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Abstract

In the silent speech interfaces (SSI) area the aim is to restore
or recognize speech whenever normal verbal communication is
not possible or desirable. SSI systems use some non-acoustic
biosignal of the body (e.g. tongue or lip movement) as input,
and they are typically trained on data where real speech was
produced, implicitly assuming that during silent (i.e. whispered
or silently articulated) speech production the articulatory organs
move similarly as they do during normal speaking. In this study
we test this hypothesis in practice: we train our speech restora-
tion DNNSs on ultrasound tongue images recorded during audi-
ble speech, and synthesize speech from images recorded during
whispering and two types of articulated-only speech. We found
that synthesized speech for these silent ’speaking” styles is sig-
nificantly less intelligible than for audible speech, suggesting a
difference in the articulatory movements, which should be con-
sidered when training silent speech restoration models.

Index Terms: ultrasound tongue imaging, silent speech synthe-
sis, articulated speech, whispered speech

1. Introduction

Human speech production requires the coordination of various
articulatory organs [1]. In certain situations, however, produc-
ing audible speech may not be possible (e.g. after laryngec-
tomy) or it is undesirable (e.g. extreme background noise, spe-
cific military applications). Owing to these factors, there is a
growing interest in processing “speech”, when the speaker ac-
tually produces only soundless articulatory movements, which
area is called silent speech interfaces (SSI, [2, 3]). These
systems vary both in their input (electromagnetic articulogra-
phy (EMA, [4]), ultrasound [5, 6, 7], surface electromyograpy
(EMG, [8]), magnetic resonance imaging (MRI, [9]) or mul-
timodal [10, 11, 12]) and in their aim (silent speech recogni-
tion [11, 13] or synthesis [5, 9, 14]).

Although the motivation behind silent speech interfaces in
general, and silent speech synthesis in particular, is to handle
situations when the user is articulating without producing any
sound (or, at most, whispers), it is straightforward to use record-
ings where the articulatory movement (e.g. ultrasound tongue
images (UTI) or EMG time series) and the speech signal are
recorded in parallel [15, 16]. This way the training targets of
the underlying machine learning model (e.g. DNN) can directly
be derived from the corresponding speech utterances both for
silent speech recognition (SSR, [16, 17]) and for silent speech
synthesis (or reconstruction, [15]), while the input of the model
can be derived from the (time-aligned) articulatory movements.
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Of course, articulatory movements do differ in normal and
in silent and/or whispered speech [18, 19]. Therefore, if one de-
cides to use recordings of modal speech for training an SSI sys-
tem, there will be a mismatch between the (vocalized) training
data and the (silent) input of the model during application. This
mismatch and its effect to system performance was investigated
in several studies. For example, Janke et al. investigated EMG-
based silent speech recognition of audible, whispered and silent
speech using a HMM-based workflow [20]. Wand et al. deve-
loped a spectral mapping method to reduce the discrepancy be-
tween the EMG signals of audible and silent speech, but still re-
ported consistently larger WER values for silent speaking mode
than for audible recordings [21]. Petridis et al. utilized normal,
whispered and silent recordings on visual speech recognition
(i.e. lip videos), and found that the effect of this mismatch is
significant, silent speech differing the most from the other two
speaking styles [22].

Regarding UTI, Ribeiro et al. investigated recognition
of silent, whispered and modal speech using both ultrasound
tongue images and lip videos [11], using only modal utterances
for model training. They found that word error rates were sig-
nificantly higher for silent speech than for the other two speak-
ing styles. They also found differences in utterance durations
and in the articulatory space (i.e. intensity of tongue move-
ments) between modal and silent speech.

What these studies have in common, though, is that they
all focus on silent speech recognition. This task is simpler than
silent speech synthesis in the sense that it is easier to obtain
training targets even for articulatory movement data recorded
during silent speech, as we need only to map a finite set of
phonetic classes to each input feature vector (e.g. ultrasound
image). Evaluation is also quite simple, requiring only the tran-
script of the silently articulated word or word sequence. How-
ever, to the best of our knowledge, no study yet investigated the
effect of whispered and silent speech in silent speech synthesis.

In this study we investigate how silent and whispered
speech deteriorates the quality of the synthesized speech sam-
ples. To do this, we utilize a standard UTI-based speech syn-
thesis workflow, consisting of a two-dimensional convolutional
neural network (2D-CNN) to map each ultrasound image to the
corresponding mel spectral vector, and a HiFi-GAN vocoder to
produce the final speech signal from the mel spectrogram. We
train the neural network component on recordings containing
vocalized speech, and evaluate it on ultrasound tongue image
sequences recorded in four styles (vocalized, whispered and two
types of silent articulation). The intelligibility of the synthe-
sized samples is measured by a phone-level ASR system.
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Figure 1: A sample set of kymograms, containing the same sen-
tence (#7) for the same speaker (ID 103). (1): normal speech,
(2): whispered speech, (3): silent hyperarticulated speech, (4):
silent speech with normal articulation.

