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The automatic detection of conflict situations from human speech has several straightforward applications
such as the surveillance of public spaces, providing feedback about employees in call centers, and other roles
in human-computer interactions. In this study we examine the potential of different state-of-the-art feature
extraction techniques, all developed to be able to efficiently represent a variable-length speech utterance by a
fixed-length feature vector. Besides the ‘ComParE functionals’ attribute set, which became the de facto standard
feature set in the area of computational paralinguistics (which focuses on the automatic assessment of non-
verbal phenomena being present in human speech), we experiment with two methods introduced quite recently:
Bag-of-Audio-Words (BoAW) and Fisher Vectors (FV). Using three standard basic, low-level feature sets, we
found that, while BOAW proved to be quite sensitive to its meta-parameter settings, with Fisher Vectors we were
able to achieve state-of-the-art conflict intensity estimation performance on a public and widely-used corpus.
Furthermore, by applying Principal Component Analysis on the frame-level attributes, we managed to achieve
a 30% speed-up in the feature extraction step. Interestingly, in contrast with our previous paralinguistic studies,
combining the different predictions with these feature extraction approaches, we were unable to achieve any
further significant improvement. The highest correlation coefficient values we got on the test set lay in the
range 0.850-0.860, while the authors of several previous studies were able to achieve similar values (i.e.
0.849, 0.856 and 0.853). Considering that in this task the target score to be estimated (i.e. the intensity of the
conflict being present in the actual clip) is definitely prone to subjectivity and therefore to label noise, current
efforts have probably achieved the highest correlation coefficients attainable, and match human performance.

1. Introduction straightforward applications for automatic conflict detection, such as

helping security in public or publicly accessible areas, and monitor-

Conflicts are an inherent part of everyday human communication,
either in their personal or in their public life. In a conflict situa-
tion, the people involved are pursuing incompatible goals (Hocker &
Wilmot, 1995); each party involved perceives that their interests are
being opposed or adversely affected by the other party (Rubin et al.,
1994). This usually can lead to conversations being more intense than
usual, manifesting itself in raised voices and in a greater number of
interruptions (Kim et al., 2014).

Unfortunately, conflicts are one of the main causes of stress (Spector
& Jex, 1998), and long-term stress leads to both mental and physical
health problems such as depression, high blood pressure and eating dis-
orders; therefore, early detection of conflict situations (and, of course,
preventing their escalation) would be useful. With the rise of socially
intelligent technologies, the automatic detection of conflicts could be
the first step of handling them properly. Besides this, there are also

ing incoming calls in call centers, where important feedback of the
employees includes how they are able to handle conflicted situations.

Although indicators of conflict can be found in the use of specific
words and phrases, in conversations conflicts are mostly expressed by
non-verbal messages such as gestures, facial expressions, interruptions,
prosody and speech intensity. For example, in the heat of a debate
speakers tend to interrupt each other more frequently than usual, which
leads to a more frequent occurrence of overlapping speech (Cooper,
1986; Ferguson, 1977), increasing speech signal intensity (i.e. volume)
and articulation tempo (Kim et al., 2012).

It has also been shown that, to estimate the intensity of conflicts,
non-verbal cues present in the speech of the parties involved contain
most of the information, while the visual cues (i.e. gestures and facial
expressions) offer no additional significant information (Kim et al.,

* Correspondence to: University of Szeged, Institute of Informatics, Szeged, Hungary.

E-mail address: ggabor@inf.u-szeged.hu.

https://doi.org/10.1016/j.eswa.2022.117613

Received 31 May 2020; Received in revised form 15 July 2021; Accepted 15 May 2022

Available online 28 May 2022
0957-4174/© 2022 Elsevier Ltd. All rights reserved.


http://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
mailto:ggabor@inf.u-szeged.hu
https://doi.org/10.1016/j.eswa.2022.117613
https://doi.org/10.1016/j.eswa.2022.117613
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2022.117613&domain=pdf

G. Gosztolya

2012). Therefore, most scientific studies focus just on the audio signal,
and ignore visual cues (see e.g. Caraty & Montacié, 2015; Kim et al.,
2014, 2012; Rajan et al., 2019); of course, in some cases, the latter
are also exploited (Georgakis et al., 2017; Panagakis et al., 2014). For
the case of automatic conflict detection methods, this in practice means
that it is sufficient to process just the speech of the subjects, while the
video track (if any) can be discarded.

In this study, we will focus on conflict detection from audio. More
precisely, we perform conflict intensity estimation: instead of just
seeking to determine the presence of conflict situations, we also attempt
to estimate how severe the actual disagreement was. From a machine
learning perspective, this means that we should interpret our task as a
regression one, where the target value corresponds to the actual conflict
strength, instead of solving a binary classification task with the two
classes “conflict” and “no conflict”. From a wider perspective, this task
belongs to the general domain of computational paralinguistics, which
focuses on the non-verbal content of human speech (Schuller & Batliner,
2013).

Computational paralinguistics, despite being a relatively young field
inside speech technologies, has already developed its standard set of
tools and approaches. Although there exist some studies that apply
AdaBoost.MH (Gosztolya et al., 2014; Schmitt & Minker, 2012), the
extreme learning machine (Kaya & Salah, 2014) and Deep Neural
Networks (Grész et al., 2015; Huckvale & Beke, 2017), the standard
method of machine learning applied is still that of Support Vector
Machines (SVMs, Scholkopf et al., 2001). Regarding evaluation metrics,
depending on the actual dataset, Pearson’s or Spearman’s correlation
coefficient (CC) have become the standard (Grzybowska & Kacprzak,
2016; Kaya & Karpov, 2016; Schuller et al., 2016; Sztah¢ et al., 2015).
As for classification problems, due to the imbalanced distribution of
recordings corresponding to the classes (mirroring real-life distribution
of specific events such as the different emotions), the so-called Un-
weighted Average Recall (UAR, Schuller et al., 2013) metric is normally
used, which involves taking the mean of the class-wise recall scores.

