EUROPHYSICS LETTERS 20 January 1995
Europhys. Lett., 29 (3), pp. 191-196 (1995)

Non-Dynamical Stochastic Resonance: Theory and Experiments
with White and Arbitrarily Coloured Noise.

7. GINGL (*), L. B. Kiss(*)(**) and F. Moss (***)

(*) Institute for Experimental Physics, JATE University

Dém tér 9, H-6720 Szeged, Hungary

(**) Solid State Physics Department, Institute of Technology
Uppsala University - Box 534, S-75121 Uppsala, Sweden

(***) Department of Physics, University of Missouri at St. Louis
St. Louis, MO 63121, USA

(received 27 May 1994; accepted in final form 6 December 1994)

PACS. 05.40+j - Fluctuation phenomena, random processes, and Brownian motion.

Abstract. - We describe the simplest system which shows stochastic resonance. Theoretical
results for white and (almost) arbitrarily coloured noise are presented. The new system has new,
unique properties which originate from its non-dynamical character; for example, the strength
and phase shift of periodic response of the system is independent of the frequency. Experiments
have been carried out with the following noise processes: (physical) white noise, (physical)
Lorentzian noise and (physical) 1/f noise. With a small extension of the system, its linear-
response regime can be significantly increased. As the system is similar to some simple models of
neurons, the new results might have not only physical but also biological importance.

Introduction. — In the last decade’s physies literature, stochastic-resonance (SR) effect
has been one of the most interesting phenomena taking place in noisy non-linear dynamical
systems (see, e.g.,[1-14]). The input of stochastic resonators[12] (non-linear systems
showing SR) is fed by a Gaussian noise and a sinusoidal signal with frequency f;,, that is, a
random excitation and a periodic one are acting on the system. There is an optimal strength
of the input noise, such that the system’s output power spectral density, at the signal
frequency f;, has a maximal value. This effect is called SR. It can be viewed as: the transfer of
the input sinusoidal signal through the system shows a «resonance» vs. the strength of the
input noise. It is a very interesting, and somewhat paradoxial effect, because it indicates that
in these systems the existence of a certain amount of «indeterministic» excitation is
necessary to obtain the optimal «deterministic» response. There are certain indica-
tions [2,13,14] that the principle of SR may be applied by nature in biological systems in
order to optimise the transfer of neural signals.

Until last year, it was a common belief that SR phenomena occur only in (bistable, some-
times monostable [10] or multistable) dynamical systems [1-14]. Very recently, Wiesenfeld
et al. [15] have proposed that certain systems with threshold-like properties should also show
SR effects.
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Fig. 1. — A numerical representation of non-dynamical stochastic resonance. a) The coherent signal, a
sine wave, plus band-limited Gaussian noise, underlying a threshold shown by the straight line. The
distance between the threshold line and the average of the sine wave is equal to the height of the
threshold. b) A pulse train marking the undirectional (in this case, positive going) threshold-crossing
events. ¢) The averaged power spectrum of the pulse train.

We present here an extremely simple system, invented by Moss, which displays SR. It
consists only of a threshold and a subthreshold coherent signal plus noise as shown in fig. 1a).
It is not a dynamical system, instead there is a single rule: whenever the signal plus the noise
crosses the threshold unidirectionally, a narrow pulse of standard shape is written to a time
series, as shown in fig. 15). The power spectrum of this series of pulses is shown in fig. 1c). It
shows all the familiar features of SR systems previously studied [1,2,7, 16], in particular, the
narrow, delta-like signal features riding on a broad-band noise background from which the
signal-to-noise ratio (SNR) can be extracted. This system can be easily realized electronically
as a level-crossing detector (LCD). There is a simple and very physically motivated theory of
this phenomenon (due to Kiss), see below. Other, more detailed studies of various aspects of
threshold-crossing dynamics have been made by Fox et al. [17], Jung [18] and Bulsara ef al. [19].

We have experimentally realised and developed this simple SR system and carried out
extensive analog and computer simulations on it. The theory of Kiss has been verified for the case
of white and several sorts of coloured noises. Until now, the description of this new SR system,
its physical realisation and the original theory have not appeared in the open literature, so in this
letter we shall describe the new system and its developments made by us, present the outline and
the main results of the theory and finally show some interesting experimental results.

Description of the realised systems showing non-dynamical SR.

Asymmetric system. The asymmetric system consists of an LCD of the following
kind: whenever the instantaneous strength of the input excitation (noise and small sinusoidal
signal) crosses the positive threshold level U, in increasing direction, the LCD produces a
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positive, short pulse with amplitude A and duration r, at its output. The resulting output
response of the system is a random time-sequence w(t) of uniform, positive pulses
(fig. 1).

Symmetric system. The symmetric system consists of an LCD of the following kind:
whenever the instantaneous voltage (noise and small sinusoidal signal) crosses the positive
threshold level U, in increasing direction, the LCD produces a positive, short pulse with
amplitude A and duration t, at its output; on the other hand, whenever the instantaneous
strength of the input excitation (noise and sinusoidal signal) crosses the negative threshold
level — U, in decreasing direction, the LCD produces a negative, short pulse with amplitude
— A and duration , at its output. The resulting output response of the system is a random
time sequence u(t) of uniform, positive and negative pulses with zero time average.

