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Summary 

The purpose of this book is to help the teaching of the applications of microcontrollers in 

various projects. Several books and manuals are available [1-19]; this book contributes to these 

by covering the knowledge needed to use the powerful C8051Fxxx family of microcontrollers 

from Silicon Laboratories in practice. Our aim was to synthesise the most useful information 

found in manuals, tutorials, datasheets, user forums, application notes, electronic design notes 

and example code in a single book. Most chapters feature brief application guidelines and 

troubleshooting based on our teaching and development experience. This can be highly useful 

for students and for developers as well. 

We believe that the brief discussion of the architecture, peripherals, analogue and digital signal 

interfacing helps to understand how these can be used to build various applications. We 

provide tested example code and recommended exercises and discuss several application 

examples, including single-supply analogue signal conditioning, sensor interfacing and 

microcontroller-host computer communication. In the last chapter, we show the schematic 

and layout of an extension board that supports the use of the C8051F410DK development kit 

and can also be modified for use with other target boards. 

Up-to-date, high quality references were chosen that are provided by industry leading 

companies [1–19]. Almost all of the references are available on-line on the companies’ web 

pages. 
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Microcontrollers, embedded programming, timers, counters, serial communication, analogue-

to-digital conversion, sensors.  

 

  



 

 

TABLE OF CONTENTS 

1 Introduction ..............................................................................................................................7 

1.1 Real-world signal processing and control .......................................................................7 

1.2 Microcontrollers .............................................................................................................. 8 

1.3 Microcontroller core and integrated peripherals .......................................................... 9 

1.4 Microcontroller classification ........................................................................................ 14 

2 Architecture and properties of the C8051Fxxx microcontroller family.............................. 15 

2.1 8051 microcontrollers .................................................................................................... 15 

2.2 The C8051Fxxx microcontroller family ......................................................................... 15 

2.3 The CIP-51 architecture .................................................................................................. 16 

3 Assembler and C programming ............................................................................................ 29 

3.1 SDCC C compiler............................................................................................................ 29 

3.2 Interrupt programming in assembler .......................................................................... 30 

3.3 Interrupt handling in C ................................................................................................. 32 

3.4 Interrupt programming guidelines............................................................................... 34 

3.5 Using an integrated development environment and the associated tools ................. 35 

3.6 Config Wizard ................................................................................................................ 37 

4 Digital input and output; crossbar ....................................................................................... 39 

4.1 The I/O structure ........................................................................................................... 39 

4.2 Crossbar ........................................................................................................................... 41 

4.3 Port I/O applications ..................................................................................................... 42 

4.4 Application guidelines .................................................................................................... 51 

4.5 Troubleshooting ............................................................................................................. 52 

4.6 Exercises ......................................................................................................................... 52 

5 Timers and counters.............................................................................................................. 53 

5.1 Timer 0 and Timer 1 ...................................................................................................... 53 

5.2 Timer 2, Timer 3 and Timer 4 ....................................................................................... 55 

5.3 Timer applications ..........................................................................................................57 

5.4 Application guidelines .................................................................................................... 61 

5.5 Troubleshooting ............................................................................................................. 62 

5.6 Exercises ......................................................................................................................... 63 

6 Programmable counter array................................................................................................ 64 

6.1 Edge-triggered capture mode ....................................................................................... 64 

6.2 Software timer and high-speed output mode .............................................................. 65 



 

 

6.3 Frequency output mode ................................................................................................ 66 

6.4 8-bit and 16-bit PWM modes ........................................................................................ 67 

6.5 Application guidelines ................................................................................................... 69 

6.6 Troubleshooting ............................................................................................................. 70 

6.7 Exercises ......................................................................................................................... 70 

7 Serial communication peripherals ....................................................................................... 72 

7.1 UART .............................................................................................................................. 72 

7.2 SPI .................................................................................................................................... 77 

7.3 SMBus ..............................................................................................................................81 

7.4 C standard I/O redirection ............................................................................................ 85 

7.5 Exercises ......................................................................................................................... 86 

8 Analogue peripherals ............................................................................................................ 87 

8.1 Comparators ................................................................................................................... 87 

8.2 Voltage reference ........................................................................................................... 90 

8.3 ADC ................................................................................................................................. 92 

8.4 DAC ................................................................................................................................. 98 

8.5 Temperature sensor ...................................................................................................... 101 

8.6 Exercises ........................................................................................................................ 101 

9 Sensor interfacing................................................................................................................ 103 

9.1 Voltage output sensors ................................................................................................ 103 

9.2 Current output sensors ................................................................................................ 105 

9.3 Resistive sensors ...........................................................................................................107 

9.4 Exercises ....................................................................................................................... 109 