In contrast, presently there is no consensus on which types of
features are worth extracting from the speech recordings. Of course, the
audio pre-processing scheme of calculating the spectral representation
of the speech signal, and taking the Mel-scale filter band energies is
borrowed from the automatic speech recognition (ASR) task. This leads
to the concept of frames, i.e. small, equal-sized speech excerpts, usually
calculated with a 10 ms step interval (i.e. we have 100 frames for each
second of an utterance). In ASR, however, frame-level feature vectors
can be used in the next step directly, as there the main classification
step (namely phoneme classification) is performed at the frame level.
(After this local phoneme classification step, the local class-conditional
probability estimates are combined via a Hidden Markov Model to
produce utterance-level hypotheses Bourlard & Morgan, 1994.)

In computational paralinguistics, however, where classification or
regression is done at the segment level (e.g. treating each utterance as
an independent example), simple frame-level feature extraction is not
enough by itself. The reason for this is simple: most classification and
regression methods require a fixed-size feature vector for each instance;
however, in computational paralinguistics each utterance corresponds
to one such instance, and the number of its frames is proportional to
the duration, which is subject to vary. To apply these machine learning
algorithms, we need feature extraction methods that can provide a
feature vector with a size that is independent of the length of the
recordings.

In this study we tested three such feature extraction approaches,
which all rely on the frame-level feature vectors of the given utterance,
but summarize them at the segment level in a completely different
way. The first approach (‘ComParE functionals’) utilizes functions such
as mean, standard deviation, and percentile statistics (Schuller et al.,
2013). Bag-of-Audio-Words (or BoAW, Pancoast & Akbacak, 2012)
defines clusters over the frame-level feature vectors; then, for a given
utterance, the BOAW procedure categorizes each frame into one of these
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Table 1
Some key properties of the SSPNet Conflict Corpus.

Set No. of clips Total duration Conflict scores
Training 793 6:36:13 -0.68 + 3.98
Development 240 2:00:00 -0.21 + 3.75
Test 397 3:18:16 —0.58 + 3.98
Total 1430 11:54:29 —-0.58 + 3.94

pre-defined clusters, and calculates the utterance-level feature vector
as the frequency of the clusters. In contrast, the Fisher Vectors (or
FV, Jaakkola & Haussler, 1998) representation models the distribution
of the frame-level feature vectors via some generative method, usually
by Gaussian Mixture Models (GMMs, Rabiner & Juang, 1993). The
feature vector of an utterance is determined by measuring the change
in the model parameters (e.g. mean and standard deviation of the
Gaussian components in the case of GMMSs) when it is adjusted to best
fit the frames of the actual recording. To the best of our knowledge,
this is the first study ever to utilize the Bag-of-Audio-Words and Fisher
Vector techniques for conflict detection.

The structure of this paper is as follows. In Section 2, we introduce
the SSPNet Conflict corpus, which will be used in our experiments.
Then, in Section 3, we briefly present the ComParE functionals feature
extraction approach. Similarly, we describe the Bag-of-Audio-Words
and the Fisher Vectors methods in Sections 4 and 5, respectively.
We commence with a detailed explanation of our experimental setup
in Section 6; then, in Section 7 we present and analyze our experi-
mental results. Finally, in Section 9 we discuss classifier combination
experiments.

2. The SSPNet Conflict Corpus

The SSPNet Conflict Corpus (Kim et al., 2014) contains recordings
of Swiss French political debates taken from the TV channel “Canal9”.
It consists of 1430 recordings, 30 s each, making a total of 11 h and
55 min. The ground truth level of conflicts was determined by manual
annotation performed by volunteers who did not understand French
(French-speaking people were excluded from the list of annotators).
Each 30-second long clip was tagged by 10 annotators; in the end each
recording was assigned a score in the range [-10, 10], 10 denoting a
very high level of conflict and —10 denoting the absence of conflicts.
Although the database contains both audio and video recordings, fol-
lowing previous studies (see e.g. Brueckner & Schuller, 2015; Caraty &
Montacié, 2015; Kaya, Ozkaptan et al., 2015; Résénen & Pohjalainen,
2013), we will rely on the audio data only, and discard the video track.

The audio clips of this dataset were later used in the Conflict
sub-challenge of the Interspeech 2013 Computational Paralinguistic
Challenge (or ComParE 2013 Schuller et al., 2013). Besides completely
discarding video data, other steps were made to standardize the work
on this dataset, and this setup has since been adopted by most re-
searchers. Perhaps the most important one was that, instead of relying
on cross-validation as Kim et al. did (Kim et al., 2014), separate training
and test sets were defined. Some key properties of the whole SSPNet
Conflict corpus and the training, development and test subsets can be
seen in Table 1, while the distribution of the conflict scores is shown
in Fig. 1. It can be seen that there are more clips with smaller conflict
intensity values than those with high ones. Clearly, the distribution
of the conflict scores is quite similar for all three subsets; overall the
development set has a slightly higher mean conflict score, but the
difference is probably not statistically significant.

The standard evaluation metrics used for this dataset were also
defined in the ComParE challenge. Schuller et al. admitted that this was
mainly a regression task and used Pearson’s correlation coefficient (CC)
to measure the performance. They, however, also converted the task
into a binary classification one, defining the classes low and high based
on the sign of the conflict score (Schuller et al., 2013). Classification
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Fig. 1. Distribution of the conflict intensity of the clips in the training (left), development (middle) and test sets (right).