2. Data

Several Hungarian male and female subjects with normal speak-
ing abilities were recorded while reading 200 sentences aloud,
then two female and one male speakers were selected for the ex-
periments (with speaker IDs 048, 049 (female) and 103 (male)).
The average duration of the recordings was about 15 minutes
per speaker. The speech signal and the ultrasound articulatory
data were recorded in parallel, and they were synchronized us-
ing the software provided with the UTI equipment. The tongue
movement was recorded in a midsagittal orientation using the
‘Micro’ ultrasound system of Articulate Instruments Ltd. at
81.67 fps. The speech signal was recorded with a Beyerdy-
namic TG H56¢ omnidirectional condenser microphone. (For
more details on the recording set-up, see [23].)

In the experiments we used the raw scanline data of the
ultrasound as the input of an articulatory-to-acoustic mapping
CNN after resizing it to 64x128 pixels. The intensity range
of the images was min-max normalized to the [-1, 1] interval.
The speech signals were converted to mel spectrograms with
80 spectral components. These 80-component spectral vectors
served as the training targets for our neural networks, after stan-
dardizing to zero mean and unit variance. The 200 read sen-
tences were used for training the UTI-to-Mel neural network,
with a random 190-10 division for training and development.

Besides the (vocalized) recordings used for model training,
the speakers read the 9-sentence long Hungarian version of the
short tale “The North Wind and the Sun”. These sentences were
read in four variations:

ey
@
3

Normal: The sentences were read aloud.

Whispered: The speakers read the sentences whispering.
Silent (hyperarticulation): The sentences were read silently,
but with articulation. The speakers were asked to move their
tongue and lips in an exaggerated manner.

Silent (normal articulation): The sentences were read
silently, but with articulation. This time the speakers were
asked to refrain from hyperarticulation.

“

The ultrasound tongue images of the utterances of “The North
Wind and the Sun” were used as the basis of speech synthesis.
Fig. 1 shows the kymograms (the change of the middle ver-
tical line in the ultrasound image over time) for the 7th sentence
of speaker 103 in the four variations produced (“Az Eszaki Szél
végre feladta a harcot.”, i.e. “At last the North Wind gave up
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Figure 2: The mel spectrograms of the same recordings as
shown in Fig. 1. (1): normal speech, (2): whispered speech,
(3): silent hyperarticulated speech, (4): silent speech with nor-
mal articulation.

the attempt.”). The four kymograms have different durations,
as they belong to different “utterances”. The bumps (indicating
sudden vertical tongue movements) are also present at different
locations, and they are slightly less intense in cases (3) and (4),
which correspond to silent articulation.

The corresponding mel spectrograms can be seen in Fig. 2.
These spectrograms appear as expected: while the formants are
clearly visible on the audible speech (i.e. (1)), they are a lot
less apparent in the whispered variation (i.e. (2)). The rela-
tion between these two mel spectrograms and the correspond-
ing kymograms is clear, as the sentence begins slightly earlier
in whispered utterance than in the normally uttered one, and
the two more intensive tongue movements (i.e. bumps) at the
beginning are in synch with this. As expected, the two silent
variations ((3) and (4)) have empty mel spectrograms.

3. Experimental setup

We applied a straightforward 2D convolutional (2D-CNN)
network that transforms one ultrasound image to one mel-
frequency spectral vector [24]. This network consisted of 4
convolutional layers with 30-60-90-120 filters, and had a max-
pooling layer after every second layer. This was followed by
a fully connected layer of 1000 neurons, and the linear output
layer consisting of 80 neurons. All the hidden layers used the
Swish (or silu) activation function, while the output layer had
linear neurons. To reduce overfitting, we used dropout layers
(p = 0.2) after each convolutional layer and also after the only
dense layer. The network was trained to minimize MSE with
a batch size of 128 and an initial learning rate of le-4, which
was regulated using the AdamW optimizer. Early stopping was
employed based on the MSE value of the validation set (i.e. 10
sentences). Similarly to most works in UTI-based speech syn-
thesis [25, 15, 26], we trained speaker-dependent models, i.e. a
separate 2D-CNN network was trained for each speaker.

For generating the synthesized speech samples from the
mel spectrograms, we chose a high-quality and efficient HiFi-
GAN neural vocoder [27]. We employed the first variation of
the openly accessible pre-trained model on the multi-speaker
VCTK dataset (VCTK_V1)'. We selected the first variation
of the HiFi-GAN generator due to its higher synthesized audio
quality, despite its slightly higher running time.

