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ABSTRACT

Dementia is a chronic or progressive clinical syndrome,
mainly characterized by the deterioration of memory, think-
ing, reasoning and language. In Mild cognitive impairment
(MCI), often considered as the prodromal stage of dementia,
there is also a subtle deterioration of these functions, but they
do not affect the daily life of the patient. However, due to
the slight nature of the changes, it is quite hard to diagnose
MCI. In this study, we employ sequence-to-sequence deep
autoencoders in order to extract compact, robust and efficient
attributes from the spontaneous speech of 25 MCI subjects
and 25 healthy controls. From our results, this approach gives
a competitive performance, as we significantly outperformed
x-vectors even though they were trained on more data. Our
additional efforts to identify mild Alzheimer’s (mAD) sub-
jects as well were less successful; but since the focus is on
the early detection of dementia, this is not a limitation of the
methodology from a practical point of view.

Index Terms— mild cognitive impairment, dementia,
sequence-to-sequence autoencoders

1. INTRODUCTION

Mild cognitive impairment (MCI) is a heterogeneous clini-
cal syndrome characterized by the deterioration of memory,
language, and problem-solving skills. It is often viewed as
the transitional stage between normal aging and dementia [1].
However, in contrast to those with dementia, the cognitive
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impairments that occur in MCI are not severe enough to af-
fect the patients’ ability to carry out simple everyday activ-
ities [1, 2]. MCI may be present up to 15 years before the
clinical manifestation of dementia [3], and this time window
offers a chance for early MCI detection, which can provide an
opportunity to reduce the rate of cognitive decline [4].

Changes in language performance can act as an early in-
dicator of MCI, since language-related alterations can appear
long before the manifestation of other distinctive cognitive
symptoms [5]. Changes in language production are related to
the subclinical decline in memory; for example, the fluency
of spontaneous speech has been shown to deteriorate for sub-
jects with early MCI [6]. Their speech contains an increasing
amount of pauses and disfluencies with the progression of the
disease [7], most likely attributable to the word retrieval dif-
ficulties of the patients [8]. These characteristics can have
a strong effect on the patient’s speech; therefore, analyzing
speech permits the indirect investigation of cognition.

Taking this into account, automatic speech analysis could
prove to be a cheap, easy-to-apply, remote and non-invasive
tool for detecting the symptoms of MCI. Quite recently, sev-
eral studies were published on detecting MCI and other forms
of dementia [9, 10]. However, it is still unknown which fea-
ture types are worth extracting from the speech of the sub-
jects. A plausible choice is to employ the ever-growing pool
of general (that is, non-specific to the actual disease) feature
extractors, such as i-vectors [11] and x-vectors [12]. (These
two techniques were developed for speaker verification, but
were later employed as feature extractors in other tasks as
well [13, 14].) The main advantage of these approaches is
that they do not have to be trained on limited-sized MCI and
healthy control (HC) speech data, but instead general, large
speech corpora (like those used to train Automatic Speech
Recognition acoustic models) might be utilized for this aim.

Noting the popularity of deep learning-based techniques,
in this study we apply sequence-to-sequence deep autoen-
coders for extracting features in order to distinguish the
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Fig. 1. The general workflow of the sequence-to-sequence autoencoder based feature extraction process, we applied.

speech of MCI and healthy control subjects. We expect
benefits from the fact that they process directly the spec-
trum of the raw waveform, without relying on manually
feature-engineered attributes like frame-level MFCCs. Fur-
thermore, they were successfully applied to tasks like acous-
tic event classification [15] and categorizing the sounds of
primates [16]. The novelty of our study lies in the use of
sequence-to-sequence autoencoders to detect mild cognitive
impairment and mild Alzheimer’s disease. According to our
experimental results, they are able to outperform x-vectors,
even when trained only on a fraction of the data. Further-
more, to avoid peeking and to demonstrate the robustness of
the extracted features, we employed a separate audio corpus
for training these networks. To our knowledge, this is the
first study that has employed such a cross-corpus technique
in audio processing with sequence-to-sequence autoencoders.