10 Real-time clock ......................................................................................................................111 

10.2 Exercises ........................................................................................................................ 113 

11 Watchdog and power supply monitor ................................................................................. 114 

11.1 The watchdog timer ...................................................................................................... 114 

11.2 Supply monitor ............................................................................................................. 114 

11.3 Exercises ........................................................................................................................ 115 

12 Low-power and micropower applications .......................................................................... 116 

12.1 Low-power modes ......................................................................................................... 116 

12.2 Clock speed tuning ........................................................................................................ 116 

12.3 Peripheral power consumption.................................................................................... 117 

12.4 Supply voltage ............................................................................................................... 117 



 

 

12.5 Exercises ........................................................................................................................ 118 

13 USB, wired and wireless communications ........................................................................ 120 

13.1 USB-UART interfaces .................................................................................................. 120 

13.2 Wireless communication possibilities .........................................................................122 

13.3 Exercises ........................................................................................................................123 

14 Development kit ...................................................................................................................124 

14.1 The C8051F410 development kit .................................................................................124 

14.2 Extension board ............................................................................................................124 

15 Acknowledgements ............................................................................................................. 128 

16 References .............................................................................................................................129 

 



Introduction 

 

1 Introduction 

1.1 Real-world signal processing and control  

It is a typical aim to construct machines to make life more comfortable and more economical. 

From simple mechanical machines to advanced electronic devices such as smart phones the 

range is really wide. The most efficient devices are based on electronics, sophisticated signal 

processing and modern software. 

In order to allow processing, real signals must be converted into another format that can be 

processed and the result should be used for intervention, as shown in Figure 1.1.  

 

Figure 1.1. General real-world interaction. 

The same principle is used in machines in general (Figure 1.2). 

 

Figure 1.2. Machine – real world interaction. 

The most efficient devices use analogue and digital electronics and run software to process 

information. Many of today’s devices are small, battery-operated and incredibly efficient. 

Again, a good example is the smart phone that integrates telephony, camera, wireless 

communication, computer, sensors, GPS and many more in a handful of electronics. 

The detailed block diagram of such an electronic device is shown in Figure 1.3. Sensors convert 

several physical signals (displacement, force, pressure, acceleration, temperature, light 

intensity, etc.) to signals that can be handled by electronics (voltage, current, resistance, 

capacitance, inductance). The output of sensors is converted to voltage in the proper range (a 

few volts) that can be easily used in processing. The analogue-to-digital converter translates 

this voltage to integer numbers for digital processing. A similar principle is applied in the 

reverse transformations. 
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Figure 1.3. Electronic device – real world interaction. 

Several analogue and digital integrated circuits have been developed to support the 

manufacture of electronic devices. One of the most compact and most efficient components is 

the microcontroller. 

1.2 Microcontrollers 

The microcontroller unit (MCU) is a small but powerful digital building block, a single-chip 

microcomputer. It contains everything required for operation; very few external components 

are needed – sometimes only supply decoupling capacitors. Of course, the device must be 

powered, typically from a single supply voltage that ranges from 1.8 V to 5 V. Sometimes even 

a coin cell battery suffices. 

The microcontroller has several peripherals to sense real-world signals and initiate real-world 

events, and has a processor core to run software. It is a very flexible, powerful and compact 

electronic component. Since most of the processing is done by the software, the same hardware 

can be used for several applications; the performance can be upgraded easily by replacing the 

software only. 

There is a very wide range of microcontrollers on the market from sizes of 2 mm × 2 mm and 

from a power consumption of 30 W to a speed of several hundred MHz. 

Most modern microcontrollers incorporate comparators, analogue-to-digital and digital-to-

analogue converters and temperature sensors – therefore, they are often called mixed-signal 

(both analogue and digital) microcontrollers. 

Figure 1.4 illustrates some typical components of a modern mixed-signal microcontroller; the 

details will be given in the next chapter. 
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Figure 1.4. Microcontroller components. 

1.3 Microcontroller core and integrated peripherals  

The microcontroller core is based on a processor with its typical components including an 

arithmetic logic unit (ALU) and several registers. The architecture may follow the CISC (like 

the 8051 family) or, more probably, the RISC principles (for example, the PIC, AVR and ARM 

microcontrollers) in today’s popular microcontrollers. 

Most of the devices use separate memory for the data and for the program; that is, they have 

Harvard architecture. This fits well the need for non-volatile program memory and at the same 

time it prevents code corruption and provides even faster execution in some cases. The word 

length of the two kinds of memory can also be different. Microcontrollers may use Neumann 

or Harvard architecture, or the user can even configure the memory usage (for example, in the 

case of the ARM Cortex-M3 32-bit microcontroller family). 