Table 2

Pearson’s Correlation Coefficient (CC) and UAR scores given in the literature for the test set of the SSPNet Conflict

Corpus, following the ComParE 2013 setup. “—” means that the given score was not provided.
Method CcC UAR
2013 ComParE Challenge baseline (Schuller et al., 2013) 0.816 80.8%
Speaker overlap (Grézes et al., 2013) - 83.1%
Random Subset Feature Selection (Rdsdnen & Pohjalainen, 2013) 0.826 83.9%
Speaker overlap + prosodic features (Brueckner & Schuller, 2015) 0.838 84.3%
SLCCA Feature Selection (Kaya, Ozkaptan et al., 2015) - 84.6%
Speaker Interruption (Caraty & Montacié, 2015) - 85.3%
Greedy Forward Feature Selection (Gosztolya, 2015) 0.835 85.6%
Greedy Forward + Backward Feature Selection (Gosztolya, 2015) 0.842 85.1%
Ensemble Nystrom method (Huang et al., 2014) 0.849 -
Predicted Speaker Overlap (Gosztolya & Téth, 2017) 0.816 -
Feature Selection + Predicted Speaker Overlap (Gosztolya & Téth, 2017) 0.856 -
Spectrogram-based CNN (Segura et al., 2016) 0.793 78.4%
End-to-end CNN + Average Pooling + Attention (Rajan et al., 2019) 0.853 84.3%

accuracy was measured by the Unweighted Average Recall (UAR)
value; this metric was used both in the Challenge (e.g. Grezes et al,,
2013; Résdnen & Pohjalainen, 2013), and it has been used in research
studies since then (e.g. Brueckner & Schuller, 2015; Caraty & Montacié,
2015; Kaya, Ozkaptan et al., 2015). In our view, treating this task as
a regression one is the proper approach, partly because representing
conflict intensity as a numeric value contains more information than a
binary class label, and also because we found that optimizing for the
CC value leads to more robust models than maximizing the UAR score.
(For details, see Gosztolya (2015).) Due to this, in this study we will
primarily rely on the CC metric, and also include the UAR scores.
Table 2 lists the notable scores published in the literature for this
dataset. It also shows specific trends: most of the early attempts either
applied feature selection (Gosztolya, 2015; Kaya, Ozkaptan et al., 2015;
Résdnen & Pohjalainen, 2013) or utilized the amount of speaker overlap
in some way (Brueckner & Schuller, 2015; Caraty & Montacié, 2015;
Gosztolya & Téth, 2017; Grézes et al., 2013). We may also notice that
more recent studies tend to utilize Deep Neural Networks in some
way (Gosztolya & T6th, 2017; Rajan et al., 2019; Segura et al., 2016).

3. The ComParE functionals feature set

As the first utterance-level feature extraction approach, we used
the ‘ComParE functionals’ attributes developed by Schuller et al.
(2013). The feature set includes energy, spectral, cepstral (MFCC) and
voicing related frame-level features, from which specific functionals
(e.g. mean, standard deviation, 1st and 99th percentiles, peak statistics
etc.) are computed to provide utterance-level feature values. From the
65 frame-level attributes and their first-order derivatives, an utterance-
level set with 6373 features is calculated overall. Over the years since
its introduction, the ComParE functionals feature set, without a doubt,
has evolved into the de facto standard solution for computational par-
alinguistics, and was utilized, among others, in tasks such as estimating
speaker age (Grzybowska & Kacprzak, 2016), sleepiness (Schuller et al.,

2017), sincerity (Schuller et al., 2016) and determining whether the
speaker has a cold (Schuller et al., 2017). This feature set was extracted
by using the openSMILE tool (Eyben et al., 2010).

4. Bag-of-audio-words representation

The second utterance representation technique we employed in this
study is the Bag-of-Audio-Words approach. Although it is not as popular
as ComParE functionals, in the past few years it has been used on a
wide variety of tasks such as multimedia event classification (Pancoast
& Akbacak, 2012), emotion recognition (Pokorny et al., 2015; Schmitt,
Ringeval et al., 2016), acoustic event detection (Lim et al., 2015), snore
sound classification (Schmitt, Janott et al., 2016) and determining
whether a speaker has a cold (Schuller et al., 2017).

The BoAW approach, similarly to the ComParE functionals ap-
proach, also relies on the frame-level feature vectors; for the first step,
we process the training set, where we perform a clustering on the set
of all the input frame-level feature vectors. The number of clusters
(N) is the key parameter of the method. The list of the resulting
cluster centroids will form the codebook. Next, each original feature
vector is replaced by a single index representing the nearest codeword
(vector quantization). The feature vector for each utterance will be
calculated by generating a histogram of these cluster indices; it is
common to further apply some kind of normalization technique such
as L1 normalization (i.e. divide each cluster count by the number of
frames in the given utterance). Since the number of clusters is a meta-
parameter of the BoAW method, each utterance will be represented
by a vector of the same length (i.e. N), independently of the original
length of the individual utterances. These fixed-length feature vectors
can be used for utterance-level classification (for example, by using a
Support Vector Machine) in the third step. For the mechanism of the
Bag-of-Audio-Words process, see Fig. 2.

Notice that the BoOAW representation can be readily calculated for
the test set as well: a feature vector unseen during the clustering
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Fig. 3. Workflow of the Fisher vector representation used for audio processing.

step (such as those of the test set) can be assigned to one of the
previously defined clusters based on its Euclidean distance from the
cluster centers. (See the lower path of Fig. 2.)

Over the years, several refinements have been proposed for the
original BOAW approach. For example, Pancoast and Akbacak argued
that simply choosing the nearest cluster center is a crude simplification
which in fact harms classification performance. To resolve it, they
proposed a soft quantization representation where the distance to the
nearest codeword is incorporated into the model, for example by choos-
ing a fixed number of closest cluster centers for each frame (Pancoast
& Akbacak, 2014). This trick is known to improve the classification
performance (see e.g. Pancoast & Akbacak, 2014; Vetrab & Gosztolya,
2019), and it does not increase the execution time of the BoAW
process significantly. Regarding the clustering step, Rawat et al. found
that using simple random sampling of the input frames as codewords
leads to similar accuracy scores to those using clustering for codebook
creation (Rawat et al., 2013), and it is evidently significantly faster.
For the above reasons, these modifications became standard practice,
hence we will also apply these improvements in our experiments.

