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ABSTRACT

Depression is a frequent and curable psychiatric disorder,
detrimentally affecting daily activities, harming both work-
place productivity and personal relationships. Among many
other symptoms, depression is associated with disordered
speech production, which might permit its automatic screen-
ing by means of the speech of the subject. However, the
choice of actual features extracted from the recordings is not
trivial. In this study, we employ x-vectors, a DNN-based
feature extractor technique, to detect depression from a Hun-
garian corpus. We experiment with training custom x-vector
extractors, and we also explore the performance of an out-of-
domain pre-trained one. Our findings confirm that x-vectors
are able to capture meaningful speaker traits that contain in-
formation for depression discrimination. We also show that
the language of the extractor is of secondary importance com-
pared to the frame-level feature set: our best model, which
achieved an AUC score of 0.940 and an RMSE score of 9.54,
was trained on log-energies instead of MFCCs.

Index Terms— speech processing, depression screening,
x-vectors, pre-trained, i-vectors

1. INTRODUCTION

The speech is a biomarker containing information about a
wide variety of traits (e.g., the mental status of the speaker).
Depression is a psychiatric disorder affecting the patient on
a wide scale. Although it is a frequent and curable disease,
estimating its occurrence is hard due to the specific clinical
expertise needed [1]. The fact that there may be a connection
between depression and speech was pointed out by Krae-
pelin [2], one of the founders of modern psychology. Early
examinations dealt with the analysis of individual speech
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features, and reported the decrease in the mean and dynam-
ics of pitch values, slower articulation tempo [3] along with
monotonous and lifeless dynamics [4, 5].

Various studies have investigated the possibility of assess-
ing depression from speech. For instance, using CNNs for
the enhancement of the detection of depression [6]; the anal-
ysis of gender and identity issues from the patients [7]; or
feature extraction from the motor incoordination [8]. Here,
we present an approach based on DNN embeddings (i.e., x-
vectors [9]), to assess depression using the Hungarian De-
pressed Speech Dataset (HDSDb). This technique employs a
DNN to map variable-length utterances to fixed-dimensional
embeddings that contain meaningful speaker traits (e.g., the
speaking style or the emotion [10]) which can be adapted to
depression detection. Prior studies made use of the HDSDb,
but with fewer samples, e.g.: CNNs and a speech correla-
tion structure were used in [11] (accuracy of 84.1% with 188
samples). Also, the use of a special feature acoustic parame-
ter selection approach in [12] (8.10 of RMSE with 127 sam-
ples). Both studies relied on Leave-One-Out Cross-Validation
(LOOCV).

Here, we explore the sufficiency of x-vectors as a more
straightforward method for discriminating the degrees of de-
pression (i.e., the Beck Depression Inventory (BDI) II scale).
Our evaluation is based on a, more impartial, speaker-wise
Nested Cross-Validation instead of LOOCV. Also, we eval-
uate the model from a two-class perspective as we turn the
predictions into binary labels based on a specific BDI thresh-
old value for depression. Furthermore, we carry out an auto-
matic feature selection method based on the Pearson’s corre-
lation of the features with respect to the BDI labels. Our key
contributions are: (I) training custom x-vector models using
language-domain matching, and exploring with data augmen-
tation for training the extractors; (II) investigating the per-
formances of the x-vector architecture on log-energies, and
analyzing their effectiveness over cepstrum-based; (III) ex-
perimenting with the robustness of the embeddings (from cus-
tom and pre-trained models) after performing feature selec-
tion for this particular dataset. To the best of our knowledge,
no other studies have so far adapted the x-vector technique for
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the screening of the levels of clinical depression.

2. DATA

We relied on the Hungarian Depressed Speech Dataset
(HDSDb) [13]. The degree of severity of depression was
recorded using the Beck Depression Inventory II (BDI)
scale [14]. The BDI-II scale ranges from 0 (healthy state),
to 63 (severe condition). This scale uses the following rat-
ing: 0-13 healthy, 14-19 mild depression, 20-28 moderate
depression, 29-63 severe depression. The corpus consists of
222 speakers, 116 patients suffering from depression (mean
BDI for males and females are 24.9 (±7.4) and 27.8 (±9.2),
respectively) and 106 healthy control speakers (mean BDI
for males and females are 4.3 (±3.4) and 4.2 (±3.0), respec-
tively) with a balanced age distribution and 146 males. The
speakers read a short tale (‘The North Wind and the Sun’).
The recordings were sampled at 16 kHz and 16-bit.

