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1University of Szeged, Institute of Informatics, Szeged, Hungary
2ELRN-SZTE Research Group on Artificial Intelligence, Szeged, Hungary

3Research Center for Linguistics, ELRN, Budapest, Hungary
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ABSTRACT

Multiple sclerosis (MS) is a chronic inflammatory disease of

the central nervous system. It affects cognitive and motor

functions, and the limitation of executive functions can also

manifest itself in speech production. Due to this, automatic

speech analysis might serve as an effective technique for as-

sessing MS, or for monitoring the status of the patient. How-

ever, choosing the features to be extracted from the record-

ings is not straightforward. In the past few years, general fea-

ture extractors such as i-vectors, d-vectors and x-vectors have

found their way into automatic speech analysis. In this study

we show that there is no need to employ a special neural net-

work architecture such as x-vectors to calculate effective fea-

tures, but (even more) indicative features can be derived on

the basis of a standard Deep Neural Network acoustic model.

From our results, these features could effectively be used to

distinguish MS subjects from healthy controls, as we mea-

sured AUC scores up to 0.935. We found that classification

performance depended only slightly on the choice of the hid-

den layer used to extract our features, but the speech task per-

formed by the subject turned out to be an important factor.

Index Terms— Multiple Sclerosis, medical speech pro-

cessing, Deep Neural Networks, embeddings, x-vectors

1. INTRODUCTION

Multiple sclerosis (MS) is a chronic inflammatory disease of

the central nervous system. The main diagnostic feature of the

disease is the presence of impairments in the patient’s gross

and fine motor skills. Since language, cognitive, and motor

skills are arranged in an inseparable network in the brain,
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changes in one factor can induce changes in all the others.

Due to this, automatic inspection of the speech production of

a subject could turn out to be an effective way of examining

the progression of MS in patients.

Besides other types of symptoms, roughly two-thirds of

MS subjects have slight or modest cognitive impairments

such as impaired cognitive flexibility, disorders of orienta-

tion, working-memory limitation or decreased information

processing speed. About one-third of MS patients report

temporary or persistent speech disorders [1, 2]. The most fre-

quent language and speech symptoms include motor speech

disorders (e.g. dysarthria or dysphonia), word finding diffi-

culties, limited verbal fluency [3], limitations of the higher-

level language processes [4, 5, 6, 7], and a reduced inclination

for communication [8]. Although explicit dysarthria is diag-

nosed only in one-third of the subjects, automatic speech

analysis could still be used to detect symptoms suggestive

of mild motor speech disorder prior to dysarthria [9]. With

a well-structured methodology, these mild symptoms could

inform us about the onset of cognitive decline.

To construct an automatic speech analysis process like

that, robust features have to be extracted from the speech

of the subjects. In the area of medical speech processing,

a standard and straightforward approach is to employ gen-

eral (that is, not specific to the actual disease) feature ex-

tractors. For this, one has to keep in mind the data sparsity

being typical to the field. That is, since the number of pa-

tients is very limited, and data collection is bound by the need

of trained personnel (e.g. doctors to diagnose and record

specific cognitive tests such as Mini Mental State Examina-

tion or Geriatric Depression Scale), the corpora recorded are

usually small by Automatic Speech Recognition (ASR) stan-

dards. However, there exist quite large datasets collected for

ASR purposes. A possible solution is to train some kind

of statistical model on such a large external speech corpus,

and employ this model to extract features for any standalone

speech utterance. Perhaps the best examples for such ap-

proaches are i-vectors [10], d-vectors [11] and x-vectors [12].

6927978-1-6654-0540-9/22/$31.00 ©2022 IEEE ICASSP 2022

IC
A

SS
P 

20
22

 - 
20

22
 IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 A
co

us
tic

s, 
Sp

ee
ch

 a
nd

 S
ig

na
l P

ro
ce

ss
in

g 
(I

C
A

SS
P)

 | 
97

8-
1-

66
54

-0
54

0-
9/

22
/$

31
.0

0 
©

20
22

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IC
A

SS
P4

39
22

.2
02

2.
97

46
85

6

Authorized licensed use limited to: University of Szeged. Downloaded on April 30,2022 at 07:05:18 UTC from IEEE Xplore.  Restrictions apply. 



Although all three techniques were originally developed for

speaker verification, they were later employed as feature ex-

tractors in other tasks as well [13, 14, 15]. From a broader

perspective, these methods seek to express the difference be-

tween “general speech” (represented by the large external cor-

pus) and the actual utterance (produced by the patient).