All modern microcontrollers have volatile (SRAM) memory and non-volatile, reprogrammable 

flash memory. The flash memory contains the code, so no external integrated circuits are 

needed. The flash memory can be reprogrammed by special programming devices using a few 

(from 2 to 6-8) pins of the microcontroller (in-circuit programming, JTAG) or can even be 

overwritten by the microcontroller itself in some cases. Additional separate flash or EEPROM 

may also be integrated to support non-volatile data storage (configuration data, calibration 

data, statistical data, etc.). The flash memory can be rewritten about 100000 times, and the 
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typical data retention time is longer than 20 years. The flash memory can be protected, i.e., the 

code can be prevented from being read by the user. 

If the on-chip memory is not enough for a certain application, the developer can choose 

microcontrollers with an external memory interface that support the connection of static RAM 

or other memories of various sizes. Note also that this interface may support the use of 

‘memory mapped’ peripherals including A/D converters, D/A converters, FIFO memories, etc. 

1.3.1  Processor support 

In the following the most typical processor support peripherals will be described briefly. 

Power on reset (POR) generator. After switching the power on, the supply voltage may rise 

a bit slowly due to the fact that the supply decoupling and filtering capacitors must be charged 

and the supply current is limited. At the same time, the digital circuitry needs a certain 

minimum supply voltage for proper operation, so the start-up of the microcontroller must be 

delayed until the supply voltage reaches the safe operating level. Having detected the crossing 

of this level, the POR generates an additional short delay (in the range from below 1 ms to about 

100 ms) and finally releases the reset line. 

Power supply monitor (Brown-out detector). In some cases, the supply voltage may go 

below the safe operating level even during operation (for example, when sudden heavy current 

loading occurs). This may result in erroneous code execution, therefore the supply monitor 

circuit will generate a reset in this case. Note that this feature can be disabled by the 

programmer, although the use of the supply monitor is strongly recommended. 

Low-dropout (LDO) regulator. Some microcontrollers have separate voltage levels for 

their core and digital input and output ports. Integrated voltage regulators can provide stable 

and sometimes even programmable supply voltage from the input supply voltage. Low-dropout 

regulators need only a slightly (roughly about 100 mV) higher input supply voltage than their 

output voltage.  

Watchdog timer (WDT). Even properly powered processors can fall into infinite loops or 

get disturbed by electromagnetic or conducted interference (for example, in the case of 

lightning or power line transients), which may cause serious problems in several applications 

(motor control, heating control, healthcare devices, etc.). The watchdog timer refresh register 

needs to be written within a certain amount of time (that can be typically programmed from 

tens of milliseconds to several seconds); otherwise, a reset will be generated. If the code writes 

to the register, the timer will be restarted and no reset will be generated. If the processor code 

execution fails, this will not occur and a reset will be initiated. The best practice is to always 

use the watchdog timer except in code development phase or in simple test projects. The 

watchdog timer is enabled automatically upon reset in quality microcontrollers. 

Oscillator, PLL. All processors need a clock signal to schedule instruction execution. Modern 

microcontrollers have on-chip oscillators but also support the use of external quartz crystals 

or external clock signals. Optional phase-locked loop (PLL) clock multipliers often combined 

with clock dividers allow the generation of a wide range of higher processor clock frequencies. 

Typically, on-chip oscillators have an accuracy of 1%-20%, while the precision of crystal 

oscillators can fall below 0.01%. The developer can choose the solution that suits the particular 

application best. 

Debug interface. This interface is used by the integrated development environment to 

download code to the flash memory. Memory upload is also supported and the developer can 
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program the security bits to protect the code from being uploaded. The debug port allows single 

stepping, supports breakpoints and can track the content of variables, memory and peripheral 

registers. The debug interface makes code development and testing easy and it is an essential 

tool for all modern microcontrollers. The most commonly used interface standard is called 

JTAG (Joint Test Action Group, IEEE 1149.1 Standard Test Access Port and Boundary-Scan 

Architecture).  

1.3.2  Digital peripherals 

Digital peripherals include the digital input/output pin drivers and internal digital circuits 

related to timing, communication and computation acceleration. 

General-purpose input/output (GPIO), port input/output (Port I/O). The processor 

reads from and writes to memory and all on-chip peripherals using the bidirectional data bus. 

Some processors may also incorporate a direct memory access (DMA) controller, which 

transfers data between memory and a peripheral without processor intervention. The data is 

valid only for a short duration in order to free the bus for other transactions, so the general 

purpose output requires latches that can keep the data until the code writes new data to it. The 

output of these latches is connected to the pins of the chip and can drive LEDs and provide 

logic output signals for external digital circuit inputs. These signals are mostly arranged in 8-

bit groups to form a byte. The pins can also be configured as digital inputs that can be read any 

time by the microcontroller. This way buttons, switches and digital signals can be connected 

as well with the help of internal or external pull-up resistors. 