5. Fisher Vectors

Recalling the motivation behind the Bag-of-Audio-Words technique,
a similar and perhaps even more informative representation approach
is that of Fisher vectors (Jaakkola & Haussler, 1998). Fisher vectors
were introduced in the image processing community, where a similar
problem arose as in computational paralinguistics: handling a vary-
ing number low-level descriptors for each object. That is, in image
processing first SIFT descriptors (describing occurrences of rotation-
and scale-invariant primitives Lowe, 2004) are extracted from the
images; of course, different images contain a different number of SIFT
descriptors. FVs solve this issue by modeling the distribution of SIFTs
using some generative method (e.g. Gaussian Mixture Models), and
then they measure the change in the model parameter values when it
is adjusted to best fit the SIFTs of the actual image.

The aim of the Fisher vector representation was to combine the
generative and discriminative machine learning approaches by deriving
a kernel from a generative model of the data (Jaakkola & Haussler,
1998). That is, let X = {x,,...,xy} be d-dimensional low-level feature
vectors extracted from an input sample, and let their distribution be

modeled by a probability density function p(X|0), © being the param-
eter vector of the model. The Fisher score describes X by the gradient
G} of the log-likelihood function, i.e.

1
G = 7 Vo log p(X|0). ¢h)

This gradient function practically corresponds to the direction in which
the model parameters (i.e. ©) should be changed to best fit the data.
Notice that the size of Gg is already independent of the number of
low-level feature vectors (i.e. of T'), and it depends only on the number
of model parameters (i.e. ©). The Fisher kernel between the sequences
X and Y is then defined as

K(X,Y)=GaF,'GY, 2
where Fj is the Fisher information matrix of p(X|0), defined as

Fg = Ex[Vglog p(X|©)V log p(X]€)" 1. ®3)
Expressing F' as F,' = LT Ly, we get the Fisher vectors as

Gy = LoGy = LoV log p(X|0). @

When we utilize Gaussian Mixture Models to model the distribution of
the low-level features (i.e. p(X|©)) and assume a diagonal covariance
matrix, the Fisher vector representation of an instance has a length of
twice the number of Gaussian components for each feature dimension.

To apply Fisher vectors to audio processing, it is straightforward to
use some standard frame-level features (e.g. MFCCs Rabiner & Juang,
1993) of the utterances as the low-level features (i.e. X). When using
GMMs, a parameter of the method is the number of Gaussian compo-
nents (N). The workflow of Fisher vectors used in audio processing is
shown in Fig. 3.

Fisher Vectors was only recently discovered in audio processing.
However, it has already been utilized for categorizing audio files as
speech, music and other (Moreno & Rifkin, 2010), for speaker veri-
fication (Tian et al., 2014; Zajic & Hriz, 2016), for emotion recog-
nition (Chen et al.,, 2016), for determining food type from eating
sounds (Kaya, Karpov et al., 2015), for identifying Orca sounds (Wu
et al., 2019), for detecting sleepiness (Gosztolya, 2019b), and for identi-
fying Parkinson’s disease (Egas Lopez et al., 2019) and depression (Jain
et al., 2014).
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6. Experimental setup
6.1. Frame-level feature sets

Although the ‘ComParE functionals’ attribute set was designed to
work on a specific frame-level feature set, both for the Bag-of-Audio-
Words approach and for Fisher Vectors we have the possibility of
employing various such feature sets. Of course, the choice of frame-
level features can be expected to influence the final regression perfor-
mance, but we cannot know in advance which type of attributes lead to
the best classification or regression scores. Therefore, we tested three
frame-level feature sets for these two utterance-level feature extraction
techniques. The first one was the well-known Mel-frequency cepstral
coefficients (MFCCs, Rabiner & Juang, 1993); we calculated 13 coeffi-
cients, along with the first and second order derivatives (i.e. MFCC +
A + A4, 39 attributes overall). MFCCs were calculated using the HTK
tool (Young et al., 2006).

The second frame-level attribute set we utilized was the raw Mel-
frequency energy filter banks: we employed 40 bands and the energy
of the signal, which, along with the 4 and 44 values, came to 123
feature values for each frame. Again, we utilized HTK to extract these
values from the recordings (Young et al., 2006). As the last frame-level
feature set, we chose the one that is utilized in the ‘ComParE func-
tionals’ (utterance-level) feature set: it consists of four energy-related
feature (including loudness, energy and Zero-Crossing-Rate), 55 spec-
tral attributes (e.g. MFCCs, spectral energies and variances, skewness,
kurtosis) and 6 voicing-related one (such as F,, probability of voicing,
logarithmic Harmonic-to-Noise Ratio, Jitter and Shimmer). These 65
frame-level attributes and their A values (‘ComParE’ frame-level feature
set for short) were calculated by the OpenSMILE tool (Eyben et al.,
2010).

For both the Bag-of-Audio-Words technique and for the Fisher Vec-
tors approach it may make sense to use the 4 and 44 values; however,
it might happen that these attributes just cause overfitting, and we
can build a more robust (and more compact) model without them.
Therefore, both approaches were tried in three variations: without
using the derivatives, using the first-order derivatives only, and using
both first and second order derivatives (with the exception of the
ComParE frame-level feature set, where no 44 values were extracted).

6.2. Bag-of-Audio-Words parameters

We used the OpenXBOW package (Schmitt & Schuller, 2017), which
is an open-source toolkit written in Java. We tested codebook sizes of
16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192 and 16384. We em-
ployed random sampling instead of k-means or k-means++ clustering
for codebook generation and we allowed 5 parallel cluster assignments,
i.e. for each frame we chose the 5 closest cluster centers. Before
processing the frame-level features, we performed standardization in
each case. As mentioned in Section 4, we experimented with building
one codebook for the whole frame-level feature sets (i.e. including first
and second order derivatives) as well as building separate codebooks
for the basic attributes, the 4s and the 44 values. We also experimented
with discarding the different derivatives, which led to four cases for the
MFCC and FBANK cases and three for the ComParE feature set. Note
that the largest utterance-level BOAW feature set (N = 16384 with three
separate codebooks) consisted of 49152 attributes.