3. DNN EMBEDDINGS: X-VECTORS

The x-vector approach can be thought as of a neural network
feature extraction technique that provides fixed-dimensional
embeddings corresponding to variable-length utterances. The
architecture of the DNN is as follows: the frame-level layers
have a time-delay architecture, and let us assume that t is the
actual time step. At the input, the frames are spliced together;
namely, the input to the current layer is the spliced output of
the previous layer. Next, the stats pooling layer gets the T
frame-level output from the last frame-level layer (frame5),
aggregates over the input segment, and computes the mean
and standard deviation. The mean and the standard deviation
are concatenated and used as input for the next segment lay-
ers; from any of these layers the x-vectors embeddings can
be extracted. And finally, the softmax output layer (which is
discarded after training the DNN) [9, 15, 16]. Instead of pre-
dicting frames, the network is trained to predict speakers from
variable-length utterances.

The embeddings produced by the network described
above capture information from the speakers over the whole
audio-signal. These are the x-vectors and can be extracted
from any segment layer. We rely on the x-vector approach
since it acquires meaningful characteristics (i.e., speaking-
style information and emotion [10]) at utterance level rather
than at frame level, which results in a fixed-sized vector
irrespective of the length of the utterance.

4. EXPERIMENTS AND RESULTS

4.1. DNN extractor training

Training neural networks generally implies having a signifi-
cant amount of samples for getting a good performance; how-
ever, the HDSDb is quite limited. A DNN that learns from this

kind of data would result in under-fitting; and consequently
would over-fit the final classifier. Hence, we did not make
use of the HDSDb corpus to train any extractor. We fitted
two different x-vector extractors using distinct corpora: first,
we employed a subset of 60 hours (10,636 utterances) of the
BEA Corpus [17] (Hungarian spontaneous speech). And sec-
ond, we utilized the pre-trained x-vector model [9] that was
fitted on English speech corpora (Switchboard (SWBD) plus
NIST SRE). Besides investigating the usefulness of the pre-
trained model on a different type of task, we also sought to
discover the difference in quality of x-vector representations
extracted using distinct models, which differ in both amount
and language in terms of their training data.

We used two types of frame-level representations: 23
Mel-Frequency Cepstral Coefficients (MFCC) and 40 filter-
banks (FBANKs); both with a frame-length of 25ms, and
a frame-shift of 10ms. While MFCCs are the standard for
fitting x-vector models, FBANKs have proved to be effective
in deep learning studies related to speech analysis, e.g., in
speech recognition tasks [18, 19]. Furthermore, in a previous
work [20], we also demonstrated the usefulness of applying
log-energies over MFCCs in x-vector training.

4.2. BEA Corpus Augmentation

Seeking to improve the diversity of the data and the noise ro-
bustness of the model, we carried out data augmentation on
the BEA corpus. The augmented dataset was used to fit two
additional extractors. The augmented versions were added
by choosing randomly from the following types: babble, mu-
sic, noise, and reverberation. The first three correspond to
adding or fitting noise to the original utterances. The fourth
one involves a convolution of room impulse responses with
the audio. The augmentation procedure increased the BEA
corpus to 52,636 utterances (293 hours). We sought to evalu-
ate the contribution of the augmentation methods to the qual-
ity of the embeddings. Nevertheless, as with previous find-
ings (see [21]), adding noise and reverberation for x-vector
training does not always lead to robustness and might be de-
pendent on the quality of the utterances.

4.3. Baseline Approach

We opted for a former state-of-the-art speaker recognition
method: the i-vector approach, which is known to capture
speech, speaker and utterance meta information [22]. Akin to
x-vectors, i-vectors also contain relevant information within
the channel factor, which was used to classify emotion be-
fore [23]. Moreover, i-vectors have been successfully adapted
to depression screening tasks giving good performances [24,
25]. Here, we trained the GMM-UBM model utilizing the
same corpus (i.e., the BEA) that was employed for training
the first x-vector extractor. The GMM-UBM was fitted with
256 Gaussian components, which was used to extract i-vector
representations from the HDSDb dataset.
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Table 1. Results of the experiments using all the feature dimensions.