Timer/Counter modules. Microcontrollers are designed to control electronic equipment 

for household, automotive, industrial, test and measurement applications; therefore, timing, 

event counting, periodic event generation and time duration measurement are important. All 

microcontrollers contain 8-, 16- or 32-bit counters that can be configured as timers (when an 

oscillator drives the counter) or as counters, when the rising or the falling edge of an external 

signal increments the counter. Timers also provide timing for serial communication 

peripherals, A/D converters and D/A converters. 

Programmable Counter Array (PCA). The PCA contains a simple free-running counter 

that is driven by an oscillator. There are several (from 3 to 6) independent compare/capture 

registers that can be used to latch the counter value upon an event (a change in a digital input 

signal). These registers can also hold data to be compared with the counter value and to 

generate an event when a match occurs. The PCA can be used to measure pulse width, period 

or frequency, to generate pulse width modulated (PWM) signals and special logic signal 

patterns, periodic interrupts and even more. 

Real-Time clock (RTC). In order to measure the real time or synchronise events to it, a 

dedicated precise oscillator and an associated 32 to 48-bit counter is provided in some 

microcontrollers. The oscillator typically uses 32768-Hz tuning fork crystals and a very low 

power oscillator. Practically, a clock is integrated into the microcontroller that can be powered 

from a button battery and can run even if the processor is not powered. Besides measuring real 

time, this peripheral can serve to wake the microcontroller up at a certain time – in other 

words, to provide alarm function.  

Computing support (MAC, CRC, AES). Some microcontrollers contain computation and 

digital signal processing acceleration hardware. For example, 8-bit microcontrollers can have 

a multiply and accumulate (MAC) unit that can multiply and add 16-bit data in a few clock 

cycles. This can be used efficiently in digital filtering and to compute fast Fourier transforms 
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(FFT). Cyclic redundancy check (CRC) is frequently used to check data integrity in 

communications and the Advanced Encryption Standard (AES) algorithm is also supported by 

some microcontrollers. 

1.3.3  Communication 

Universal Asynchronous Receiver/Transmitter (UART). This serial (one bit at a time) 

communication interface uses one wire to send and another wire to receive bits of a byte. The 

sender and receiver must have a closely matched time base that determines the duration of 

transmitting a bit, since no timing synchronisation is provided. Every transaction is initiated 

by sending a start bit, followed by the data bits. The receiver detects the start bit and can then 

decode the data bits by sampling the signal at evenly spaced time instants. The UART interface 

is used for low wire count inter-processor communications, host computer communication via 

USB-UART interfaces, infrared communications and device-to-device communications. In 

most cases, it is a two-device bus; the use of more devices introduces hardware and software 

overheads. 

Serial Peripheral Interface (SPI). The SPI interface is typically used for high-speed 

communication with off-chip peripherals including analogue-to-digital converters, digital-to-

analogue converters, digital output sensors and other processors. Two wires are used to carry 

data bits in two directions and one wire for a clock signal that synchronises the timing between 

the communicating devices. A rising or a falling edge of this signal indicates the beginning of 

the transmission of each bit. A fourth signal may also be used to provide a frame for the 

communication. If this signal is inactive, the other signals are ignored, which can be used to 

connect multiple devices on the same bus and select one for which communication is enabled. 

Inter-Integrated Circuit (IIC or I2C) and System Management Bus (SMBus). This 

medium-speed interface is specially developed for communication between a host 

microcontroller and several peripheral chips (memories, data converters, sensors or other 

processors) on the same printed circuit board or within equipment over only two wires. One 

wire carries data in both directions, while the other is used to provide a frame (start and stop 

conditions) for the transaction and to synchronise the transmission of the bits through clock 

pulses. 

Controller Area Network (CAN), Local Interconnect Network (LIN). These serial 

interfaces are only available on some microcontrollers that target automotive or other 

industrial applications. Most of the protocol is implemented in hardware. 

Universal Serial Bus (USB). The USB is the most popular and innovative interface for 

connecting peripherals to personal computers or tablets. Some microcontrollers have built-in 

slave (and rarely host) USB ports. This allows direct connection to the USB port; however, the 

programmer should know the most important parts of the USB protocol and a driver is 

typically required on the host computer. 