2. SPECTRAL SEQUENCE-TO-SEQUENCE
AUTOENCODERS

Autoencoders have a long history in machine learning, dat-
ing back long before deep networks [17]. The basic idea is
to train a neural network to reconstruct the input (not neces-
sarily audio), while the network structure contains a small-
sized bottleneck layer. Evaluating the fully trained network
and using the activation values of the bottleneck layer leads to
a compressed representation of the input, which can be used
as features in a potential classification step. For audio, due
to the varying duration of the input utterances, recurrent neu-
ral networks or sequence-to-sequence autoencoders might be
employed. Such techniques were successfully used in the past
on various tasks like machine translation [18] and acoustic
event detection [15].

Deep learning methods have shown to be more effective

on raw features such as Mel-scale filter bank energies than
hand-crafted attributes such as MFCCs or PLPs [19]. There-
fore, the first step of the process is the extraction of Mel-scale
spectograms from raw waveforms. Following the study of
Amiriparian et al., the Mel-sceptra are normalized into the
interval [−1, 1] to match the expected input range for neu-
ral networks [15]. Next, this spectra is fed into the encoder
part of the recurrent neural network, consisting of e.g. Long
Short-Term Memory (LSTM) or Gated Recurret Unit (GRU)
cells in a recurrent manner over the time axis.

The hidden states of the last cells of the encoder network
(after a fully connected, compression or bottleneck layer)
form the encoded representation of the input sequence. On
the top of the encoder network, another layer of LSTM or
GRU cells (i.e. the decoder part) is applied, which is ex-
pected to reconstruct the input frame-by-frame. Depending
on the direction of this layer, the network can be unidirec-
tional or bidirectional. The whole network is trained for
input reconstruction, using the straightforward RMSE error
function of the frame-level input vectors and decoder outputs.
After training, the network is evaluated for each utterance,
and the encoded representation (measured on the last cells of
the encoder part) might be used as the compressed form (or,
in practice, as a feature vector) of the utterance.

Usually, the network is trained on the same corpus that
is used during the classification experiments. However, in
the medical speech processing area the amount of data is ex-
tremely limited due to the availability of subjects with the
given disease, and the fact that trained personnel (e.g. doc-
tors) are required to diagnose the patients. To resolve this,
we trained our neural network models on a different, general
audio dataset, in the hope that we could demonstrate the ro-
bustness of the feature extraction technique. For the general
workflow of the approach employed, see Figure 1.
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3. DATA

Our utterances were recorded at the Memory Clinic at the De-
partment of Psychiatry of the University of Szeged, Hungary.
The data sets were recorded with a digital voice recorder and
a tie clip microphone. Recordings had a sampling rate of
44.1 kHz in stereo. Later the recordings were converted to
16 kHz mono with a 16 bit resolution. A total of 50 sub-
jects, selected from a larger pool of test participants, were
used in the current study: 25 MCI patients and 25 healthy
controls. We selected these subjects in order to ensure that
the two study groups did not significantly differ from each
other with regard to gender (p = 0.734), age (p = 0.150)
and years of education (p = 0.214). All the subjects were
right-handed and native speakers of Hungarian. The exclu-
sion criteria were drug or alcohol consumption; being under
pharmacological treatment affecting cognitive functions; de-
pression; a medical history of head injuries or psychosis; and
visual or auditory deficits. MCI patients were selected after a
medical diagnosis supported by neuropsychological tests and
CT or MRI. We focused on spontaneous speech: in our proto-
col, the subjects were asked to talk about their previous day.
The duration of the responses lay in the range of 25. . .325
seconds with a mean duration of 89.8s.

4. EXPERIMENTAL SETUP

4.1. Sequence-to-Sequence Autoencoders

The autoencoder feature extractor models were trained on a
subset of the BEA corpus [20], containing Hungarian spon-
taneous speech. We employed a small subset, consisting of
the speech of 16 subjects with a total duration of 3 hours and
59 minutes. We used the AuDeep toolkit [21], which was
written in Python. Following the results of preliminary tests,
we applied 128 log-scale Mel-spectogram filters with 0.08ms
wide windows and a 0.04ms overlap. We used the Adam opti-
miser with a learning rate of 0.001, and applied dropout with
a 0.2 probability. We used 2 recurrent layers, each one con-
sisting of 128 GRU cells, and a bidirectional decoder. We
trained our models with a mini-batch size of 64 for 32 epochs.
AuDeep normalizes all the computed spectrograms to 0 dB.
As suggested by the literature (see e.g. [15, 16]), we experi-
mented with removing background noise by clipping power
levels below a given dB value. When we set a threshold
it was applied after the spectogram normalization. For this,
we applied thresholds of -30, -45, -60 and -75 dB, and we
tried concatenating the feature vectors of these four variations
(“Merged” approach), and without clipping as well.