6.3. Fisher Vector parameters

We used the open-source VLFeat library (Vedaldi & Fulkerson,
2010) to fit GMMs and to extract the FV representation; from the vari-
ous ports available, we employed the Matlab integration. When fitting
Gaussian Mixture Models, we experimented with N = 2,4,8,16,32,64
and 128 components. The number of extracted (utterance-level) fea-
tures lay between 52 (MFCCs without any derivatives, N = 2) and
33280 (ComParE + 4 features, N = 128).
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6.4. Utterance-level regression

Our experiments followed standard paralinguistic protocols. After
feature standardization, we used SVM with linear kernel for utterance-
level regression (method v-SVR), using the LibSVM (Chang & Lin, 2011)
library; the value of C was tested in the range 10{=5--1}, just like in
our previous paralinguistic studies (e.g. Gosztolya, 2019c; Gosztolya
et al.,, 2017, 2016). The optimal meta-parameter values (C for SVM
and N both for BoAW and for Fisher vectors) were determined on the
development set; finally, an SVR model was trained on the combined
training and development sets, using the meta-parameters found.

7. Results

Fig. 4 shows the CC values obtained for the development set for
the Bag-of-Audio-Words and the Fisher Vector techniques. Regarding
the BOAW approach, it is clear that the smaller codebook sizes (N <
64) led to quite low scores. Overall, we got the best values with the
MEFCC features, followed by the ComParE attributes, while when we
utilized the FBANK attributes, we always got CC values below 0.8.
Regarding the use of the derivatives, when we did not use any 4 values,
we almost always got the lowest scores. Using the whole frame-level
feature vectors and building a common codebook for all the attributes
turned out to be a better approach than this, but we got the highest
scores by creating separate codebooks for the 4 (and sometimes the
AA) values.

Table 3 shows the best CC values obtained for each tested approach
along with the corresponding CC scores measured on the test set, and
also the corresponding UAR classification percentages. (The best scores
(within a small tolerance) for a given frame-level feature set are shown
in bold.) Surprisingly, on the test set the MFCC features did not lead
to really good results: the CC scores lay between 0.816 and 0.826. We
should also mention that the configuration which proved to be the best
on the development set with a CC value of 0.851 (using all the MFCC
attributes, and building separate codebooks for the 4 and A4 attributes)
led to a rather large feature set of nearly 50000 attributes. Regarding
the UAR scores, the values between 78.6% and 81.8% are mediocre
at best. (Although, of course, we listed the UAR scores for reference
only, as we regard the correlation coefficient as a more appropriate and
more reliable evaluation metric, and we chose all the meta-parameter
values (i.e. N and C) that gave the highest CC on the development
set.) Overall, it seems that it was easy to overfit using the BOAW-MFCC
approach.

When utilizing the FBANK attributes, we ended up with significantly
lower CC scores on the development set (see also Fig. 4), but the scores
were higher on the test set, which in our opinion suggests that it is less
likely that we overfit using these frame-level features. Again, we got the
lowest CC scores without any 4 attributes, but the other three cases
all led to CC scores above 0.830 on the test set. Regarding the UAR
values, in one case it was over 83% (on the test set), but comparing
it to the scores reported earlier (see Table 2) it is clear that this score
by no means outstanding. The corresponding N values and feature set
sizes are in the middle range, usually staying far below those of the
MFCC cases; the fact that we needed smaller feature sets for the FBANK
attributes means that we not only got better correlation scores by them,
but they are also more feasible to employ in practice.

As for the ComParE frame-level features, we see test set performance
values of 0.835-0.851. In fact, when we employed the first-order
derivatives as well, and built a separate codebook for the basic and the
A values, we got an average performance on the development set, but
the CC score got on the test set appeared to be very high. Among the
three tested frame-level attributes, the ‘ComParE’ one proved to be the
most useful with the BoAW approach; notice, however, that we had to
use the highest N value tested (i.e. 16384) to achieve this performance.

Examining the performance of the Fisher Vector based models on
the right hand side of Fig. 4, we can make similar observations as those
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Fig. 4. Pearson’s Correlation Coefficient (CC) values measured on the development set for the various frame-level feature sets tested for the Bag-of-Audio-Words (left) and the

Fisher Vector (right) techniques.

Table 3

The performance scores obtained when using the Bag-of-Audio-Words and the ComParE functionals representations. Best values and those falling
close to them are shown in bold.

Codebook type Frame-level feature set N No. of Correlation UAR
features Dev. Test Dev. Test

ComParE functionals — 6373 0.820 0.835 79.7% 84.8%
Common MFCC + 4 + 44 2048 2048 0.838 0.826 79.6% 81.8%
MFCC 8192 8192 0.811 0.824 79.2% 81.2%
Separate MFCC + 4 4096 8192 0.850 0.822 80.5% 81.2%
MFCC + 4 + 44 16384 49152 0.851 0.816 78.6% 79.1%
Common FBANK + 4 + 44 2048 2048 0.781 0.845 77.4% 82.3%
FBANK 16384 16384 0.759 0.828 77.4% 81.9%
Separate FBANK + 4 1024 2048 0.795 0.835 78.3% 81.6%
FBANK + 4 + 44 4096 12288 0.794 0.831 76.8% 83.3%
Common ComParE + 4 16384 16384 0.798 0.835 77.4% 81.5%
Separate ComParE 16384 16384 0.810 0.835 78.7% 80.6%
P ComParE + 4 16384 32768 0.807 0.851 79.5% 83.7%
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Table 4

The performance scores obtained when using the Fisher Vectors representation.
Frame-level feature set N No. of Correlation UAR

features Dev. Test Dev. Test

MFCC 16 416 0.794 0.793 78.6% 79.2%
MFCC + 4 16 832 0.827 0.818 50.0% 50.0%
MFCC + 4 + 44 8 624 0.833 0.844 71.4% 82.5%
FBANK 128 10496 0.789 0.787 74.6% 79.8%
FBANK + 4 64 2048 0.795 0.845 73.2% 83.4%
FBANK + 4 + 44 64 12288 0.799 0.850 75.4% 86.1%
ComParE 128 16640 0.810 0.850 80.2% 84.5%
ComParE + 4 32 8320 0.829 0.856 82.7% 84.5%

Table 5
The number of frame-level attributes kept by PCA for the two frame-level
feature sets.