Wireless communication peripherals. Wireless communication is becoming a more and 

more popular interface between small devices, since it supports very flexible location and 

networking options and no wires are required. There are microcontrollers with integrated 

wireless transmitters and receivers (transceivers) with several frequency options and a number 

of wireless protocols can be implemented by software. Bluetooth, ZigBee and the open-source 

TinyOS system are among the most widely used platforms. 
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1.3.4  Analogue peripherals 

Several microcontrollers have analogue parts to handle analogue signals even without external 

analogue circuitry. This makes microcontrollers even more compact: a single microcontroller 

and only a few external components can implement a complete solution for a real-world 

application that requires the monitoring of signals and the controlling of processes. 

Microcontrollers that have a significant analogue part and can therefore handle both digital 

and analogue signals are often called mixed-signal microcontrollers or analogue 

microcontrollers. 

Comparator. Comparators have two analogue voltage inputs and a digital output. Their 

output is logical high if the voltage connected to their positive input is higher than the voltage 

at their negative input. They may also have hysteresis to reduce potential noise-induced 

switching. 

Analogue-to-Digital Converter (ADC). Analogue voltages can be translated into the 

digital domain using ADCs. The output is an integer number with a various number of bits. A 

resolution of 10 bits is the most typical, but precision microcontrollers can have 12-, 16- or even 

24-bit ADCs. Note that the accuracy is normally less than the resolution; therefore, the 

datasheet should always be consulted to obtain reliable information. 

Digital-to-Analogue Converter (DAC). DACs output analogue signals proportional to the 

integer number at their input. The resolution range includes 8, 10, 12 or 16 bits. The output 

signal can be voltage or current. 

Voltage reference (VREF). All data converters (ADCs, DACs) need a reference voltage that 

serves as an etalon of conversion. The input range of the ADCs and the output range of voltage 

output DACs are both determined by Vref; in most cases it is between 0 and Vref. The internal 

reference voltage can be switched off to support the use of more precise external reference 

voltage circuits. 

Capacitance-to-Digital Converter (CDC). One of the most popular modern user 

interfaces is based on touch sensing that effectively replaces mechanical buttons, which have 

limited reliability and lifetime. The change in a capacitance is measured, which change 

depends on the proximity of the finger of the user from the sensing pad. The capacitance is 

digitised and the data can be used for evaluation. 

Analogue Multiplexer (MUX). Monitoring multiple analogue signals is often needed in 

real-world applications. This can be supported by a network of switches, called an analogue 

multiplexer, that connects one of the signals to the input of the ADC at a time. After the 

conversion of a signal, the next signal can be selected. Since conversion only takes a short time, 

this means a quasi-simultaneous conversion if the signals change only slowly. However, the 

different signals are measured at slightly different time instants, which should be considered 

anyway. 

Programmable Gain Amplifier (PGA). Some microcontrollers have preamplifiers before 

their integrated ADCs to support voltage range extension. The preamplifiers can have software-

programmable gains of 0.5, 1, 2, 4, 8, 16, 32, 64, 128. Single-ended and differential input PGAs 

are both available. 

Temperature sensor. Most mixed-signal microcontrollers include diode-based 

temperature sensors that can be connected to the input of the internal ADC using the analogue 

multiplexer. The on-chip sensor outputs a voltage that has linear dependence on the chip 
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temperature. The accuracy of the sensor is roughly about 3 °C. It can be used to protect the 

device from overheating or to estimate the ambient temperature if the power dissipation of the 

microcontroller is low enough so that we can neglect self-heating. 

1.4 Microcontroller classification 

Depending on the different features and according to target applications microcontrollers can 

be broken down into the following categories: 

General-purpose microcontrollers have common digital peripherals including timers, 

GPIO or UART. Their typical clock frequency is around 10 MHz. 

Low power microcontrollers can operate at lower clock frequencies, from 1 MHz down to 

tuning fork crystal frequency of 32768 Hz or even below. At 1 MHz the supply current is well 

below 1 mA, and supply sensitivity is less than 200 A/MHz. During power down state the 

supply current can fall below 1 A.  

Precision mixed-signal microcontrollers incorporate 12-bit or higher resolution ADCs 

and DACs. Sigma-delta ADCs can even have a resolution of 24-bits and a PGA can provide 

software programmable gains in the range of 1 to 128.  

High-speed microcontrollers execute most of their instructions within a single clock cycle 

and can operate at frequencies from about 25 MHz to several hundred MHz. 

According to the bus width there are 8-bit, 16-bit and 32-bit microcontroller families. 8-

bit microcontrollers are cheaper, much simpler to use, can consume less power, while 32-bit 

microcontrollers have more processing power. 

Industrial and automotive microcontrollers operate at a full industrial temperature 

range of -40 °C to 85 °C. The internal peripherals have stricter specifications to provide 

additional reliability under various conditions, and accuracy of the internal oscillator is better 

than 1% over the full operating temperature range. These microcontrollers typically have 

industrial or automotive communication peripherals like CAN buses or LIN buses.  

