total pause duration rate (%) 0.001 0.846 0.711 0.980 36.689 85.7 52.6 

Silent pause duration rate (%) 0.001 0.835 0.695 0.974 32.398 85.7 63.2 

Silent pause average duration (s) 0.003 0.808 0.654 0.963 0.346 85.7 52.6 

Total pause average duration (s) 0.006 0.782 0.614 0.950 0.329 78.6 57.9 

Total pause occurrence rate (%) 0.016 0.748 0.578 0.918 12.078 78.6 52.6 

Filled pause occurrence rate (%) 0.049 0.703 0.524 0.882 2.567 78.6 52.6 

Abbreviations: ROC: receiver operating characteristics; AUC: area under the curve; CI: confidence interval; (level of significance was set at p < 0.05). 
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Fig. (2). ROC curves for S-GAP-related temporal parameters with the highest (above 90%) sensitivity for discriminating between MCI and 
HC participants in the English-speaking sample (speech tempo and articulation tempo). Abbreviations: ROC: receiver operating characteris-
tics; HC: healthy control; MCI: mild cognitive impairment. 

Table 5. Descriptive statistics (means and standard deviations) and group comparisons in the Hungarian-speaking sample using 
the independent samples t-test / Mann-Whitney U test. 

Hungarian-Speaking Sample M (SD) Test Statistics 

S-GAP-Related Parameters 
HC 

(n = 20) 
MCI 

(n = 13) 
t-test / 

Mann-Whitney U Test 
p 

Utterance length (s) 155.06 (70.21) 107.82 (87.65) U = 66.000; Z = -2.358 0.018* 

Articulation tempo (1/s) 9.90 (1.97) 8.63 (1.75) t(31) = 1.878 0.070 

Speech tempo (1/s) 10.67 (1.87) 9.47 (1.62) t(31) = 1.894 0.068 

Silent pause occurrence rate (%) 4.88 (1.64) 5.91 (1.83) t(31) = -1.678 0.103 

Filled pause occurrence rate (%) 2.69 (1.83) 3.28 (2.10) U = 112.000; Z = -0.663 0.524 

Total pause occurrence rate (%) 7.58 (3.13) 9.20 (3.37) U = 94.500; Z = -1.308 0.194 

Silent pause duration rate (%) 23.49 (9.72) 32.46 (8.16) t(31) = -2.750 0.010* 

Filled pause duration rate (%) 6.26 (4.10) 7.03 (4.68) t(31) = -0.494 0.625 

Total pause duration rate (%) 29.76 (11.81) 39.49 (11.07) t(31) = -2.367 0.024* 

Silent pause frequency (1/s) 0.49 (0.11) 0.54 (0.13) t(31) = -1.008 0.321 

Filled pause frequency (1/s) 0.26 (0.14) 0.28 (0.15) t(31) = -0.336 0.739 

Total pause frequency (1/s) 0.76 (0.21) 0.83 (0.22) U = 108.000; Z = -0.811 0.434 

Silent pause average duration (s) 0.47 (0.18) 0.62 (0.17) U = 70.000; Z = -2.211 0.027* 

Filled pause average duration (s) 0.21 (0.06) 0.24 (0.10) U = 123.000; Z = -0.258 0.813 

Total pause average duration (s) 0.39 (0.14) 0.48 (0.10) U = 73.000; Z = -2.100 0.036* 

Abbreviations: M: mean; SD: standard deviation; HC: healthy control; MCI: mild cognitive impairment; *p-values indicating statistically significant differ-
ences (level of significance was set at p < 0.05). 
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Table 6. Accuracy measures of S-GAP-related temporal parameters with statistically significant classification ability in the Hun-
garian-speaking sample using ROC analysis. 

