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We demonstrate that signal-to-noise ratio (SNR) can be significantly improved by stochastic reso-
nance in a double well potential. The overdamped dynamical system was studied using mixed signal 

simulation techniques. The system was driven by wideband Gaussian white noise and a periodic 

pulse train with variable amplitude and duty cycle. Operating the system in the non-linear response 
range, we obtained SNR gains much greater than unity. In addition to the classical SNR definition, 

the ratio of the total power of the signal to the power of the noise part was also measured and it 

showed better signal improvement. 
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1. Introduction 

In certain systems, noise can optimize the signal transfer — that is, adding a given 

amount of noise to the input can maximize the signal-to-noise ratio (SNR) at the output. 

This phenomenon is called stochastic resonance (SR) and it is one of the most exciting 

topics in current noise research. SR has been observed in bistable and monostable dynam-

ical systems, threshold devices, SQUIDs, lasers, etc (see [1–12] and references therein). 

In addition, SR is related to signal transfer in chemical and biological systems and is 

promising in neuron modeling based on noisy excitations [5, 7].  

SR actually means that the output SNR (SNRout) has a maximum as a function of in-

put noise intensity. In most cases, the input SNR (SNRin) exceeds SNRout, yet the question 

arises whether it is possible to have larger SNR at the output than at the input — in other 

words, whether a noisy signal can get less noisy when transmitted through a stochastic 

resonator. After several unsuccessful attempts to answer this question, it was theoretically 

proved in 1995 [13, 14] that no SNR improvement is possible with a stochastic resonator 

working in the linear response (LR) range. LR means that the transfer of the signal com-

ponent is linear even though the stochastic resonator is a strongly non-linear device; this 

phenomenon occurs when the signal amplitude is much smaller than the amplitude of the 

noise. Most of the earlier experiments and computer simulations were carried out under 

the LR condition in order to avoid creating higher harmonics in the periodic signal. We 

need not, however, confine our research to the LR limit because a wide range of signals, 

such as frequency-modulated, phase-modulated or pulse-code-modulated signals etc, are 

not destroyed by statically non-linear transfer (non-linearity without phase shift).  

The aforesaid finding did not rule out SNR gain in the non-linear response (NLR) 

range, so subsequent studies assumed the condition of NLR. The first theoretical results 



 

 

proving that SR can yield significant SNR improvement were published in 1996 [1]. In 

this case, the system was a monostable threshold device, a level-crossing detector (LCD), 

and a model neural signal, a spike train with random initial times of spikes, served as an 

input. When operated in the strongly NLR limit, the system produced very high SNR 

gains far beyond any earlier expectation. Later a similarly large SNR gain was observed 

in numerical simulations with the same kind of LCD [2], but this time with a determinis-

tic input signal, a periodic spike train. Similar results were obtained in saturating thresh-

old stochastic resonator models [3]. In 2000, SNR gain was found in a simple bistable 

system, the Schmitt trigger [15].  

In all the investigations mentioned above, the system that served as a stochastic reso-

nator was non-dynamical. In this paper, we shall examine the possibility of SNR im-

provement in a dynamical SR system, the ‘SR-classic’ double well potential. Since it has 

recently been shown that if the periodic excitation is sinusoidal, the SNR gain is almost 

always below unity even though the system works in the NLR range [16], we shall use a 

symmetric periodic pulse train with variable amplitude and duty cycle as the input signal, 

to which a Gaussian white noise is added. 

2. Modeling SR in the Double Well Potential 

The system under scrutiny is a particle moving in a double well potential, excited by a 

periodic pulse train and a Gaussian white noise. The overdamped dynamics of the particle 

are given by the following Langevin equation: 

 ),()(3 twtpxx
dt

dx
  (1) 

where p(t) is the periodic excitation and w(t) represents a Gaussian white noise. In our 

simulations, the correlation time of the noise was always smaller than the width of the 

pulses in the deterministic excitation. 
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Fig. 1. The shape of the periodic input signal p(t). 