Secure microcontrollers are used in security-sensitive applications including electronic 

banking and payment, application protection, communication and more. These 

microcontrollers offer protection of code and data, prevent reverse engineering, tampering, 

data monitoring and physical attacks. Hardware cryptographic modules, random number 

generators, fast data and code encryption are implemented to support secure applications. 
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2 Architecture and properties of the C8051Fxxx microcontroller 

family 

C8051Fxxx microcontrollers developed by Silicon Laboratories [1, 2] are among the most 

powerful modern derivatives of the popular MCS-8051 MCU [2] introduced by Intel. A short 

summary of these devices follows. 

2.1 8051 microcontrollers  

The 8051 or MCS-51 family of 8-bit Harvard architecture microcontrollers were developed by 

Intel in the eighties for embedded applications. Their easily upgradable architecture proved 

successful, became a standard for many manufacturers and several derivatives are still popular 

on the market due to their ease of use and carefully designed peripheral handling. 

The 8051 family can be easily programmed. There are many free and professional development 

tools, so the 8051 microcontrollers can be used by practiced experts, lecturers, students and 

hobbyists at the same time. Many source code examples are available to solve various problems 

and the manufacturers provide very useful application notes, knowledge base and user forums. 

Manufacturers include Silicon Laboratories, Maxim/Dallas, Analog Devices, Atmel and NXP 

(formerly Philips). 

Very wide ranges of speed, code and data memory size, analogue and digital peripherals, power 

requirement are provided by the C8051Fxxx family developed by Silicon Laboratories. The 

1 MIPS peak performance of the original 8051 microcontroller has been upgraded up to 

100 MIPS peak speed and the integrated flash memory, debug interface and very rich set of 

analogue and digital peripherals make the C8051Fxxx family a good choice for various 

applications. 

The chips can have sizes of 2 mm × 2 mm (10 pins) to 16 mm × 16 mm (100 pins). 

2.2 The C8051Fxxx microcontroller family  

The maximum clock frequency of the C8051Fxxx microcontrollers is in the range of 25 MHz to 

100 MHz. Slower clock speeds are allowed, practically down to DC, so no minimum is specified. 

The frequency of the internal oscillator is programmable, so the user can choose low power 

operation at low frequencies, while higher processing speeds can be achieved at the expense of 

higher power consumption. For example, the C8051F410 processor can be operated at 

50 MHz, when the core supply current is about 15 mA, while at 32 kHz the device draws less 

than 20 A from the supply rail, allowing long lasting operation from a battery. 

The size of on-chip flash memory available varies from 2 kbyte to 128 kbyte, while the internal 

RAM can store 256 to 8448 bytes of data. The flash memory contains the code and may also 

be written by the code to support non-volatile data storage. 

The C8051Fxxx microcontrollers can have up to six 16-bit timers and a programmable counter 

array with 6 independent channels. Some devices include a real-time clock with battery backup 

power option. 

Communication peripherals include UARTs, I2C/SMBus, SPI, USB, CAN, LIN serial interfaces 

and the parallel external memory interface that also supports the connection of fast external 

ADCs, DACs and more. 

From 6 to 64 GPIO pins are available with configurable output driving options (open-drain 

with or without internal pull-up and push-pull mode).  
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The C8051Fxxx family provides high-performance analogue peripherals. ADC resolutions 

from 10 to 12 bits with sample rates from 100 kHz to 200 kHz are common, while the 

C8051F06x devices incorporate two independent 1-MHz 16-bit ADCs, and the C8051F35x 

microcontroller has an 8-channel 24-bit ADC with programmable-gain amplifier to resolve 

sub-V signals. Some devices have a 32-channel multiplexer before their ADCs, and DACs with 

resolutions of 8 to 12 bits are also available. The list of analogue peripherals may also include 

up to 3 comparators with programmable response time and hysteresis. 

The company provides several development tools including a free integrated development 

environment that supports the use of the popular open-source Small Device C Compiler 

(SDCC). A configuration wizard application helps much in configuring the peripherals properly 

by generating even the source code (assembly or C). 

Hardware development platforms are also available. There are simple and full-featured 

development kits for almost all C8051Fxxx processors.  

2.3 The CIP-51 architecture  

The Silicon Laboratories C8051Fxxx microcontrollers have the so-called CIP-51 architecture 

[6]. The simplified block diagram is shown in Figure 2.1. 

 

Figure 2.1. A simplified CIP-51 architecture. 

The architecture is closely matched with the original 8051 architecture developed by Intel; code 

compatibility is provided. The main improvements include much faster instruction execution, 

integrated flash memory and larger integrated RAM. 