Hungarian-Speaking Sample Accuracy Measures 

S-GAP-Related Parameters p AUC 95% CI- 95% CI+ 
Threshold 

Value 
Sensitivity 

(%) 
Specificity 

(%) 

Silent pause duration rate (%) 0.018 0.746 0.579 0.914 24.191 92.3 60.0 

Utterance length (s) 0.018 0.746 0.558 0.934 132.345 76.9 60.0 

Total pause duration rate (%) 0.020 0.742 0.573 0.912 27.280 92.3 55.0 

Silent pause average duration (s) 0.027 0.731 0.551 0.910 0.438 84.6 55.0 

Total pause average duration (s) 0.036 0.719 0.537 0.902 0.349 92.3 55.0 

Abbreviations: ROC: receiver operating characteristics; AUC: area under the curve; CI: confidence interval; (level of significance was set at p < 0.05). 

the case of three parameters, with the highest specificity for 
silent pause duration rate (sensitivity: 92.3%; specificity: 
60.0%) while lower for total pause duration rate (sensitivity: 
92.3%; specificity: 55.0%), and total pause average duration 
(sensitivity: 92.3%; specificity: 55.0%). 

Sensitivity and specificity measures of the statistically 
significant temporal parameters (calculated at optimal 
threshold values) are detailed in Table 6; ROC curves are 
plotted in Fig. (3). 

To examine whether the S-GAP-related parameters have 
different classification abilities in the two languages, pair-
wise comparisons of AUCs were executed between the Eng-
lish- and Hungarian-speaking samples. The analysis showed 
that the AUCs did not differ significantly regarding any of 
the 15 S-GAP-related parameters between the two language 
groups (Table 7). 

3.4. Inter-Language Group Comparisons of S-GAP-
related Temporal Parameters 

Besides our main goal of exploring the S-GAP-related 
temporal parameters separately in the two language samples, 
inter-language comparisons were also carried out as addi-
tional analyses between the English-speaking vs. Hungarian-
speaking HC group and the English-speaking vs. Hungarian-
speaking MCI group (Table 8). Regarding the HC group, 8 
S-GAP-related parameters showed statistically significant 
differences between the English- and Hungarian-speaking 
samples, which were the following: utterance length (E-HC 
> H-HC), silent pause occurrence rate (E-HC > H-HC), total 
pause occurrence rate (E-HC > H-HC), silent pause duration 
rate (E-HC > H-HC), total pause duration rate (E-HC > H-
HC), silent pause frequency (E-HC > H-HC), total pause 
frequency (E-HC > H-HC), and silent pause average dura-
tion (H-HC > E-HC). Regarding the MCI group, 9 signifi-
cantly different parameters were revealed again: utterance 
length (E-MCI > H-MCI), articulation tempo (H-MCI > E-
MCI), speech tempo (H-MCI > E-MCI), silent pause occur-
rence rate (E-MCI > H-MCI), total pause occurrence rate (E-
MCI > H-MCI), silent pause duration rate (E-MCI > H-
MCI), total pause duration rate (E-MCI > H-MCI), silent 
pause frequency (E-MCI > H-MCI), and total pause frequen-
cy (E-MCI > H-MCI). 

 

4. DISCUSSION 

The aim of this international study was to validate the S-
GAP Test®, a novel spontaneous speech analyzer (originally 
developed for the Hungarian language), in an English-
speaking sample for the purpose of MCI-recognition. The 
major objective was to develop a neuropsychological screen-
ing method, which is sensitive to in multiple languages and 
provides clinicians with a simple and quick way for the 
screening of MCI. For this purpose, automatic analysis of 
spontaneous speech was carried out by applying ASR. This 
is the first study conducted with both English- and Hungari-
an native speakers in which the same method was applied to 
explore the acoustic parameters of spontaneous speech in 
MCI and HC subjects. 

To summarize the 10-year development process of the S-
GAP Test®, the first main finding was the discovery of sig-
nificant differences between the mild stage of AD and HC 
regarding speech tempo and hesitation ratio [10]; subse-
quently, its usefulness was also demonstrated in the prodro-
mal stage of AD since the proposed acoustic biomarkers 
carried significant information on the separation of MCI 
from HC [13]. In parallel with the introduction of MCI as a 
target group, another important step in the development pro-
cess was the implementation of automatic analysis instead of 
manual counting. Through the efforts toward the automatic 
extraction of acoustic features, a machine learning model 
was constructed [13, 15]. The automatically selected feature 
sets were found to be superior to the manually constructed 
ones used for MCI detection [14]. Extending the previous 
studies, the applicability of the S-GAP Test® was demon-
strated in differentiation not only between MCI and HC but 
also between MCI and mild AD patients by relying on auto-
matically extracted acoustic markers of spontaneous speech 
[17, 33]. Before the present study, the S-GAP Test® was 
applied to a total of 95 HC, 105 MCI, and 35 mild AD indi-
viduals. 