It follows from the above definitions that the role of the sinusoidal input signal can be
viewed as a periodic modulation of the threshold level(s) which causes a periodic modulation
of the mean frequency v of the threshold crossings of the noise, that is the mean repetition
frequency v of pulses at the output of the system.

Theoretical results. — The outline of the theory for asymmetric LCD follows (details
described elsewhere [20]). The first theoretical problem is to determine the noise spectrum of
a random sequence of pulses, when the frequency v is weakly and slowly modulated. The time
average U,, of randomly repeated, uniform, sufficiently short pulse sequence u(f) is
proportional to v, U,, = (u(t)); = vAt,. The slow and small modulation of v yields the linear
modulation of the time average, U,,(t) = w(t)At, which results in the transfer of the
modulating signal through the system. In the case of sinusoidal modulation of v with
frequency f;, the requirement of good transfer of the modulating signal requires: fo << v(%).
This condition also implies that fy < 7k, Where 7, is the correlation time of the input noise.
Moreover, when v << 7. the time sequence of pulses can be considered purely random. At
the above conditions, we applied Campbell’s pulse-noise theorem to calculate the spectrum of
the output response provided the time function v(t) is known.

The second theoretical problem is to determine the unknown v(¢). In order to do that, we
generalised the Rice theory of zero-crossings[21] for the crossings of arbitrary levels.

Finally, by combining the above-described methods, in the linear limit (much smaller
signal than the r.m.s. and the U,), we obtained the following results for the square P; of the
output sinusoidal signal (after subtracting the background noise which is the output power
density spectrum without input sinusoidal signal):

P, = (BvyAto U)o *exp[— (U, /o)1, (1)

and the phase shift of the first harmonic is zero compared to the input sinusoidal signal. The
«modified» «signal-to-noise ratio» SNR = P, /S(f;), where S(f) is the output background noise

SNR = v, (BU,)?*c *exp[ — (U, /s)*/2]. (2)

In the above equations, B is the amplitude of the input periodic signal, v, is the mean
frequency of unidirectional zero-crossings of the input noise, and o is the root-mean-square
(r.m.s.) amplitude of input noise. The value of v, is obtained from the original Rice

formula [21]:
vo =g ”fZS(f)df. (3)
0
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Note that the last square-root term is the r.m.s. velocity (time derivative) of the noise
amplitude. Furthermore, analysing eq. (1), it is obvious that in the limit of our approx-
imation, the only important properties of the input noise are its r.m.s. amplitude o and its
r.m.s. velocity, the particular structure of its spectrum S(f) does not have influence on the
strength of the output signal. Moreover, the frequency of the input signal does not play any
role in eqs. (1) and (2). It is important to note that these properties are present only in this
threshold system, even the very recent threshold SR systems proposed by Jung[18] and
Bulsara et al. [19] do show frequency-dependent behaviour. These properties are completely
new in the field of SR, and they originate from the fundamental and non-dynamical character
of this system, which is successfully represented by the theory outlined above and verified by
our experiments, see below.

Experiments. — Both the symmetric and the asymmetric LCD systems have been realised
electronically, using comparators and monostable multivibrators and practical Gaussian noise
sources (details described elsewhere [20]). The values of pulse parameters were A = 5V and
7o = 1 ps. In fig. 2, the experimental results for P, and the SNR with physical (band-limited
from above) white noise are presented. It is clear that there is no observable difference
between the data obtained at 38 Hz and 305 Hz signal frequencies; moreover, the fit of the
data by eqgs. (1) and (2) is excellent. In fig. 3, experimental results for P, and the SNR with a
strongly colowred noise, a physical (band-limited from below and above) 1/f noise, are
presented. The fit of the signal data by eq. (1) is excellent and the fit of the SNR by eq. (2) is
fairly good. We have observed the same behaviour for different kinds of Lorentzian noises (to
be shown elsewhere [20]).

Note that, when the approximations of the theory, as outlined above, were not fulfilled,
we have naturally found deviations from eqs. (1) and (2): for example, at very small input
noise, the linear approach breaks down; and at very large input noise, correlations between
level-crossing times can cause deviations on the SNR curve. These deviations will be shown
and analysed elsewhere [20].

Summary. — We have described the simplest stochastic resonator. The new system
produces a non-dynamical response, that is, no frequency dependence can be observed under
the assumed conditions. The results of the outlined adiabatic and linear theory describe well
the behaviour around the SR peak for both white and coloured noise.
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Fig. 2. — Representative plot of white-noise experiments on an asymmetric LCD system. Input signal:
B=10.1V, f,=38 Hz and 305 Hz; input noise: white, upper cut-off 12kHz; U, =045V, x and A
305 Hz; o and 0 38 Hz; curve fits: dashed lines by eqgs. (1) and (2).
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Fig. 3. — Representative plot of strongly coloured noise experiments on symmetric LCD system. Input
signal: B = 0.1V, f, = 38 Hz; input noise: Gaussian 1/f (lower and upper cut-offs: 300 Hz and 10 kHz);
U, =05YV; curve fits: dashed lines by eqgs. (1) and (2).
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