In the following the main features of the architecture will be discussed. 

2.3.1  Registers 

The following table summarises the 8-bit registers, with short descriptions and the reset values 

[2]. The registers can be used in several instructions. The accumulator (A or ACC) holds the 

result of arithmetic and logic operations and the program status word (PSW), and contains 
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several flags modified by operations. Additional registers support indirect addressing and stack 

handling. Instructions typically execute faster when the operands are registers. 

Register Description Reset value 

A, ACC accumulator, ALU result 0 

B 
general-purpose register and register for multiplication and 

division 
0 

R0.–R7 
general-purpose registers, R0 and R1 are also used in indirect 

addressing 
0 

PSW 

Bit 7: CY 
carry bit (set by addition or subtraction, ADDC, 

SUBB) 
0 

Bit 6: AC 
auxiliary carry bit (at 3rd bit, used in 4-bit 

arithmetics) 
0 

Bit 5: F0 user flag 0 

Bit 4: RS1 R0–R7 

at 

00: 0x00 

R0–R7 at 

01: 0x08 

R0–R7 at 

10: 0x10 

R0–R7 at 

11: 0x18 

0 

Bit 3: RS0 0 

Bit 2: OV 
overflow (set by instructions MUL, DIV, ADD, 

SUBB) 
0 

Bit 1: F1 user flag 0 

Bit 0: 

PAR 
parity bit: 1 if sum of bits in A is 1 0 

DPH, DPL 
DPTR, data pointer, used in 16-bit indirect code or RAM 

addressing 
0 

SP 
stack pointer, modified by subroutine and interrupt routine calls 

or push/pop instructions 
7 

2.3.2  Special function registers 

The special function registers (SFRs) are used to access the peripherals and some registers. For 

example, ACC is the same as A (accumulator); therefore, it can be accessed as an SFR or as a 

register. This allows the accumulator to be used in some instructions when registers cannot be 

used (like push and pop, see later)  

SFRs can be accessed by direct addressing instructions, where the address falls in the range of 

0x80–0xFF. Therefore, SFRs can be thought of as memory-mapped registers; the program can 

read or write their content as if they were in the RAM. 

The following table shows the standard 8051 SFR registers.  
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Address  0  1  2  3  4  5  6  7  

0xF8          

0xF0 B        

0xE8         

0xE0 ACC        

0xD8         

0xD0 PSW        

0xC8         

0xC0         

0xB8 IP        

0xB0  P3        

0xA8  IE         

0xA0  P2         

0x98  SCON  SBUF        

0x90  P1         

0x88  TCON  TMOD  TL0  TL1  TH0  TH1    

0x80  P0  SP  DPL  DPH      

Note that SFRs in column 0 are bit addressable. 
The SFRs listed in the table are the following (some of them will be discussed in the next 

chapters): 

 P0, P1, P2 and P3 are the port input/output SFRs that are associated with the pins of 

the microcontroller. For example, the byte written to P0 determines the logic signal on 

the 8 pins corresponding to P0. The programmer must be careful: for example, writing 

1 to P0 sets the least significant bit but will clear all the other 7 bits. Since the P0 register 

is bit addressable, a single bit can be written or read without affecting the other bits. 

For example, setting P0.0 sets the least significant bit only; all the other bits remain 

unchanged. Bit addressing is also useful for accessing a single bit of the status and other 

registers where the individual bits have special meanings. 

 ACC and B provide SFR access to the accumulator and to the B register. 

 PSW is the program status word. Its individual bits are accessible using bit addressing. 

For example, PSW.7 is the carry bit. 

 SP is the stack pointer. 

 DPL and DPH are the low- and high-order bytes of the data pointer DPTR. 

 IE and IP are the interrupt enable and priority registers. Their individual bits are 

accessible using bit addressing. 

 TCON, TMOD, TL0, TH0, TL1 and TH1 are used to access and control the Timer 0 and 

Timer 1 peripherals. 
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SCON and SBUF are associated with the serial port communication peripheral. 

2.3.3  Memory structure  

8051 processors have Harvard architecture [2]; they have separate memory for code and data. 

The code memory can store constant data, so it can be used as a read-only data memory. Two 

types of RAM are available: internal and external. The internal RAM size is 256 bytes, while 

the external RAM is addressed by a 16-bit pointer, so the maximum size is 64 kbyte. 

Figure 2.2 shows the internal RAM structure. The first 128 bytes (from 0x00-0x7F) can be 

accessed by direct or indirect addressing. The general-purpose registers occupy 8 bytes at the 

location defined by the RS0 and RS1 bits of the PSW register. The 16-byte space at address 

0x20-0x2F is bit addressable, so 128 individual bit variables can be used here.  

