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Abstract

Articulation-to-speech synthesis using ultrasound tongue
imaging is a promising approach for Silent Speech Interfaces.
However, its effectiveness is hindered by challenges such as
session and speaker dependency, dataset scarcity and language
variability. This study explores the language dependency of an
ultrasound-to-speech synthesis system, consisting of a 2D-CNN
to map ultrasound tongue images to mel spectrograms and a
HiFi-GAN vocoder. The CNNs were trained on Azerbaijani
recordings collected from three native speakers, each recorded
in a single session containing both Azerbaijani (L1) and
English (L2) sentences, and were then used to generate mel
spectrograms for both languages. While the CNNs showed
language dependency with lower mean squared error on L1, the
mel-cepstral distortion of the synthesized speech did not reflect
this, revealing the language bias of the vocoder. These results
demonstrate the importance of considering language-specific
factors in silent speech synthesis.

Index Terms: language dependency,
imaging, silent speech synthesis

ultrasound tongue

1. Introduction

Speech production is a process which involves several human
body parts to co-operate for generating an audible speech [1].
However, there might be cases where audible speech is not
possible to be produced (speech disorders, etc.) or is not desired
due to the environment or some specific purpose (military, etc.).
The need of an alternative real-time communication system in
research has attracted interest towards data acquisition of the
parts from speech production and its processing towards silent
speech interfaces (SSI) [2, 3]. Movements of articulatory organs
(tongue, lips etc.) can be collected using different techniques
such as ultrasound tongue imaging (UTI) [4, 5], magnetic
resonance imaging (MRI) [6, 7], electromagnetic midsagittal
articulography (EMA) [8, 9] and lip video recording [10, 11].
UTI is a non-invasive, cost-efficient technique which is
used in research for biosignal collection of tongue motion
during speech. UTI is portable, easy to use, and allows
real-time data collection, making it a promising option for
SSI. Ultrasound tongue image frame sequences (UTIF) can be
collected either in coronal or midsagittal form and the latter
is often preferred as it visualizes the tongue from its root till
tip in the best case [12]. Obtained UTIF depicts the detailed
visualization of tongue movements which can be used in clinical
speech analysis and therapy [13], linguistics [14], as well as
biosignal-based articulation-to-speech synthesis (ATS) [15].
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Given the correlation between tongue movements and the
acoustic speech signal, several methods have been explored
for ATS using UTI. A typical ultrasound-to-speech synthesis
(UTS) system consists of two steps: a mapping from UTIF
to some intermediate representation of the speech signal (e.g.
mel-spectrogram), and synthesizing speech using a neural
vocoder from this generated representations.

Convolutional Neural Networks (CNNs) are renowned
for their exceptional feature representation capabilities from
sequential image data, which have established them as a
dominant force in image processing. As UTIF is a two
dimensional image sequence, applying CNNs for the analysis
and processing of UTIF demonstrated promising results [16].
In the work of Saha et al. [17], Ultrasound2Formant Net three
dimensional CNN based architecture was used to map UTIF
to formants which were then used to synthesize continuous
speech using Klaat synthesizer. Csapé et al. [18] proposed
an UTS system in which the estimation of 80-dimensional
mel-spectrogram from UTIF was done using CNNs and
synthesized samples were obtained via a WaveGlow vocoder.

UTS system comes with its limitations as described in
details by Xie et al. [19]. Speaker and session dependency
of UTI is a barrier to focus on generalization of UTS
systems [20]. This is due to the variability of human head
shape, tongue anatomy and lack of standardization in ultrasound
probe placement [21]. As a result of these limitations, UTS
systems are usually speaker-specific. On the other hand, speech
produced by a speaker has specific linguistic context which
is also related to phonology of the utilized language and its
structure. This raises the question of how transferable an UTS
system is for the same speaker in a different linguistic context.
To observe the effects of linguistic differences, in this work, we
try to explore language dependency of UTS system.