These techniques differ in their approach for capturing

the distribution of this “general speech”. i-vectors employ

a Gaussian Mixture Model (the so-called Universal Back-

ground Model or UBM) to model the distribution of the

frame-level features (e.g. MFCCs). However, based on their

performance, i-vectors cannot be considered state-of-the-art

any more, as they have been surpassed by Deep Neural Net-

work (DNN) based x-vectors. x-vectors utilize a DNN with

a special architecture to allow the pooling of frame-level in-

formation (processed by the lower, frame-level layers) into

utterance-level (handled by the higher layers). The feature

extraction step consists of evaluating the fully trained network

on the actual utterance, and returning the activations of one

of the utterance-level layers (embedding) [12]. d-vectors can

be viewed as an intermediate solution, where the neural net-

work is trained on the speaker IDs on the frame level, and the

utterance-level features are obtained as the activations of the

last hidden layer averaged out for the whole recording [11].

Notice that all these techniques employ some specific

steps such as training an UBM for i-vectors, or training a

separate (and perhaps special) neural network. On the other

hand, HMM/DNN hybrid acoustic models (trained for ASR

purposes) are available quite commonly. Furthermore, in

the past decade the research community has developed tech-

niques to efficiently train such acoustic models. Therefore,

using such a DNN acoustic model for feature extraction in

a medical task might be beneficial, as long as the perfor-

mance achievable is competitive. In this study we propose a

technique to extract effective features from the activations of

such a DNN acoustic model, and show that this approach can

outperform the scores of i-vectors and x-vectors.

2. ACOUSTIC DNN EMBEDDING FEATURES

For the above reasons, we will employ a standard feed-

forward Deep Neural Acoustic model to extract features.

Therefore, the first step of the proposed workflow is to train

such a model (where necessary, as there are several such

models available). Of course, for this step we need a (larger)

external corpus that has annotated and time-aligned pho-

netic labels. In our view, however, this is not a limitation

from a practical point of view, as such datasets are quite

easy to obtain. The result of this step will be a (frame-level)

HMM/DNN hybrid acoustic model.

In the second step, this DNN model is evaluated on the ut-

terances produced by the subjects. Instead of the output layer

(providing the posterior estimates of the context-dependent

phonetic states), we focus on the hidden layers, and the acti-

vation values of these layers will be noted. Since these vec-

tors are still present at the frame level, we aggregate them

over the whole utterance in the third step. For aggregation, we

propose four approaches: mean, standard deviation, skewness

and kurtosis. We might also concatenate the results of these

techniques. The result of this step are the utterance-level fea-

ture vectors, being the size of 1-4× the number of neurons in

the given hidden layer. These values can be used directly as

features in the classification step.

3. THE RECORDINGS USED

All the tests were carried out at the Neurology Department

of Uzsoki Hospital Budapest and at the Research Institute for

Linguistics of the Eötvös Loránd Research Network in Bu-

dapest. The study was approved by the Ethics Committee of

the Uzsoki Hospital, and it was conducted in accordance with

the Declaration of Helsinki. In the current study we use the

recordings of 22 MS subjects (8 males and 14 females) and 19

healthy controls (5 males and 14 females). From the 22 MS

subjects, 15 belonged to the relapsing-remitting (RRMS), 3

to the secondary-progressive (SPMS), and 4 to the primary-

progressive (PPMS) type; however, in our experiments we did

not treat these MS subtypes separately.

We collected the speech samples using the following pro-

tocol. The subjects were first asked to talk about their previ-

ous day. Afterwards, they listened to a two-minute-long his-

torical anecdote that was unknown to them beforehand. The

task of the subjects was to summarize the story heard as ac-

curately as possible (narrative recall). In the last task, the

subjects were asked to read aloud several specific non-words

(CVCV sequences), in which the first CVs contained a voice-

less plosive [p, t, k] and one of the vowels [i:, a:, u:]) (pho-

netics). This way, we obtained three recordings from each

subject, corresponding to the three different tasks, which were

also different in nature: two of them were spontaneous speech

tasks, differing in the type of recall from memory, while the

third one was a simple reading task. We used a Sony PCM-

A10 digital dictaphone with a tie clip microphone; the record-

ings were converted to 16 kHz mono with a 16 bit resolution.

4. EXPERIMENTAL SETUP

4.1. DNN Hybrid Acoustic Model

Our Deep Neural Network acoustic models were trained on a

subset of the BEA Hungarian corpus [16], on the speech of

116 subjects (44 hours). We used only spontaneous speech

from this corpus; the special vocalizations, being typical for

spontaneous speech (e.g. filled pauses, breathing sounds,

laughter and gasps) were all marked in the transcriptions, and

were included in the phonetic set as special labels.

We used 40 Mel-frequency filter banks along with raw

energy as frame-level features along with ∆ and ∆∆, and
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Table 1. The AUC scores obtained for the different speaker tasks, feature subsets and DNN layer embeddings.