4.1. Main Findings 

Present results indicated that analysis of spontaneous 
speech using the S-GAP Test® is sensitive to detect MCI 
cases not only in native Hungarian-speaking but in native 
English-speaking populations as well. Four temporal param-
eters that differed significantly between the HC and MCI 
groups both in the English-speaking and in the Hungarian-
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Fig. (3). ROC curves for temporal parameters with the highest (above 90%) sensitivity for discriminating between MCI and HC participants 
in the Hungarian-speaking sample (silent pause duration rate, total pause duration rate, and total pause average duration). Abbreviations: 
ROC: receiver operating characteristics; HC: healthy control; MCI: mild cognitive impairment. 

Table 7. Pairwise comparison of the English- and Hungarian-speaking samples’ AUCs regarding the 15 S-GAP-related temporal 
parameters of speech. 

- AUC Pairwise Comparisons 

S-GAP-Related Parameters English-Speaking Sample 
Hungarian-Speaking 

Sample 
z- statistic p 

Utterance length (s) 0.692 0.746 0.384 0.701 

Articulation tempo (1/s) 0.891 0.692 1.741 0.082 

Speech tempo (1/s) 0.891 0.685 1.828 0.068 

Silent pause occurrence rate (%) 0.680 0.658 0.163 0.871 

Filled pause occurrence rate (%) 0.703 0.569 0.931 0.352 

Total pause occurrence rate (%) 0.748 0.637 0.827 0.408 

Silent pause duration rate (%) 0.835 0.746 0.784 0.433 

Filled pause duration rate (%) 0.528 0.508 0.120 0.904 

Total pause duration rate (%) 0.846 0.743 0.927 0.354 

Silent pause frequency (1/s) 0.541 0.631 0.600 0.548 

Filled pause frequency (1/s) 0.541 0.523 0.119 0.905 

Total pause frequency (1/s) 0.560 0.585 0.169 0.866 

Silent pause average duration (s) 0.808 0.731 0.630 0.529 

Filled pause average duration (s) 0.605 0.527 0.492 0.623 

Total pause average duration (s) 0.782 0.719 0.486 0.627 

Abbreviations: AUC: area under the curve; (level of significance was set at p < 0.05). 
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Table 8. Inter-language comparisons of the S-GAP-related temporal parameters of speech using the independent samples t-test / 
Mann-Whitney U test. 

S-GAP-Related Parameters 

E-HC vs. H-HC E-MCI vs. H-MCI 

t-test / 
Mann-Whitney U Test 

p 
t-test / 

Mann-Whitney U Test 
p 

Utterance length (s) t(28.729) = 3.794 0.001* U = 47.000; Z = -2.135 0.033* 

Articulation tempo (1/s) t(31.801) = -1.949 0.060 t(25) = -3.120 0.005* 

Speech tempo (1/s) t(31.081) = -1.219 0.232 t(25) = -2.529 0.018* 

Silent pause occurrence rate (%) t(26.715) = 5.570 0.000* U = 8.000; Z = -4.028 0.000* 

Filled pause occurrence rate (%) U = 179.000; Z = -0.309 0.771 U = 74.000; Z = -0.825 0.430 

Total pause occurrence rate (%) U = 65.000; Z = -3.512 0.000* t(25) = 4.347 0.000* 

Silent pause duration rate (%) t(37) = 2.678 0.011* t(25) = 3.293 0.003* 

Filled pause duration rate (%) U = 174.000; Z = -0.450 0.667 U = 85.000; Z = -0.291 0.793 

Total pause duration rate (%) t(37) = 2.142 0.039* t(25) = 2.951 0.007* 

Silent pause frequency (1/s) t(23.309) = 5.898 0.000* t(25) = 4.652 0.000* 

Filled pause frequency (1/s) t(37) = -0.400 0.691 U = 89.000; Z = -0.097 0.943 

Total pause frequency (1/s) U = 55.000; Z = -3.793 0.000* U = 17.000; Z = -3.591 0.000* 