Preprocessing Inform. Feature set
kept FBANK ComParE
L 95% 21 1
No standardization 99% 45 9
- 95% 55 58
Standardization 99% o1 b
Total (i.e. no PCA) 123 130

for the BOAW technique. In most cases it was worth utilizing the first-
order derivatives, but the second-order derivatives (if any) only led
to a slight additional improvement. In general, MFCCs gave the best
performance, followed by the ComParE frame-level features, while the
FBANK attribute set clearly led to the lowest CC scores.

Examining the best CC values on the development set for each case
tested (and, of course, the corresponding CC and UAR values on the
test set) in Table 4, we see, however, that unlike that with the Bag-of-
Audio-Words method, now we got quite high values on the test set as
well. When using all feature-level attributes, we measured CC values
of 0.844, 0.850 and 0.856, MFCC, FBANK and ComParE feature sets,
respectively. Overall, it seems that the Fisher Vector representation is
a more robust technique than Bag-of-Audio-Words: it was less likely to
overfit, regardless of the actual frame-level attribute set we employed.

8. Applying principal component analysis

The Bag-of-Audio-Words and the Fisher Vectors representation ap-
proaches both summarize the frame-level feature vectors of each utter-
ance. When doing this, they both treat each frame-level dimension as
of equal importance, albeit in a different way: the BOAW process cal-
culates the Euclidean distance of specific frames, while the FV process
models each dimension with a separate Gaussian distribution. Clearly,
when specific frame-level attributes are correlated (which is obviously
the case, for example, for the neighboring filter banks in FBANK, since
they overlap), it might cause the BOAW method and/or the FV method
to treat them as more important ones than the other features, and this
could lead to a suboptimal regression performance. Another drawback
of this redundancy is manifested in the execution times. That is, the size
of the feature set calculated by Fisher vectors is the product of N and
the size of the frame-level attribute set; and for BoOAW, the number of
operations required for assigning one frame-level attribute vector to the
N closest clusters is also proportional both to the number of frame-level
features and to N. By reducing the number of frame-level attributes, we
can achieve a proportional speed-up in execution times of the feature
extraction step, while having fewer (utterance-level) attributes can also
be expected to speed up the subsequent machine learning step.

To remove the redundancy present within the frame-level feature
values, and to project the feature set into orthogonal space (ideal for
GMMs when determining the Fisher Vectors), we could apply Principal
Component Analysis (PCA, Jolliffe, 1986). Therefore, next we will

present our experiments by first transforming the ‘FBANK’ and the
‘ComParE’ frame-level feature vectors by PCA, and apply the BOAW and
FV methods in the second step. (We did not test this with MFCCs, since
MFCCs already have quasi-orthogonal components.) We also tested
whether it was worth standardizing the feature vectors before using
PCA. As being standard for applying PCA, we decided to keep 95% and
99% of the total information; this led to 1 — 45 dimensional vectors
without standardization, and 55— 92 dimensional vectors when we first
applied standardization (see Table 5).

Fig. 5 shows the correlation coefficient values we obtained on
the development set. In general, we may conclude that it is worth
standardizing the frame-level feature vectors before PCA, as in most
cases, the corresponding CC values were higher than those obtained
without this standardization step. Specifically, for the ComParE feature
set we got quite low CC scores without standardization (i.e. in the range
0.333-0.659) both for BOAW and for FV. The reason for this is probably
that, without standardization, only a few directions held most of the
information (see Table 5 again), but this did not make high-precision
conflict intensity estimation possible.

When employing standardization before PCA, the values associated
with the 95% and 99% cases were quite similar to each other and
also to the original feature set (i.e. without PCA), although in 3 cases
out of 4, retaining 95% of the information brought only a slight
improvement. Examining the best CC values on the development set
and the corresponding scores on the test set, we might conclude that
applying PCA was actually not really efficient for improving the quality
of predictions for the Bag-of-Audio-Words approach (see Table 6), as
we experience significant drops for the FBANK feature set, and in only
two cases and one case experienced practically the same performance,
development and test sets, respectively. We could observe the same
tendencies for Fisher Vectors (see Table 7): with filter banks we could
only achieve a CC score of 0.830 on the test set, while when we used
all original frame-level attributes, we measured a CC value of 0.850.
For the ComParE frame-level attributes with Fisher vectors, the scores
were slightly more competitive (CC values of 0.840 and 0.845 for the
“std. + PCA (95%)” and “std. + PCA (99%)” cases, respectively), but
we were again unable to surpass the case of omitting the PCA step.

However, as discussed above, PCA can also be used to reduce the
number of frame-level features, which speeds up the calculation step of
the utterance-level features for both the Bag-of-Audio-Words and the
Fisher vectors approaches. (Of course, the amount of the actual speed-
up is also affected by the optimal N value for both methods.) Fewer
(utterance-level) features also means that our machine learning model
(in this case, SVR) can be evaluated more quickly. To reflect this speed-
up, we expressed this relative execution time both in Tables 6 and 7;
in each case, 100% means not using PCA at all.