Besides having data scarcity for processing of UTS
systems, according to our best knowledge, all of openly
accessible UTI datasets are single language oriented and the
results of the related works on them could not showcase
the effects of linguistic changes between languages uttered
by same speaker [10]. In this paper, we present a newly
collected bilingual UTI dataset from three speakers producing
audible speech in Azerbaijani (L1) and English (L2) in
the same session. The purpose of data collection was to
prevent speaker and session dependency of UTI and solely
focus on the effects of linguistic structure differences. We
use two-dimensional CNNs for mapping the UTIF to 80
dimensional mel-spectrogram, which were trained on L1
recordings, but are utilized to generate this this intermediate
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Figure 1: Bilingual ultrasound tongue imaging dataset: Data
splits (train, development, test) per speaker and language
(L1: Agzerbaijani, L2: English), with representative wedge
representations.

representation for recordings in both languages. Speech
synthesis was done using Hifi-GAN vocoder for both languages
from predicted mel-spectrograms. We utilized Mean Squared
Error (MSE) and Mel-Cepstral Distortion (MCD) as objective
measurements for this two-step system to evaluate the
importance of language-specific factors in UTS towards SSI.

2. Dataset

Three male Azerbaijani speakers (average age of 25) with
normal speaking abilities were recorded while producing
sentences aloud in Azerbaijani and English languages. The
subjects were native Azerbaijani and certified non-native
English language speakers. Besides reading 50 Azerbaijani
and 10 English sentences, speakers were asked to produce
spontaneous speech while answering five situational questions
in Azerbaijani. The read sentences were chosen from elicitation
paragraph provided in [22], Harvard sentences [23, List 1],
Rainbow passage [24, Chapter 8], TIMIT [25] and VCTK [26]
corpus and translated to Azerbaijani. Sentences for the English
recordings were taken from Rainbow passage solely.

Each subject was recorded individually in a quiet room
while being fitted with an UltraFit stabilizing helmet which
held a 2-4 MHz / 64 element 20mm radius convex ultrasound
transducer and a Beyerdynamic TG H56¢ tan omnidirectional
condenser microphone. The tongue movement was recorded
in midsagittal orientation using a "Micro” ultrasound system
of Articulate Instruments Ltd. at 81.5 fps. The data (tongue
and audio) was recorded simultaneously utilizing the Articulate
Assistant Advanced (AAA) software. Both the microphone
signal and the ultrasound synchronization signals were digitized
using an M-Audio — MTRACK PLUS external sound card at
22050 Hz sampling frequency. The ultrasound and the audio
signals were synchronized using the frame synchronization
output of the equipment with the AAA software.

Due to the weight of the stabilizing helmet, the duration
of the recording sessions was limited to approximately 15
minutes. This resulted altogether 65 utterances per speaker (for
the second speaker, two of L1 recordings were missing due to
software malfunctioning). Participants were asked to read and
agree to the consent form similar to standard version provided
in [22] for further processing of collected dataset.

The Azerbaijani part of dataset was divided into train,
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development and test sets, while the ten English sentences were
used for testing only. To ensure comparability across languages,
the L1 and L2 test sets consisted of the same read sentences (the
Rainbow Passage) for all speakers (Figure 1).

3. Methodology
3.1. Experimental setup

In our experiments, the scanline data of the ultrasound was
used, after being resized to 64x128 pixels using bicubic
interpolation. As the training set was quite small with the
size of 38 (speaker ”02az”) and 40 recordings (speaker "0laz”
and 703az”) (=11 minutes), we utilized data augmentation
techniques previously proposed in our work specifically for
ultrasound tongue images [27]. According to their results,
each of the presented augmentation method can have different
performance impacts for different speakers. Based on this
conclusion, we generated six data augmentation methods on
each UTIF per speaker and randomly selected one of them per
sentence to provide variability without relying on one specific
augmentation technique. By this step, we doubled the size of
the training set, while keeping the development and test set as
they were, to depict real case scenarios.