Regression Classification

Pearson’s CC RMSE UAR SPEC SENS AUC F1

i-vector baseline .608 10.45 80.44 89.39 82.00 0.920 89.36

BEA Extractor (FBANK) .625 10.26 88.65 86.79 90.51 0.920 89.36
BEA Extractor (MFCC) .615 10.36 82.64 77.35 87.93 0.904 84.29
BEA-augmented Extractor (FBANK) .684 9.54 89.00 84.90 93.10 0.940 90.00
BEA-augmented Extractor (MFCC) .635 10.16 80.75 73.58 87.93 0.908 82.92

Pre-trained Model (MFCC) [9] .675 9.64 82.99 75.47 90.51 0.935 85.02

4.4. Evaluation

Here, we made use of the Support Vector Regression algo-
rithm (nu-SVR with linear kernel). The x-vector represen-
tations, after standardization, were fed to the regressor for
training. In contrast to former studies on the same corpus,
and, seeking to avoid an optimistically-biased evaluation of
the model, we chose speaker-wise Nested Cross-Validation.
The metrics employed were the Pearson’s CC of the ground
truth and predicted BDI scores of the subjects, along with the
Root Mean Square Error (RMSE).

Besides the above, we also performed a classification per-
formance analysis by transforming the labels into two classes.
Namely, we evaluated our models from a binary class prob-
lem perspective. Thus, the subjects were automatically cat-
egorized as having depression or not by binarizing the la-
bels based on their BDI values, where: if BDI ≥ 13.5,
the patient was cataloged as depressed; healthy control oth-
erwise. This way, the class distribution resulted in 116 pa-
tients and 106 healthy controls. In this context, we selected
various metrics that provided a broader picture of the perfor-
mance of the transformed predictions. As in most medical
research, we used sensitivity and specificity, F1-score, along
with Unweighted Average Recall (UAR, being the mean of
specificity and sensitivity), and Area Under the Receiver Op-
erating Characteristics Curve (AUC).

4.5. Results and Discussion

Table 1 presents the results of our experiments along with
the i-vector baseline, which was surpassed by the methods
based on x-vectors. In general, the DNN embeddings could
model better speaker traits for depression screening than the
i-vectors. The augmented extractor produced better embed-
dings than their non-augmented counterparts, and demon-
strated the effectiveness of data-augmentation when using
x-vectors on this specific corpus. In particular, the extrac-
tor trained with the BEA-augmented corpus (with FBANKs)
gave the highest Pearson’s CC: .684, and the lowest RMSE:
9.54. As for the binary classification evaluation, the same

Fig. 1. CC and AUC scores of the feature selection process
from the BEA-augmented Extractor (FBANK).

configuration gave the highest scores: a UAR of 89.00%, an
specificity of 84.90%, a sensitivity of 93.10%, a AUC-score
of 0.940, and an F1-score of 90. We found a quite low number
of false negative and false positive cases, which indicates the
potential feasibility of the model for screening. Moreover, the
AUC-score value suggests a considerably high discriminating
ability of the model.

The extractors fitted with log-energies (except for the non-
augmented version) outperformed their cepstra counterparts
in every case. This may be due to the fact that MFCCs attempt
to eliminate unimportant variations for recognition, and lead
to a reduction in the input-signal dimension (less informa-
tion). Meanwhile, the FBANKs contain a more integral rep-
resentation as they produce a less pre-processed input-signal
with a larger set of filter-bank coefficients (more informa-
tion); it appears that DNNs are able to better exploit these
type of representations. The embeddings from the pre-trained
model (MFCCs), however, achieved better scores than the
BEA Extractor (FBANKs) configuration. Although our cus-
tom extractors used in-domain language data, a possible rea-
son could be the huge difference between their corresponding
amounts of training corpora.

The Pre-trained Model [9], although competitive, could
not surpass the results of the best custom model, we got a
lower CC (.675). The results may confirm an existing data-
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Table 2. Results of the experiments using the correlation-based feature selection. The best feature selection configurations
are presented only. N denotes the number of features from the automatic feature selection process.