The shape of the periodic signal is shown in Fig. 1, where A denotes the amplitude, T 

stands for the period, τ is the width of the pulses and the duty cycle of the signal is de-

fined as 2τ/T. The amplitude is expressed as a percentage of the threshold value (the 

amount of excitation needed for the particle to cross the potential barrier between the two 

potential wells when noise is not present). 



 

 

We have developed a mixed-signal — both analog and digital — system for our in-

vestigations. The noise and the periodic excitation were generated digitally and then con-

verted to the analog domain using D/A converters. In order to solve the Langevin equa-

tion of the system with analog methods, we first transformed it into an integral equation: 

  

t

tdtwtptxtxtx
0

3 .)]()()()([)(  (2) 

The mathematical operations necessary to solve this integral equation, such as integra-

tion, multiplication, addition and subtraction, were realized by analog circuits. The whole 

system was driven by a high-performance digital signal processor (DSP) and the signals 

were measured by high-resolution A/D converters with fast roll-off anti-aliasing filters. A 

host personal computer running LabVIEW controlled the DSP and was also used to eval-

uate the measured data. The block diagram of the system is shown in Fig. 2. 

 

Fig. 2. Block diagram of the mixed-signal simulation system. The periodic and noisy signals are generated 
digitally and fed into an analog simulations system. The solution x(t) is digitized by an A/D converter and the 

data is processed by a DSP and the host PC. 

One thousand samples, each consisting of 2048 data points, were measured and Fou-

rier transformed to obtain the power spectral density, from which we calculated the value 

of the SNR. The output and input SNRs, SNRout and SNRin, were measured by the same 

equipment and calculated exactly in the same way in order to avoid problems with the 

comparison — see the switch in front of the anti-aliasing filter connected to the A/D con-

verter in Fig. 2. We used two SNR definitions: the classical narrowband definition most 

widely used in the field of SR [17] 
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and a wideband SNR given by the ratio of the total power of the deterministic part of the 

signal PS to the total power of the noise part PN: 
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In the definitions above, f0 denotes the frequency of the deterministic signal, S(f) stands 

for the power spectral density of the signal and SN(f) signifies the power spectral density 

of the noise component in the signal. Note here that the classical narrowband definition 

has long been perceived as insufficient to describe noisy signals correctly. Researchers 

have introduced several alternative methods for characterizing the quality of signal trans-

fer, such as those based on entropy [14, 18] or channel capacity [19]. The wideband defi-

nition we suggest, SNRw, is usually applied in practical measurements and it reflects the 

quality of the transfer better than the narrowband SNR. Figure 3 highlights this fact, 

where SNR and SNRw is compared on a simple signal consisting of a sinusoidal plus 

noise. The 1V amplitude sinusoidal with frequency of 30 Hz was added to a 16 kHz 

bandwidth Gaussian white noise and this signal was filtered by a second order Butter-

worth bandpass filter with cutoff frequencies of 20Hz and 40Hz. As one can expect, the 

noisy signal becomes much clearer after filtering, which is reflected only by SNRw, SNR 

is the same for both signals within the measurement error: SNR uses only a very small 

frequency range from the background noise around the signal frequency and the intensity 

of the noise in this range is altered by the same factor as that of the sinusoidal signal. 

The SNR gain we are interested in is simply the ratio of the output SNR to the input 

SNR: 
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Of course, we also calculated a wideband gain from the wideband counterparts of SNRin 

and SNRout: 
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Fig. 3. The plots on the left show 1V amplitude 30Hz frequency sinusoidal plus 16 kHz bandwidth Gaussian 
white noise and its power spectral density (PSD). Filtering this signal using a second order Butterworth 

bandpass filter with cutoff  frequencies of 20 Hz and 40 Hz results in the signal presented on the right panel. It 

is easy to see that while the classical SNR is the same within the measurement error, SNRw and the time domain 
signal reflect the improvement. SNR has a value of 4410 and 4560 while SNRw is obtained as 0.503 and 407 for 

the original and filtered signal, respectively. 