All experiments were conducted on a server equipped with
an Intel Core i7-4770 CPU (3.40 GHz, 8 cores, 16 threads)
and an NVIDIA TITAN Xp GPU (12 GB VRAM) with the
system of 32GB RAM. The experiments were performed on
Ubuntu 18.04.6 LTS with Linux kernel 5.15.0-41-generic. For
deep learning computations, we utilized TensorFlow 2.18.0
with CUDA 11.4 and NVIDIA driver 470.129.06.

3.2. Ultrasound-to-mel mapping

The recorded audio signal was converted to 80 dimensional
mel-spectrogram representation; mapping from UTIF to mel
was done using a CNN model for each speaker separately.
Similarly to the presented structure by Csapé et al [18]", we
employed a model with a feed-forward architecture, which
connected two 2D convolutional layers (kernel size: 13x13,
number of filters: 30 and 60) followed by max-pooling with
other two 2D convolutional layers with same kernel size (filters:
90 and 120) followed by max-pooling. After flattening was
done on the resulting tensor shape, dense layer with 1000 and 80
neurons were employed to construct a 2D-CNN model to match
the target dimension. Stochastic Gradient Descent optimizer
were used to compile the presented model architecture with a
manually selected learning rate of 0.1. The model was fitted on
the L1 training set with a batch size 128 and an epoch number
50. Early stopping was used with a patience level of 3, while
being validated on the L1 deveopment set with the MSE metric.
Based on this structure, on average, for each speaker, training
of 10 epochs took approximately 45 minutes.

3.3. Speech synthesis

L1-based speaker-specific mel-spectrogram generators were
utilized to obtain predicted mel-spectrograms from UTIF of
L1 and L2 test sets independently. For the step of speech
synthesis from the generated mel-spectrogram, we chose high
quality audio synthesizer and time-efficient HiFi-GAN neural
vocoder [28]. We employed the first variation of the openly
accessible pre-trained model on multi-speaker VCTK dataset

Uhttps://github.com/BME-SmartLab/UTI-to-STFT
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Figure 2: Schematic diagram of the ultrasound-to-speech system pipeline, showing the 2D-CNN for ultrasound-to-mel mapping and
the HiFi-GAN vocoder for speech synthesis. Training data (L1) flows through the solid arrow, while L1 and L2 test data flow through
the dashed and dotted arrows after training phase was done, respectively. (L1: Azerbaijani, L2: English)

Table 1: Mean Squared Error (l) results of mel-spectrogram
predictions from L1 and L2 test sets.

Language of Speaker ID

recordings Olaz | 02az [ 03az
L1 (Azerbaijani) 0.585 | 0.612 | 0.811
L2 (English) 0.774 | 0.878 | 0.851

| Significance level (p) [[ 0.015 | 0.002 | 0.280 |

(folder name: VCTK_V1)%. We selected the first variation of
the HiFi-GAN generator due to its higher synthesized audio
quality, regardless the longer running time as it does not affect
the pipeline of our work. Mel spectrograms generated from L1
and L2 test sets were synthesized to audio waveforms separately
as the final step of our UTS system.

The pipeline of our UTS system is demonstrated in Fig. 2.

4. Results

4.1. Preliminary consideration

It is important to note that the results of the UTS system should
be analyzed separately for each speaker, as variations in the
quality of the ultrasound tongue images can occur between
individuals [29]. In this study, with three different speakers,
we examine the tendencies in measurements for each speaker
individually, allowing us to better understand the impact of
language dependency on the performance of the system and to
identify any speaker-specific trends in the results.

4.2. 2D-CNN mean squared error (MSE)

First, we report MSE values of the generated mel-spectrograms.
That is, the speaker-specific 2D-CNN models (trained on L1
data) were employed to convert UTIF into mel-spectrograms,
which were then compared to their original counterparts, and
the MSE was computed for all recordings in each test set
(L1 and L2). To assess whether any difference is statistically
significant, we utilized the Mann-Whitney U test [30] on

Zhttps://github.com/jik876/hifi-gan
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Table 2: Mel-Cesptral Distortion (|) results of synthesized
audio samples from L1 and L2 test sets.