Silent pause average duration (s) U = 110.000; Z = -2.248 0.024* t(25) = -1.537 0.137 

Filled pause average duration (s) U = 148.000; Z = -1.180 0.247 U = 73.000; Z = -0.873 0.402 

Total pause average duration (s) U = 141.000; Z = -1.377 0.175 t(25) = -0.789 0.437 

Abbreviations: E-HC: English-speaking sample - healthy control; E-MCI: English-speaking sample - mild cognitive impairment; H-HC: Hungarian-speaking 
sample - healthy control; H-MCI: Hungarian-speaking sample - mild cognitive impairment; *p-values indicating statistically significant differences (level of 
significance was set at p< 0.05). 

speaking samples are: MCI patients showed higher silent 
pause duration rate, total pause duration rate, silent pause 
average duration, and total pause average duration. Based on 
this finding, these parameters might be sensitive biomarkers 
of MCI in both languages. 

Additional to the above-mentioned four temporal param-
eters, the English-speaking MCI group also showed lower 
articulation tempo and speech tempo compared to HC. The 
importance of these linguistic features in mild AD or MCI 
has been previously demonstrated in the Hungarian lan-
guage, using both manual calculation and automatic analysis 
[10, 13, 16, 17, 33]. Interestingly, in our previous studies, 
Hungarian-speaking MCI/AD patients also showed a reduc-
tion in articulation and speech tempo, while in the present 
sample this difference was only tendentious. A possible ex-
planation of this might be the difference in the task that was 
implemented for speech elicitation: namely, in our previous 
studies, a film description task was used in which the partic-
ipants had to retell the events of a specially designed, one-
minute long silhouette animation, instead of the previous day 
task applied in the present study. 

ROC analysis clearly distinguished the English-speaking 
MCI cases from HCs based on speech tempo and articulation 
tempo with 100% sensitivity and further three parameters 
with very high sensitivity (85.7%) at moderate specificity. In 
the Hungarian-speaking groups, ROC analysis showed high 
sensitivity values for silent and total pause duration rate and 

also for total pause average duration (92.3%). These results 
suggest that the S-GAP Test® might indicate MCI more sen-
sitively in the English-speaking than in the Hungarian-
speaking sample. 

Higher number and/or length of pauses, and the decrease 
of articulation/speech tempo have been described in a num-
ber of studies examining varying degrees of cognitive im-
pairment, however, with different methodologies and using 
various types of tasks such as spontaneous speech [61-63], 
narrative recall [21], picture description [32], or reading 
aloud [2, 24, 43]. 

Pause-related features indicate retrieval difficulties [12] 
related to degeneration in hippocampal brain regions [64], 
and they are also associated with atrophy of grey matter in 
the frontopolar (or Brodmann) area [65] which has a role in 
higher-order cognitive functions like memory retrieval [66] 
or multitasking [67]. It is hypothesized that an increase in the 
number or duration of pauses demonstrates the increase in 
the cognitive load required for maintaining one’s train of 
thought during speech [28]. Although these changes might 
not always be perceptible to the ear, speech analysis indi-
cates that silence might be a significant marker of planning, 
word-retrieval, and executive difficulties due to cognitive 
deterioration [2, 61]. Language functions in general (e.g. 
measured by naming or verbal fluency tasks) also show a 
correlation with grey matter volume of the left temporal lobe 
in MCI and AD [68]. 
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It is important to note that metrics regarding the diagnos-
tic accuracy of language functions have been reported in 
variants of primary progressive aphasia [69] but earlier in-
vestigations of MCI/AD did not focus on this [21, 22]. How-
ever, in recent years more data related to this field have been 
reported [16, 17, 28, 29, 33, 70]. For example, the classifica-
tion sensitivity of linguistic and phonetic features of con-
nected speech by automated assessment of the Cookie Theft 
picture description task was 85% between HC and AD/MCI 
cases in a Canadian-Mexican co-operation study [70]. The 
diagnostic utility of automatic speech analysis for recorded 
vocal tasks has also been previously demonstrated in a 
French-speaking population with 79% or 86% classification 
accuracy between HC and MCI [28, 29]. As for the previous 
investigations of our research group, the irregularities in 
MCI speech and language were demonstrated by 68% sensi-
tivity in the differentiating MCI from HC [17]. This result, 
however, was based on a different language elicitation task, 
i.e. a video description (as mentioned earlier). Comparing 
results of the present study with previous ones, the S-GAP 
Test® applied for English- and Hungarian-speaking MCI 
populations has shown a relatively high sensitivity. 