Previous Day Narrative Recall Phonetics

Feature Subset Layer 3 Layer 4 Layer 5 Layer 3 Layer 4 Layer 5 Layer 3 Layer 4 Layer 5

Mean 0.639 0.651 0.663 0.787 0.785 0.766 0.921 0.931 0.928

Std. 0.754 0.775 0.801 0.818 0.737 0.749 0.899 0.904 0.926

Skewness 0.665 0.632 0.734 0.696 0.708 0.742 0.883 0.923 0.938

Kurtosis 0.646 0.636 0.763 0.718 0.718 0.768 0.847 0.907 0.926

Mean + std. 0.723 0.711 0.794 0.775 0.754 0.723 0.938 0.933 0.926

All 0.562 0.641 0.751 0.785 0.785 0.723 0.921 0.935 0.928

evaluated our model on a sliding window of 15 frames (1845

frame-level features overall). We utilized 5 hidden layers,

each consisting of 1024 ReLU neurons, and a softmax layer

that had as many neurons as the number of states. We uti-

lized context-dependent (CD) phonetic mapping. For the

57 phones, we employed the standard tree-based cluster-

ing method for state tying [17] with the Kullback-Leibler

divergence-based criterion [18], which led to 911 tied states.

4.2. Acoustic DNN Embedding Feature Extraction

We used the activations of the three upper layers (i.e. layers 3,

4 and 5) of the DNN acoustic model, which this led to a 1024-

sized vector for each frame. For utterance-level aggregation,

we experimented with the arithmetic mean, standard devia-

tion, skewness and kurtosis of the frame-level values; further-

more, we evaluated concatenated versions of the mean and

standard deviation, and all four combination methods (which

led to 2048 and 4096 attributes, respectively). We standard-

ized the values before utilizing them in the classification step

(i.e. we converted them to have zero mean and unit variance).

4.3. Classification and Evaluation

We employed Support Vector Machines to predict whether

the speakers belonged to the MS or to the HC group. We

used the libSVM implementation [19] with a linear kernel

(nu-SVR method); the C complexity parameter was set in the

range 10−5, . . ., 101. Due to the small number of examples,

we chose to perform cross-validation (CV); one fold always

consisted of the features of one control subject and one hav-

ing MS. To avoid any form of peeking, we employed nested

cross-validation [20]; that is, each time we trained our model

on the data of 21 folds, another (21-fold) cross-validation ses-

sion was performed, in order to find the C meta-parameter

value that gave the highest AUC score within these speakers.

Afterwards, we trained an SVM model with the selected C

value on the data of all the speakers that belonged to these

21 folds, and this model was evaluated on the (one or two)

speakers of the remaining fold. In our first experiment, we

focused on the AUC value of the predictions.

5. RESULTS

Table 1 shows the AUC scores obtained for the different

speaker tasks, hidden layers and utterance-level aggregation

approaches. Among the four standard aggregation methods

(mean, standard deviation, skewness and kurtosis), the best

values and those being close are shown in bold. In general, it

seems that taking the activations of the last hidden layer (i.e.

Layer 5) lead to higher AUC scores than those corresponding

to the lower layer. Since it is well-known that the higher lay-

ers of a neural network are usually more task-dependent than

the lower ones, this observation can perhaps be interpreted

by the fact that Layer 5 captures information which is more

related to the phonetic content of the recording. On the other

hand, the AUC values corresponding to the lower layers are

not remarkably lower; actually, the highest score of 0.818 for

the task of Narrative Recall was achieved by using Layer 3.

Regarding the efficiency of the four aggregation ap-

proaches, taking the mean and the standard deviation of

the activations were, without a doubt, the most successful

technique. Although in two times out of the nine tested ones,

skewness and kurtosis both led to one of the best values, this

occurred in five and six cases, mean and standard deviation,

respectively. The most robust case was perhaps taking the

standard deviation of the Layer 5 activations. We also experi-

mented with combining (concatenating) these feature vectors

(i.e. using early fusion); in these cases, bold means that the

combined model could surpass all incorporated individual

feature sets. Although this approach led to improvements

in a few cases, the increase in the AUC vales was never

outstanding, indicating that this combination was not really

useful.