Thttps://github.com/jik876/hifi-gan



Table 1: Phonetic error rates (PER%) measured for the three
speakers and the four different speaking styles.

Speaker ID
Speaking style spk048 | spk049 [ spk103
Original recording 21.6% 18.8% 19.5%
Normal (audible) 64.9% | 64.8% | 51.5%
Whispered 88.8% | 86.0% | 91.7%
Silent (hyperarticulated) 96.9% | 89.6% | 96.9%
Silent (normal articulation) 96.7% 96.0% 96.9%

3.1. Evaluation

In a standard articulatory-to-acoustic mapping set-up, objective
metrics such as MSE and mean cepstral distortion [28] can be
used to quantify the quality of synthesized speech. However,
these metrics compare the synthesized audio with the original
one, which is clearly not an option when the speaker actually
uttered no speech (or only whispered it), while we expect our
system to output voiced speech. Another option might be to
compare all four synthesized recording variations to the origi-
nal, audible speech recording; however, this was also unfeasible
since the four utterances significantly differed in their timing
(see Fig. 1 again).

Due to the above difficulties, we applied an automatic
speech recognition (ASR) system to rate the quality of the syn-
thesized recordings [29, 30]. (We are aware that this proce-
dure does not measure naturalness, but only intelligibility; how-
ever, in this work our focus was the intelligibility of the gen-
erated speech samples.) Our first attempt was to use Whis-
per [31], but it was hampered by the frequent hallucinations
of the model [32]. Owing to this, we employed a tradi-
tional phone-level HMM/DNN system, trained on 240 hours of
noise-augmented spontaneous speech from the Hungarian BEA
dataset [33], and a simple phone bigram as the language model.
From the output of the ASR system we calculated phonetic er-
ror rate (PER%) scores for all nine sentences altogether, which
served as a proxy for intelligibility. (Exploiting the properties
of Hungarian orthography, the phonetic transcription of the sen-
tences was created automatically, in a rule-based way.)

4. Results

Table 1 shows the measured phonetic error rates for the three
speakers and the four speaking styles. For the original record-
ings we measured PER% values in the range 18.8%. ..21.6%,
which characterize the accuracy of our phonetic ASR system,
and indicate the glass ceiling for the PER value for the syn-
thesized speech samples. The fact that the values of the three
speakers are quite close to each other indicate that the ASR sys-
tem had no significant speaker dependency.

Compared to these values, the phonetic error rates for the
synthesized samples from the normal (audible) recordings are
significantly higher: they lay between 51.5% (speaker 103) and
64.9% (speaker 48). This shows that the employed workflow to
reconstruct the speech samples from the ultrasound tongue im-
ages deteriorates the intelligibility of the resulting speech sig-
nals, even when both the training and the test UTI frames were
recorded during audible speech.

Regarding whispered speech, the phonetic error rates are
even higher: they lay in the range 86.0%...91.7%, show-
ing a clear tendency (but also reflecting a speaker-wise varia-
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Table 2: Recognized phonetic ratios, i.e. number of phones rec-
ognized divided by the total number of phones.

Speaker ID
Speaking style spk048 [ spk049 | spk103
Original recording 100.9% | 100.9% | 100.3%
Normal (audible) 71.8% 68.4% 83.1%
Whispered 26.6% 32.8% 20.0%
Silent (hyperarticulated) 7.9% 29.5% 4.5%
Silent (normal articulation) 6.4% 11.9% 4.3%

tion). This level of lower intelligibility clearly indicates that
the tongue, the lips, and any other possible organ used during
speech production which is visible on the ultrasound tongue
images move differently during whispered speech production
than they do during normal (audible) speech. By listening to
these generated samples, we could acknowledge that they usu-
ally contained some longer intelligible parts. We can also ob-
serve a significant amount of speaker-dependency: for speakers
048 and 049, the phonetic error rates increased from cca. 65%
to 86-89%, while for the third speaker (ID 103) there was a
larger gap (from 51.5% to 91.7%).

The results for the two silent styles show that the generated
speech samples were even of a lower quality than those synthe-
sized from the whispered UTI recordings: in five cases out of
six, the phonetic error rate values reached 96%. The only excep-
tion was the hyperarticulated variation of speaker 049, where
the 89.6% PER score is still quite high, but falls quite close to
the values of the whispered recordings (i.e. 86.0%...91.7%).
This outlier value probably reflects the behaviour of the partic-
ular speaker instead of some biological phenomenon; that is,
how she articulated when following the instruction “move your
tongue and lips in an exaggerated manner”.

4.1. Recognized phonetic ratios

By investigating the results of phone-level recognition, the high
number of phonetic deletion errors was quite apparent, which
probably reflects the (observed) low volume of the synthesized
speech samples from the silent ultrasound images. To express
this, we calculated the total number of phones in the output of
the phonetic ASR system, and divided it by the total number
of phones in the transcription. The lower this ratio is, the more
silence is present in the (synthesized or original) speech sample.