4.2. Limitations and Considerations 

A limitation of this pilot study was the small sample size 
and particularly the low number of MCI participants, which 
represent the main drawback regarding statistical power. 
However, this disadvantage was compensated by careful 
examination of the patients included in the study with the 
aim of excluding other confounding factors. Taking into 
consideration that this research was intended as a pilot to 
find those temporal parameters (from the full set of 15) with 
the highest differentiating potential for embedding in a future 
mobile application, multiple correction testing was not ap-
plied for the statistical comparisons. This needs to be taken 
into account when interpreting the results. 

Regarding the sensitivity and specificity of temporal pa-
rameters, the optimal threshold values were defined to max-
imize sensitivity, which, as a result of a trade-off between 
the two measures, decreased specificity (although it exceed-
ed 50% in every case). Given that the goal was to create an 
early MCI screening tool specifically targeting high-risk 
individuals (e.g. people above the age of 60) and considering 
the serious consequences of undiagnosed MCI (mainly the 
possibility of converting to dementia [71], reaching a high 
true positive rate was prioritized. 

Before applying the S-GAP Test® internationally in clini-
cal settings, the observed inter-language differences (E-HC 
vs. H-HC; E-MCI vs. H-MCI) emphasize the need for gath-
ering normative data for international adaptations. In our 
present sample, English-speaking individuals on average 
produced longer monologues regarding their previous day, 
while they talked slower and their speech contained more 
pauses compared to the Hungarian-speaking participants. 
These language differences will have to be taken into ac-
count during the setting of screening thresholds in different 
countries as temporal features indicative of HC/MCI speech 
can have substantially different mean values in each lan-
guage. 

CONCLUSION 

In summary, the results of the S-GAP Test® in the Eng-
lish- and Hungarian native speaker populations suggest that 
similar changes in temporal parameters of spontaneous 
speech detected by ASR can be observed across different 
languages. Based on these findings, it could be suggested 
that the S-GAP Test® has the potential to become a useful 
method for early MCI screening both in English-speaking 
and Hungarian-speaking populations. An early and accurate 
diagnosis of cognitive deficits would be of much help for 
patients and their families in order to plan for the future and 
to start early treatment. However, it is important to state that 
this method can only be the first step in the diagnostic pro-
cess of MCI, as it is not intended to be a complete substitute 
for a detailed clinical examination. 

In the future, an S-GAP Test®-based speech analysis 
might permit the screening and research evaluation of pro-
dromal stages of different types of dementia through a com-
puterized, interactive smart phone application (which is cur-
rently under development in co-operation with the Institute 
of Informatics at the University of Szeged, Hungary). This 
could be a low-cost, noninvasive, non-stressful method that 
allows quick, easy, and remote assessment. A further ad-
vantage of this method is that the recording of spontaneous 
speech (in a phone call-like setting) is less stressful for the 
patient than a neuropsychiatric test. Additionally, this ap-
proach might also serve as an objective measurement for the 
efficacy of pharmacotherapy and drug candidate molecules 
in cognitive impairment. 

LIST OF ABBREVIATIONS  

AD = Alzheimer’s Disease 

ASR = Automatic Speech Recognition 

AUC = Area Under Curve 

CDT = Clock Drawing Test 

CT = Computed Tomography 

DNN = Deep Neural Network 

GDS = Geriatric Depression Scale 

HC = Healthy Control 

HMM = Hidden Markov Model 

IT = Information Technology 

M = Mean 

MCI = Mild Cognitive Impairment 

MRI = Magnetic Resonance Imaging 

MMSE = Mini-Mental State Examination 

ROC = Receiver Operating Characteristic 

s = Second 

SD = Standard Deviation 

S-GAP Test® = Speech-Gap Test® 
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