Language of Speaker ID

recordings Olaz | 02az | O3az
L1 (Azerbaijani) 3.905 3.045 3.779
L2 (English) 3.942 2.882 3.793

| Significance level (p) [| 0481 [ <0.001 [ 0.123 |

the (sentence-level) MSE scores for each speaker with a
significance level of 0.05.

The average MSE values for each speaker and language
are presented in Table 1. Clearly, the the system achieves
lower MSE for the native language (Azerbaijani, L1) than
for the second language (English, L2) for all three speakers,
indicating better reconstruction accuracy for L1. This trend
is particularly evident for speakers “Olaz” and “02az”; for
these speakers, the difference is also statistically significant.
In contrast, for speaker “03az” the mean MSE value for
Azerbaijani is noticeably higher than for the first two speakers,
which is probably the reason why the difference between the
two languages (L1 and L2) is not significant in this case.

4.3. Mel-cepstral distortion (MCD)

In addition to evaluating the mel-spectrogram generation, we
analyze the quality of final synthesized speech samples using
MCD. This metric quantifies the spectral distance between
generated and original waveforms, with lower values indicating
better synthesis quality. The MCD scores were computed
following a publicly available implementation®. Table 2
presents the average MCD scores for each speaker in both test
sets. The trends are not as clear-cut as they were in the MSE
case: although the mean values for L1 are better than the L2
ones for two speakers ("0laz” and ”03az”), the differences are
quite small, not reaching the level of statistical significance.
For the third speaker (”02az”), the mean MCD value is
actually lower for English (i.e. L1) than for Azerbaijani (L2),
representing a statistically significant difference, indicating an

3https://github.com/ttslr/python-MCD



Table 3: Mel Cepstral Distortion (|) results of synthesized
speech using original mel-spectrograms from Azerbaijani (L1)
and English (L2) test sets as input.

Language of Speaker ID

recordings Olaz [ 02az | 03az
L1 (Azerbaijani) 1.549 1.371 | 1.466
L2 (English) 1691 | 1.405 | 1.516

| Significance level (p) [[ <0.001 | 0.023 | 0.052 |

unexpected variation in the quality of the synthesized speech
samples. Overall, by using MCD, the differences found via
MSE vanished for two speakers, while for the remaining
speaker it actually turned around. These findings suggest that
while language context affects synthesis accuracy, its impact is
not uniform across speakers.

4.4. Measuring the MCD of the vocoder

The previous two experiments differed not only in the
evaluation metric used (i.e. MSE vs. MCD), but also on the
level where the quality of the synthesis was evaluated: MSE
was applied on the generated mel spectrograms, while MCD
was calculated on the synthesized speech samples. Therefore,
while the mean MSE values presented in Table 1 characterized
the performance of the 2D-CNN models, the mean MCD scores
in Table 2 summarized the performance of our whole workflow
(i.e. the 2D-CNN plus the HiFi-GAN vocoder).

Due to this, in our last experiment we evaluated the
performance of the HiFi-GAN VCTK_V1 generator model.
This vocoder, widely used in speech synthesis, was selected
after testing several available versions (with the VCTK
dataset-trained variation providing the best results). However,
as this generator was trained on a multi-speaker English
dataset, analyzing its performance on Azerbaijani (an unseen
language) is crucial. To assess this, we now used the original
mel-spectrograms from the Azerbaijani and English test sets as
input to generate audio waveforms. MCD was calculated to
quantify synthesis accuracy; the results are shown in Table 3.