Table 2 shows these recognized phonetic ratios (expressed
in percentages for the sake of better readability). Clearly,
the speech samples generated from the normal (i.e. audible)
recordings contained more speech (and/or more distinguishable
phones) than the synthesized samples from the whispered in-
put: the former recordings had 68. . .83% of the original phones,
while the latter recordings contained only 20...33%. The
speech samples reconstructed from the two types of silent ut-
terances have even lower values, indicating that the ASR output
contained mostly silence phones (being present at the start and
end of each utterance). The exception is again speaker 103 with
the “silent (hyperarticulated)” recordings, where the amount of
phones recognized (29.5%) roughly matched that of the whis-
pered recordings (32.8%).

4.2. The generated mel spectrograms

Fig. 3. shows the generated mel spectrograms for sentence #7
from speaker 103. (The kymograms and the original mel spec-



Figure 3: The mel spectrograms of the synthesized samples for
the same sentence as in Fig. 4 (sentence #7) for speaker 103.
(1): normal speech, (2): whispered speech, (3): silent hyperar-
ticulated speech, (4): silent speech with normal articulation.

trograms for these utterances can be seen in Fig. 1. and Fig. 2,
respectively.) As it can be seen, the mel spectrogram corre-
sponding to the whispered utterance (i.e. (2)) is quite similar to
the one generated for the recording with normal speaking style
(1), but the timing is slightly different, and the formants are
more blurred. This latter property is probably the reason why
the ASR system distinguished a lower number of independent
phones in this synthesized speech sample than in the first, nor-
mally uttered one. From the silent utterances, however, quite
low-intensity “speech” recordings were synthesized; the ASR
module recognized both displayed samples simply as silence.

Fig. 4., in contrast, shows the generated mel spectrograms
of the same sentences for speaker 049. Although the one corre-
sponding to the normally articulated silent recording (i.e. (4))
appears to be similarly silent as for the previous speaker, the hy-
perarticulated speech sample (3) is significantly louder. (Also, it
is significantly longer than the other three samples, which phe-
nomenon was reported for silent speech articulation [11].) This,
in our opinion, demonstrates that it is possible to synthesize au-
dible speech samples from ultrasound tongue images even when
the speaker omits no sound. However, it most likely requires the
subject to hyper-articulate, and, based on our results, it can be
significantly speaker-dependent.

4.3. Utterance durations

Finally, we take a look at the duration of utterances produced
by the three speakers in the four speaking styles. The mean du-
rations of one phone (i.e. total utterance duration divided by
the number of phones present in the transcription) are plotted
in Fig. 5. Although there is indeed a visible speaker-wise vari-
ation, it is obvious that silent hyper-articulated speaking style,
in average, led to longer-articulated phones than the three other
speaking styles. It was already reported that silent articulation
leads to increased duration (e.g. by Ribeiro et al. [11]). How-
ever, in our case we found this only for the hyper-articulated
recordings, while the mean phonetic duration of the silent, but
normally (i.e. not over-) articulated utterances was similar to
those of the whispered and modal speech recordings.

5. Conclusions

In this study, motivated by works from the silent speech recog-
nition area, we investigated how whispered and silent speech af-
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Figure 4: The mel spectrograms of the synthesized samples
for the same recordings as shown in Fig. 4 (sentence #7) for
speaker 049.
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Figure 5: Mean phonetic durations for the three speakers and
four speaking styles. (1): normal speech, (2): whispered
speech, (3): silent hyperarticulated speech, (4): silent speech
with normal articulation.

fects a standard silent speech synthesis system. For this aim we
trained speaker-dependent CNNs on ultrasound tongue imag-
ing (UTI) frames, which were recorded during normal (audi-
ble) speech, then we synthesized speech samples from record-
ings of normal, whispered and two types of silently articulated
speaking styles. By our results, synthesizing audible speech
from whispered recordings is possible, but the generated speech
samples are not always intelligible. However, ultrasound ima-
ges from the silent speaking styles led to (at least partly) in-
telligible speech only for one speaker, and only when she was
hyper-articulating. This indicates that the speech production or-
gans (or at least those captured by an ultrasound transducer in
midsagittal orientation) move differently during silent and whis-
pered speech than they do during normal speech production, to
the extent that this effect harms the quality of the output of a
standard UTI-based speech synthesis system. Regarding the
only speaker where we generated audible speech, we believe
that the key was how she followed the instructions to hyper-
articulate. Of course, this hypothesis has to be verified with
more speakers, which we plan to do in the near future. Another
solution towards really silent speech synthesis could be to col-
lect more training data and solve the issue of missing training
targets, which is another path we intend to follow.
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