4.2. Data Preprocessing

Although the sequence-to-sequence autoencoders in theory
can handle utterances with any duration, due to implementa-
tion constraints of Tensorflow-based toolkits, in practice

Table 1. The accuracy (Acc.) and AUC scores obtained with
the different approaches tested.

Feature extraction approach Acc. AUC

Sequence-to-sequence

-30 dB 64% 0.694

autoencoders

-45 dB 60% 0.706
-60 dB 68% 0.734
-75 dB 72% 0.763
Merged 68% 0.643
Unclipped 68% 0.715

Duration only 60% 0.615
x-vectors 60% 0.680

only objects with a limited size (in our case, duration) colud
be processed. Therefore, we split all recordings of the BEA
corpus into 5-second-long chunks before training our mod-
els. Similarly, we repeated this split with the responses of the
subjects; from the 50 utterances, we got 1371 chunks overall.
Since the length of the utterances (containing the responses
of the subjects) varied from subject to subject, the number of
such chunks ranged from 5 to 60, the mean being 27.42.

4.3. Classification

A linear SVM was employed for classification, using the lib-
SVM implementation [22]; the C complexity parameter was
set in the range 10−5, 10−4, . . . , 101. We used 25-fold strati-
fied cross-validation (CV): each fold consisted of the data of
one healthy and one MCI subject. Performance was measured
by the classification accuracy and equal error rate (EER), and
by the AUC value. All features were standardized before uti-
lizing them in the classification step. Besides the embed-
dings extracted from the autoencoders, we used one further
attribute: the number of chunks associated with the given
speaker (roughly estimating the utterance length).

We performed classification at the level of the 5-second
chunks. To aggregate the predictions obtained for the chunks
of the same speaker into one prediction for the given sub-
ject, we simply took the (unweighted) arithmetical mean of
the posterior scores for the two classes (i.e. MCI and HC).

5. RESULTS

Examining the results (see Table 1), we can see that clip-
ping the power levels below a certain dB threshold clearly
affects the MCI classification performance. In this case, the
highest threshold (-75 dB) led to the best accuracy and AUC
scores (72% and 0.763, respectively), although the values cor-
responding to the -60 dB case were also quite similar. Sur-
prisingly, concatenating the four variations led to a clear fall
in the values: although the 68% classification accuracy is
only slightly lower than the best 72% value, the AUC score
of 0.643 is the lowest one for all six cases. We also notice
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Table 2. The AUC scores obtained for the approaches tested
in the 3-class case.

Feature extraction AUC
approach HC MCI mAD

Autoencoders

-30 dB 0.706 0.618 0.503
-45 dB 0.714 0.633 0.569
-60 dB 0.732 0.706 0.606
-75 dB 0.771 0.710 0.589
Merged 0.701 0.622 0.598
Unclipped 0.682 0.703 0.629

Duration only 0.637 0.641 0.417
x-vectors 0.753 0.546 0.606

that the scores clearly exceed those obtained by using only
the utterance length (i.e. number of 5-second chunks).

For reference, we also trained an x-vector feature extrac-
tor network on the same BEA dataset, but on 60 hours and 14
seconds of data with 165 speakers, using 40 Mel-frequency
filter bank energies (“FBANK”). Surprisingly, we see that
both the accuracy and the AUC value significantly lag behind
the scores obtained via sequence-to-sequence autoencoders.
This finding shows that the methodology employed in our
study indeed provides competitive scores.