Examining these values, it is clear that by utilizing Principal Com-
ponent Analysis, it is possible to achieve notable speed-ups along with
only slight drops in the conflict intensity estimation performance. For
example, using the ComParE frame-level feature set with standardiza-
tion along with PCA and retaining 99% of the information, we end up
with 92 frame-level attributes instead of the original 130, leading to
a speed-up of cca. 30% along with practically the same performance
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Fig. 5. Pearson’s Correlation Coefficient (CC) values measured on the development set for the various frame-level feature sets tested for the Bag-of-Audio-Words (left) and the

Fisher Vector (right) techniques.

Table 6
The performance scores obtained when using the Bag-of-Audio-Words representation on the frame-level attributes transformed by PCA.
Frame-level features PCA parameters N Relative Correlation UAR
Exec. times Dev. Test Dev. Test
No PCA 2048 100.0% 0.781 0.845 77.4% 82.3%
PCA (95%) 32 0.3% 0.781 0.741 78.5% 77.3%
FBANK + 4 + 44 PCA (99%) 4096 73.2% 0.778 0.795 75.2% 80.7%
std. + PCA (95%) 4096 89.4% 0.795 0.791 54.4% 66.7%
std. + PCA (99%) 4096 148.0% 0.769 0.766 74.3% 78.6%
No PCA 16384 100.0% 0.798 0.835 77.4% 81.5%
PCA (95%) 16384 0.8% 0.617 0.515 55.3% 68.8%
ComParE + 4 PCA (99%) 16384 1.5% 0.631 0.625 75.1% 72.0%
std. + PCA (95%) 4096 11.2% 0.801 0.815 79.5% 81.0%
std. + PCA (99%) 16384 70.8% 0.793 0.834 79.8% 82.5%
Table 7
The performance scores obtained when using the Fisher Vector representation on the frame-level attributes transformed by PCA.
Frame-level features PCA parameters N Relative Correlation UAR
Exec. times Dev. Test Dev. Test
No PCA 64 100.0% 0.799 0.850 75.4% 86.1%
PCA (95%) 128 21.9% 0.780 0.787 80.3% 79.8%
FBANK + 4 + 44 PCA (99%) 128 46.9% 0.780 0.830 77.9% 80.5%
std. + PCA (95%) 64 28.6% 0.806 0.829 77.4% 82.0%
std. + PCA (99%) 64 47.4% 0.788 0.819 76.1% 81.8%
No PCA 32 100.0% 0.829 0.856 82.7% 84.5%
PCA (95%) 16 0.2% 0.590 0.516 50.0% 50.0%
ComParE + A PCA (99%) 4 0.1% 0.659 0.588 78.4% 73.2%
std. + PCA (95%) 128 89.2% 0.819 0.845 79.7% 85.1%
std. + PCA (99%) 128 141.5% 0.824 0.840 78.9% 83.8%

(actually, the UAR scores improved by 1% absolute on the test set).

For the Fisher vectors, this case actually led to higher execution times

due to a larger optimal N value (128 vs. 32), but retaining only 95%

of the information was eligible for the same performance with a 10%

reduction in the execution times (and again with a slight improvement

in the UAR value on the test set). Therefore, although we were unable

to improve prediction quality by applying PCA, we could efficiently

calculate a more compact attribute set, therefore reduce the execution

times of the feature extraction step while the retaining the original level

of regression performance.
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The performance of several combined methods.
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Feature sets Correlation UAR
Dev. Test Dev. Test

ComParE functionals 0.820 0.835 79.7% 84.8%
ComParE functionals + BoAW (MFCC+4) 0.855 0.839 80.1% 81.5%
ComParE functionals + BoAW (FBANK+4) 0.824 0.846 80.1% 85.5%
ComParE functionals + BoAW (ComParE+4) 0.824 0.850 80.5% 84.7%
BoAW-MFCC + BoAW-FBANK + BoAW-ComParE 0.852 0.833 80.6% 81.2%
ComParE func. + BoOAW-MFCC + BoAW-FBANK + BoAW-ComParE 0.855 0.839 80.1% 81.5%
ComParE functionals + FV (MFCC+4) 0.849 0.855 75.4% 83.2%
ComParE functionals + FV (FBANK+4) 0.828 0.857 79.6% 85.5%
ComParE functionals + FV (ComParE+4) 0.836 0.855 81.8% 85.3%
FV-MFCC + FV-FBANK + FV-ComParE 0.850 0.860 75.5% 84.4%
ComParE functionals + FV-MFCC + FV-FBANK + FV-ComParE 0.852 0.860 76.7% 84.1%
ComParE functionals + BoAW-MFCC + FV-MFCC 0.858 0.849 79.9% 81.8%
ComParE functionals + BoAW-FBANK + FV-FBANK 0.828 0.856 79.6% 85.6%
ComParE functionals + BoAW-ComParE + FV-ComParE 0.836 0.855 81.8% 85.3%

9. Combining the predictions

Based on our prior experience, it might be beneficial to combine the
predictions obtained by using different classification methods and/or
feature sets (Gosztolya, 2015, 2019a, 2019b). To do this, a simple-
yet-efficient method is late fusion, when we train separate machine
learning methods for the individual feature sets, and perform this fusion
by taking the weighted mean of the estimates. For classification, by
‘estimates’ we usually mean the posterior scores of the classes, while
for regression we can simply take the output scores. The combination
weights were determined on the development set in steps of 0.05.

Table 8 shows the scores obtained by combining the different ap-
proaches. After examining the results of our previous tests (see Tables 3
and 4), we decided to use the predictions obtained via using the
original frame-level attributes and their first-order derivatives; for the
BoAW approach this also meant building separate codebooks for the 4
values. Checking the results for Bag-of-Audio-Words, we can see that
the combination turned out to be successful in two cases out of three:
the CC scores for the test set rose from 0.822 to 0.839 and from 0.835
to 0.846, MFCC and FBANK feature sets, respectively. For the ComParE
frame-level attributes, however, the predictions remained practically
unchanged (0.851 to 0.850). When fusing the three BoAW-based pre-
dictions (either with or without the ComParE functionals case), we can
see at most a slight improvement on the development set, but none
on the test set. The reason for it is obviously the high performance of
the MFCCs on the development set and the corresponding 0.822 score
on test: since fusion weights were set based on the development set
scores, this BOAW-MFCC model was considered to be quite important,
which was not justified by test set performance. Actually, when we
fused all four models in question (i.e. all three BOAW and the ComParE
functionals), the results were identical to the ‘ComParE functionals +
BoAW-MFCC’ case.