3. Results 

We carried out our simulations and calculated the input and output SNRs as well as SNR 

gains for three different values of the amplitude of the deterministic signal (70%, 80% 

and 90% of threshold value) with duty cycles of 10%, 20% and 30% for each amplitude 

value. A sample length of 2048 was used for recordings and 1000 samples were averaged 

to compute the power spectral density and the SNR. The sampling frequency was 8 kHz, 

the frequency of the periodic input signal was set to 31.25 Hz and the bandwidth of the 

white noise was 50 kHz. We applied both the narrowband and wideband definition of the 

SNR; the independent variable in each case was the input noise amplitude. Apart from 

the basic question whether we can obtain SNR gains higher than unity, we examined how 

the values of the amplitude and duty cycle of the periodic signal influence the SNR and 

the SNR gain. 
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Fig. 4. Input and output SNR and gain as functions of the input noise amplitude. The amplitude of the signal is 

70%, 80% and 90% of the threshold value; the duty cycle is 10%. The amplitude of the noise is denoted by σ; 

its value is expressed in units normalized by the threshold. 
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Fig. 5. Wideband input and output SNR and gain as functions of the input noise amplitude. The amplitude of the 
signal is 70%, 80% and 90% of the threshold value; the duty cycle is 10%. The amplitude of the noise is denot-

ed by σ; its value is expressed in units normalized by the threshold. 

Figure 4 shows how the narrowband SNRin, SNRout and G depend on the input noise 

intensity for three different amplitudes of the periodic signal. We can conclude two things 

from this figure. First, SNR improvement is possible in the double-well potential — 

SNRout can be greater than SNRin over a certain range of input noise intensity. Second, the 

value of SNR gain is strongly influenced by the amplitude of the periodic signal, more 

precisely, higher gains are obtained for larger amplitudes. G exceeds unity only when the 

amplitude is 80% or greater, in other words, only in the strongly NLR limit. 

Figure 5 is parallel to Fig. 4, only here the wideband quantities are plotted. Compar-

ing these figures to each other, we see how much the SNR definition we use affects the 

results we get: with the wideband SNR, SNR improvement occurs for all three signal 

amplitudes and over a wider range of noise intensity than with the narrowband SNR. Fig-

ure 6 shows the two types of gains side by side to illustrate the differences between them. 
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Fig. 6. Narrowband (G) and wideband (Gw) SNR gains compared. The amplitude of the noise is denoted by σ; 

its value is expressed in units normalized by the threshold. 

In Fig. 7, we can observe how the value of the duty cycle affects the SNR gain, both 

narrowband and wideband. 
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Fig. 7. The plot on the left shows SNR gain versus noise amplitude for different duty cycles of 10%, 20% and 
30%. The right panel shows the same with wideband gain. The signal amplitude is 90% of the threshold value 

for all curves. The amplitude of the noise is denoted by σ; its value is expressed in units normalized by the 

threshold. 

It is clear that increasing the duty cycle lowers the SNR gain. One can easily under-

stand this fact: the output signal is similar for different duty cycles, which is reflected in 

similar SNRout values, while SNRin increases with greater duty cycles. 

4. Conclusion 

Using mixed signal simulation techniques, we have shown that one of the most common 

dynamical SR systems, the double well potential, can provide high SNR amplification if 

the input excitation is a periodic pulse train plus Gaussian white noise. We have also 

demonstrated that high SNR gains can be observed for small duty cycles and a signal 



 

 

amplitude close to the switching threshold. Note here that our result is not in contradic-

tion with the theoretical result that output SNR cannot exceed input SNR if the system 

works in the linear response range, since we used large signal amplitude somewhat below 

the switching threshold, which means that our system worked in the non-linear limit. 

We would also like to emphasize that the SNR gain is greater than unity even over a 

wider range if we apply a much more realistic wideband definition based on the total 

power of signal and noise. 
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