5.1. Experiments With Mild Alzheimer’s Subjects

In the next experiments we investigated how these features
could be used to discriminate three speaker categories. That
is, besides the 25 MCI and the 25 control subjects, we utilized
the speech recordings of 25 mild Alzheimer’s (mAD) patients
as well; of course, they were also matched to the other groups
in terms of age, gender and level of education. We retrained
our SVM models on a 3-class task, again in a stratified cross-
validation fashion. Table 2 shows our results; now we focused
only on the AUC values of the individual speaker categories.
Apart from, noting that, just like in the MCI and HC case, us-
ing the -75 dB cut-off threshold led to the best results, we also
observe that the mAD patients could be distinguished from
the other speakers with the lowest efficiency. (Or, in the -30
dB case, they could not be identified at all.) This is surprising
as distinguishing the mAD subjects from healthy controls is
usually regarded an easier task than detecting MCI due to the
more prominent symptoms.

5.2. Experiments With Further Aggregation Approaches

Recall that, after evaluating the classifier SVM models on the
5-second long speech chunks, we had to aggregate the corre-
sponding predictions in some way to obtain a prediction for
each speaker. For this, we simply took the mean of the poste-
rior estimates. Next, we took a look at the efficiency of other
forms of aggregation; that is, besides arithmetic mean, we
evaluated the median, geometric mean and harmonic mean of

Table 3. The AUC scores obtained for the different aggrega-
tion formulas applied.

Speaker Aggregation AUC
Category (Mean) HC MCI mAD

MCI

Arithmetic 0.763 0.763 —
Median 0.782 0.782 —
Geometric 0.760 0.760 —
Harmonic 0.749 0.749 —

MCI + mAD

Arithmetic 0.771 0.710 0.589
Median 0.755 0.712 0.586
Geometric 0.789 0.716 0.606
Harmonic 0.801 0.733 0.611

the posterior scores obtained for the chunks.

In the HC vs. MCI case (see the upper half of Table 3),
we can see that employing the median of the chunk-level pos-
terior estimates was slightly better than using the standard
arithmetic mean, while geometric and harmonic means gave
almost identical or even slightly worse values. In the HC vs.
MCI vs. mAD three-class setup, however, we note the op-
posite trend (see the lower half of Table 3). That is, com-
pared to the straightforward approach of using the arithmetic
mean, relying on the median value made the AUC score of the
HC speaker category slightly worse (although the AUC values
corresponding to the MCI and mAD patients were practically
unaltered). Utilizing the geometric and the harmonic means,
however, improved all three AUC values, the latter increasing
it to 0.801 for the healthy control subjects. These opposing
trends, however, seem to indicate the lack of robustness of
these aggregation strategies.

6. CONCLUSIONS

In this study we focused on the detection of Mild cognitive
impairment (MCI), often considered as a prodromal stage of
dementia, from the spontaneous speech of the subjects. To
employ deep learning-based feature extraction, we trained
spectral sequence-to-sequence autoencoder networks on an
external speech corpus containing spontaneous discussions,
and utilized the compressed hidden states of the cells of the
last time frame as features. Our experimental results indi-
cate that this procedure might be an efficient way for MCI
detection, as we significantly outperformed standard x-vector
encoders, even though we used a fraction of its training
data. Our findings might contribute to the development of
an automatic, efficient, non-invasive and cost-effective MCI
screening method, which does not even require a personal
meeting with the subject, and would be a useful tool in the
current Covid-19 pandemic situation.
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M. Gósy, and A. Beke, “Development of a large spon-
taneous speech database of agglutinative Hungarian lan-
guage,” in Proceedings of TSD, 2014, pp. 424–431.

[21] M. Freitag, S. Amiriparian, S. Pugachevskiy, N. Cum-
mins, and Björn Schuller, “auDeep: Unsupervised
learning of representations from audio with Deep Re-
current Neural Networks,” Journal of Machine Learning
Research, vol. 18, no. 173, pp. 1–5, 2018.

[22] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for
Support Vector Machines,” ACM Transactions on Intel-
ligent Systems and Technology, vol. 2, pp. 1–27, 2011.

6471

Authorized licensed use limited to: University of Szeged. Downloaded on April 30,2022 at 06:35:04 UTC from IEEE Xplore.  Restrictions apply. 