Surprisingly, across all speakers, synthesized samples from
original mel-spectrograms in the Azerbaijani (L1) test set
achieved lower MCD scores than those for English (L2),
despite the fact that the vocoder was trained on English
speech. This finding (that the vocoder also has language
dependency), on one hand, explains why the L1 advantage
over L2, found on the generated mel spectrograms, vanished
when we investigated the synthesized speech samples. On the
other hand, it also contradicts the expectation that the vocoder,
trained on English, would perform better on English speech
due to phonetic similarities. The difference in synthesized
speech quality between the Azerbaijani and English test sets
varied considerably across speakers, but in two cases it was
statistically significant, while it remained at the edge of
significance for the third speaker ("03az”).

Overall, we found that our, quite standard UTI-to-speech
workflow was language-dependent on two distinct levels, as
both the UTI-to-mel 2D-CNN network and the employed
HiFi-GAN vocoder model showed statistically significant
differences over the two languages for two out of the three
speakers. This should be leveraged by using multilingual
training data; by using an off-the shelf vocoder, however, this
might not always be an available option.
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5. Conclusions and Discussion

Addressing the open question of language dependency in UTS
systems, this work investigated how the performance of UTS
system gets affected by L2 speech when the system is trained
exclusively on L1 data. A dedicated ultrasound tongue image
and audio dataset was recorded to facilitate this analysis. A
2D-CNN and a HiFi-GAN vocoder were employed for the
ultrasound-to-mel mapping and speech synthesis stages of the
UTS system, respectively. Based on the objective evaluation
using MSE and MCD metrics, we found that our, quite standard
UTS system is language-dependent both on the UTI-to-mel
and on the vocoder level. This underscores the necessity
of considering linguistic context and individual pronunciation
patterns in the development of ultrasound-based ATS systems.

Several factors could contribute to this finding. The
inherent phonetic variations between English and Azerbaijani,
particularly in vowel pronunciation, intonation, and the
realization of certain consonants, may pose a challenge for
the English-trained vocoder [31]. For example, English has
a wider range of vowel sounds than Azerbaijani, potentially
hindering the ability of the vocoder to accurately reproduce
the nuances of English vowels. Similarly, intonation patterns
differ significantly; English relies more heavily on intonation
for conveying meaning, while Azerbaijani intonation is
less prominent. These cross-linguistic phonetic differences,
compounded by individual speaker characteristics like vocal
tract morphology or speaking style, can significantly impact
generalization performance.

The contrasting MCD scores of speakers ”01az” and ”02az”
highlight the difficulties encountered in generalizing across
speakers with varying accents and pronunciation, even when
the target language is the same as the training language.
The larger discrepancy in L1 and L2 MCD scores for
speaker ”Olaz” suggests that the vocoder, despite its overall
performance, may be particularly sensitive to subtle phonetic
differences introduced by non-native pronunciation in certain
speakers. This observation aligns with broader challenges in
text-to-speech (TTS), where accent variation and cross-lingual
generalization are active research areas. Studies in TTS have
shown that even high-performing vocoders trained on one
language or accent group can exhibit performance variations
when applied to others [32].

The unexpected lower MCD for L2 test set of speaker
”02az” presents a unique puzzle. While a detailed analysis is
beyond the scope of this paper, we hypothesize that English
pronunciation of speaker ”02az”, despite being non-native, may
coincidentally align more closely with specific acoustic patterns
in the training data of the utilized vocoder.

For future work, we intend to expand our dataset by
including additional bilingual speakers, particularly focusing
on female voices, to increase diversity. Recognizing that
spontaneous speech often reveals more nuanced linguistic
characteristics than read speech, we will prioritize recording
spontaneous utterances for both existing and new speakers.
To mitigate the influence of linguistic factors in the synthesis
stage, we plan to investigate fine-tuning the neural vocoder on
Azerbaijani dataset. Finally, a detailed analysis of UTIF from
both languages, considering specific linguistic factors, will be
crucial for a deeper understanding of language dependency and
the development of effective solutions.

For reproducibility, the full
synthesized speech samples are
https://doi.org/10.5281/zenodo.15808656.

code and
available at
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