The largest difference was clearly due to the speaker task

utilized. The two spontaneous speech tasks led to quite simi-

lar AUC scores: 0.639. . .0.801 and 0.696. . .0.818, Previous

Day and Narrative Recall, respectively. Compared to these

scores, the AUC values measured for the Phonetics task are

remarkably better: they fall in the range 0.847. . .0.938. It is

worth noting that, when using the activations of Layer 5, all

AUC values were 0.926 or above. The success of this task, in

our opinion, shows that it is worth making the subjects utter

such phonetic combinations to detect Multiple Sclerosis.
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Table 2. Comparison of the i-vector, x-vector and acoustic DNN embedding feature extraction approaches. The best and close-

to-best values for a given metric and task are shown as bold. (Acc. = classification accuracy, Prec. = precision, Rec. = recall,

Spec. = specificity)

Speaker task Feature set Acc. Prec. Rec. Spec. F1 AUC

Previous Day

i-vectors 73.2% 76.2% 72.7% 73.7% 74.4 0.763

x-vectors 63.4% 66.7% 63.6% 63.2% 65.1 0.718

Acoustic DNN embeddings 78.0% 81.0% 77.3% 78.9% 79.1 0.801

Narrative Recall

i-vectors 73.2% 76.2% 72.7% 73.7% 74.4 0.727

x-vectors 73.2% 76.2% 72.7% 73.7% 74.4 0.754

Acoustic DNN embeddings 68.3% 71.4% 68.2% 68.4% 69.8 0.749

Phonetics

i-vectors 73.2% 76.2% 72.7% 73.7% 74.4 0.761

x-vectors 68.3% 71.4% 68.2% 68.4% 69.8 0.727

Acoustic DNN embeddings 90.2% 90.9% 90.9% 89.4% 90.9 0.926

5.1. Comparison with i-vectors and x-vectors

Although the obtained AUC scores were quite high in some

cases, the real potential of a method can be judged only by

comparison. For this, we chose i-vectors and x-vectors, cal-

culated by the Kaldi framework [21], and were trained on the

same subset of the BEA corpus which we used to train the

DNN acoustic model. From the tested variations in Table 1,

we chose the “Std.” case with taking the activations of Layer

5, as we regarded this to be the most robust configuration.

Following our preliminary tests, we used 20 MFCC fea-

tures and their ∆s for i-vectors as frame-level attributes, while

x-vectors were trained on FBANKs. In this experiment we

used several evaluation metrics: besides AUC, we calculated

classification accuracy, precision, recall, specificity (practi-

cally recall for the healthy control category) and F1. These

scores were taken besides Equal Error Rate (EER).

Table 2 shows the achieved metric values; the best val-

ues for each speaker task (and those being close to it) are

again shown as bold. It can clearly be seen that the proposed

acoustic DNN embedding feature extraction approach turned

out to be, in general, superior to both i-vectors and x-vectors.

For two out of the three speaker tasks, this technique led to

the best values for all calculated evaluation metrics, and the

difference was especially large for task Phonetics. For the

Narrative Recall task, the AUC score was better than that of

i-vectors, and was on par with x-vectors. For some reason,

however, this performance could not manifest in really high

accuracy and F1 values, although the difference was usually

moderate (4.5. . .5.3%, absolute). It should also be noted that

this was not the best case for the proposed approach, but it

was also outperformed by the Layer 5 case for this Narrative

Recall speaker task.

6. CONCLUSIONS AND DISCUSSION

In this study we focused on the detection of Multiple Sclero-

sis from the speech of the subject. We noted that it is standard

practice in the medical speech processing area to utilize gen-

eral techniques (such as i-vectors and x-vectors) for feature

extraction from the utterances, as these methods allow one to

use general, large speech corpora which are independent of

the actual domain (e.g. MS). However, these methods usu-

ally have to be trained just for this aim, their training targets

might significantly differ from the domain of the application

(e.g. training for speaker recognition), and they might have a

special DNN structure (just as x-vectors do).

Due to these reasons, we proposed to utilize a standard

HMM/DNN hybrid acoustic model in the feature extrac-

tion step. These, besides usually having a traditional neural

network architecture (for example, we used a simple feed-

forward one, without even being a time-delay neural net-

work), also have the advantage of being commonly available.

We tried out using the activations of several hidden layers, and

(inspired by d-vectors) experimented with four approaches to

aggregate the frame-level values into utterance level. We

achieved higher AUC scores than traditional i-vectors and x-

vectors for two of the three speaker tasks tested, while for the

third case we measured competitive scores. For the particular

speaker task “Phonetics”, all our metrics were around 90%,

while the AUC score appeared to be 0.926.

Of course, the metric values of the proposed approach

were significantly affected by the speaker task, while it was

not true for i-vectors and x-vectors (or only to a much more

limited extent). We attribute this to the nature of the feature

sets. That is, the main purpose of i-vectors and x-vectors is

to reflect the identity of the speakers. On the other hand, the

embeddings of a DNN acoustic model (and especially those

if its higher layers) are more related to the phonetic content

of an utterance. Although definite dysarthria is present only

at roughly one-third of the MS patients, it might be the case

that similar articulation symptoms might have manifested for

the other MS subjects as well. In our hypothesis, this was de-

tected by the proposed feature extraction method, allowing it

to significantly outperform the other techniques tested.
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