Regression Classification

Pearson’s CC RMSE UAR SPEC SENS AUC F1 N

BEA Extractor (FBANK) .632 10.14 87.19 83.01 91.34 0.915 88.33 150
BEA Extractor (MFCC) .586 10.59 78.39 68.86 87.93 0.891 81.27 175
BEA-augmented Extractor (FBANK) .685 9.50 88.61 85.84 91.37 0.938 89.45 125
BEA-augmented Extractor (MFCC) .603 10.41 81.11 71.69 90.51 0.914 83.66 175

Pre-trained Model (MFCC) [9] .672 9.70 83.89 76.41 91.37 0.934 85.82 200

domain dependence of the x-vector architecture. More specif-
ically, we experimented with models that learned from data
closer to the actual task domain (language-related in this spe-
cific case), and they produced better quality representations
than the pre-trained model did.

5. CORRELATION-BASED FEATURE SELECTION

In fact, the x-vector features will have a bigger number of
dimensions than the total number of samples of the dataset.
Eventually, this might lead to a decay in the performance due
to the regularization bias growth towards the training data.
Hence, before training, we carried out an automatic feature
selection, seeking to reduce the number of features. More
precisely, we computed the CC for each feature-column with
respect to the BDI labels; from these values, we selected those
that had the highest CC scores. The final selection of the num-
ber of dimensions (N ) was based on a step size of 25 (i.e.,
N = 25, 50, . . . , 200 selected dimensions). The procedure
was carried out within the speaker-wise Nested-CV to avoid
peaking. Consequently, besides dimensionality reduction, it
also meant that we just had relevant features (those that con-
tribute the most to the final predictions), and thus speeded up
the BDI estimation step.

The results of this approach are given in Table 2. Simi-
lar to the previous experiments, the augmented extractors fit-
ted with FBANKs also outperformed the rest of the configu-
rations in this case. Moreover, the CC increased slightly to
.685, while the RMSE decreased to 9.50. These results were
achieved just using 125 of the 512 available original features
after the feature selection process. Also, the classification
metrics for the same configuration changed slightly: while
the specificity score experienced an increment, the sensitivity,
AUC, UAR, and F1 scores only decreased a small amount.
Again, FBANKs features gave more efficient performances
based on the number of selected features. Fewer dimensions
were needed for the model to provide a better generalization;
that is, FBANK-based embeddings actually contained more
meaningful information than those from MFCCs.

Figure 1 depicts the AUC and the Pearson’s CC scores

obtained using the different N feature selection values for
the corresponding dimension size. The line plots display a
tendency where the CC values increase as the number of di-
mensions increment as well, and they both start to decrease
after dimension 150. In general, both metrics suggest quite
similar trends over the number of dimensions. Overall, the
correlation-based feature selection, besides discarding irrele-
vant information and helping to reduce the computation times,
also helped to increase the CC and reduce the RMSE in most
of the cases. Furthermore, all the configurations necessitated
only less than the half of the original number of dimensions
and produced better or competitive results.

6. CONCLUSIONS

This paper investigated the automatic estimation of the levels
of clinical depression from the speech using speaker recog-
nition methods. Specifically, we presented x-vector embed-
dings that contain information that is predictive of depres-
sion. Our custom x-vector extractors learned from distinct
frame-level features acquired from corpora matching the lan-
guage of the actual task. Also, we found an improvement
of the quality of the embeddings when computing them us-
ing augmented x-vector models. In this context, we spotted
a slight language-domain dependence of the x-vector method
as our best tailored extractor surpassed the performance of
the pre-trained model even after the feature selection process.
Furthermore, our findings confirmed that log-energies appear
to be a robust alternative of cepstra coefficients for x-vector
training as they provide larger (and more informative) input
representations. We showed how our correlation-based fea-
ture selection approach produced similar performance scores
using only a quarter of the features. Finally, we presented
highly competitive CC and RMSE scores compared to those
from former studies that used the same corpus and based their
evaluations using optimistic methods (i.e, LOOCV), which
proves the effectiveness of our approaches.
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