Turning to the Fisher vectors representation, it is clear that we got
somewhat higher scores than in the BoOAW cases: fusing the ComParE
functionals approach with one of the FV models, we measured 0.855-
0.857 CC scores on the test set. Combining the three FV models led to
a CC value of 0.860, while adding the ComParE functionals predictions
to the mix did not change this performance. Overall, these CC values
support our previous conclusion that Fisher vectors seem to be a more
descriptive utterance representation approach than the Bag-of-Audio-
Words approach, and the extracted attribute set turns out to be more
compact as well.

Lastly, we combined the ComParE functionals predictions with the
estimates obtained by both the BoAW and the FV representations for
each frame-level feature set tested (see the last block of Table 8). We
found that, although the CC values on the development set appeared to
be somewhat different, on the test set they were quite similar (i.e. in

the range 0.849-0.856). Interestingly, the UAR scores also appeared
to be around 85%, with the exception of the MFCC case, where we
got a significantly lower value (i.e. 81.8%). Of course, meta-parameter
setting and model selection was all done by focusing on the CC metric,
so we cannot really expect a huge improvement in the UAR values
anyway.

To sum up, combining the estimates produced by the different
models led to slight improvements, as the CC scores rose from 0.816—
0.856 to 0.839-0.860. Still, no matter which models we fused, in
most cases we got CC values around 0.855-0.860. Examining the
scores reported in previous studies for the SSPNet Conflict corpus
(see Table 2), we can see several similar values (e.g. 0.849 Huang
et al,, 2014, 0.856 Gosztolya & Téth, 2017 or 0.853 Rajan et al.,
2019). Still, these scores were achieved by quite different state-of-the-
art techniques, including ensemble learning, feature selection, classifier
combination, Convolutional Neural Networks, and of course Bag-of-
Audio-Words and Fisher vectors. In our opinion this probably indicates
that scores presented in the current studies are already close to the
glass ceiling for this task, i.e. we are near the highest possible score
achievable.

To justify this opinion, we ask the reader to recall that for this
corpus (and also for conflict intensity estimation in general) the task is
to estimate the annotated conflict intensity score of each clip. Of course,
manual annotation in this task is quite prone to human subjectivity,
therefore label noise is very likely to be present in the target scores,
and this will inevitably lead to a performance limit for any statistical
approach applied. In our opinion, current studies have already attained
the highest correlation coefficients achievable, and they match human
performance.

10. Conclusions and discussion

In this study we focused on the task of automatically estimating
conflict intensity from short audio clips. For this, for the first time in
the scientific community, we utilized two recent, state-of-the-art feature
extraction techniques: Bag-of-Audio-Words (BoAW) and Fisher vectors
(FV). Since both these techniques construct segment-level feature vec-
tors based on the frame-level attribute vectors of the recordings, we
tested three typical standard frame-level attribute sets: MFCCs, filter
banks and the ComParE feature set developed by Schuller et al. (2013).
We also experimented with applying PCA first on the frame-level
feature vectors to remove redundancy and project them into a quasi-
orthogonal space; lastly, we also combined the different approaches
tested to improve the conflict intensity estimation performance.

Our results indicate that all the approaches tested yielded compet-
itive performance scores. Overall, Fisher vectors led to more accurate
and more robust predictions than BoAW did. Among the frame-level
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feature sets tested, we found MFCCs to be the most unreliable one,
while the ComParE set led to the best performance on the test set;
this was true for both BoOAW and FV. The relatively low performance
of MFCCs was especially surprising in the Fisher vector case, since it
employs GMMs to model the distribution of the feature vectors, for
which MFCCs are supposed to be an ideal choice. This, and the low
performance of the models employing PCA, in our view indicates that
FVs are quite robust regarding the input features. Despite the common
expectations of GMMs, we find that for the input frame-level attributes
being quasi-orthogonal is clearly secondary compared to providing an
informative representation of the recordings. Although both MFCCs
(which are calculated from the filter banks by applying a Discrete
Cosine Transform (DCT, Nasir et al., 1974)) and the application of
PCA transforms the original feature vectors into a quasi-orthogonal
space, it seems that actual SVR performance is harmed more by losing
a significant amount of relevant information during this process.

In the last part of our study, we experimented with combining the
predictions obtained by the different regression models. Although we
anticipated that this fusion would improve regression performance, we
found that the correlation scores rose only by a very slight amount.
Comparing the CC values of 0.850-0.860 with the state-of-the-art scores
found in the recent literature (in the range 0.849-0.856), we hypothe-
size that current computational methods have already attained the best
performance achievable by statistical approaches. Indeed, the conflict
scores are inherently subjective to a certain degree, as they reflect the
annotator’s opinion about conflict intensity. Putting different cultural
standards aside (since for this particular corpus all the annotators were
from North America), the annotated scores are still influenced by the
annotator’s judgment, personality and even his current mood, which,
from a machine learning viewpoint, means that the target scores are
noisy to some extent. While this label noise can be reduced by taking
the mean of several annotator’s scores (as it was done by the creators of
the SSPNet Conflict Corpus), it is inevitably still present in the intensity
values of each clip; and since it is just noise, it per def cannot be
precisely estimated by statistical methods. Of course, our score of 0.860
presented is actually the highest correlation value ever reported in
a scientific study for this particular corpus, but it represents only a
marginal improvement over the previous metric values reported. And
for the reasons explained above, we do not really expect that it will be
significantly outmatched in the future.
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