 

Figure 2.2. Internal memory structure of CIP-51 microcontrollers. 

The SFR registers are mapped to the upper 128 bytes of the address space. SFRs are accessed 

by direct addressing; otherwise, the upper 128 bytes of the internal RAM can be used. Note 

that since stack handling is based on indirect addressing by the stack pointer, the upper 128 

bytes of RAM can also be used as stack space. Upon reset, the stack pointer has the value of 7 

and increases from there. However, it is best to set the initial value of the stack pointer (SP) to 

the first free location of data memory, just above the variables. In this case, all free memory is 

available as stack. 

The external RAM (XRAM) was originally provided by SRAM chips, but modern C8051Fxxx 

processors integrate a certain amount (up to 8192 bytes) of this kind of RAM. XRAM memory 

can only be accessed by 16-bit indirect addressing using the DPTR pointer (DPH and DPL 

registers).  

XRAM at 0x00-0xFF can also be accessed by 8-bit indirect addressing using either the R0 or 

the R1 register. 

Since off-chip memory can be slower than the on-chip memory, the control timing (data setup 

and hold time, write/read pulse width, etc.) can be set by dedicated SFR registers. 

0x80-0xFF
(indirect)

0x00-0x7F
(direct, 

indirect)

SFR
0x80-0xFF
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0x20-0x2F
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0x00-0x07RS1,RS0=00

RS1,RS0=01

RS1,RS0=10

RS1,RS0=11

BIT
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Figure 2.3 shows the XRAM arrangement in C8051Fxxx processors. The processor can be 

configured to access the on-chip memory only, the off-chip memory only or on-chip only if it 

is available and off-chip otherwise. The 8-bit addressable space can also be moved to another 

256-byte page. Note that not all C8051Fxxx processors support off-chip memory. 

 

Figure 2.3. External memory structure of CIP-51 microcontrollers. 

2.3.4  Addressing modes 

Data can be accessed in different ways depending on its location (register, memory or code) 

and on the so-called addressing mode. The following table summarises the four possible 

addressing modes and shows examples. 

Addressing 

mode  

MNEMONIC 

example  

Description  

register  MOV A, B A = B, copy the content of B to A 

immediate 

constant  

MOV A, #10 A = 10 (value), copy the value 10 to A 

direct  MOV A, 10 

MOV A, P0 

A = byte in internal RAM at address 10 

A = bits at port P0 (SFR access) 

indirect  MOV A, @R0 

MOVX A,@DPTR 

A = byte in internal RAM at address pointed to by R0 

A = byte in external RAM at address pointed to by DPTR 

2.3.5  Instructions 

A brief summary of the available instructions are given in the following [2]. Instructions are 

classified into groups and tables summarise their function and the flags affected by them. 

  

ON-CHIP
0x0100-

(16-bit indirect)

0x0000-0x00FF
(8-bit indirect)

OFF-CHIP
0x0100-0xFFFF
(16-bit indirect)

0x0000-0x00FF
(8-bit indirect)
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2.3.5.1 Arithmetic operations 

MNEMONIC OPERATION 

(C-style syntax) 

ADDRESSING FLAGS 

DIR  IND  REG  IMM  CY  AC  OV P  

ADD A, byte A=A+byte         

ADDC A, byte A=A+byte+C          

SUBB A, byte A=A–byte–C         

INC A A=A+1         

INC byte byte=byte+1         

INC DPTR DPTR=DPTR+1 only DPTR     

DEC A A=A–1 only A     

DEC byte byte=byte–1          

MUL AB A=(B*A) % 256 

B=(B*A) / 256 

only A and B 0    

DIV AB A=integer part of A/B 

B=remainder of A/B 

only A and B 0    

DA A Decimal Adjust  only A     

2.3.5.2 Logic operations 

MNEMONIC OPERATION 

(C-style syntax) 

ADDRESSING FLAG 

DIR IND REG IMM P 

ANL A,byte A=A & byte      

ANL byte,A byte=byte & A      

ANL byte,#const byte=byte & const      

ORL A,byte A=A | byte      

ORL byte,A byte=byte | A      

ORL byte,#const byte=byte | const      

XRL A,byte A=A ^ byte      

XRL byte,A byte=byte ^ A      

XRL byte,#const byte=byte ^ const      
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2.3.5.3 Accumulator manipulation 

MNEMONIC OPERATION 

(C-style syntax) 

ADDRESSING FLAGS 

CY AC OV P 

CRL A A = 0 only A     

CPL A A = ~A only A     

RL A Rotate A left by 1 bit 

A = A << 1 

only A     

RLC A Rotate A left through Carry 

A = (A << 1) + C 

C = bit 7 of the original value of A 

only A     

RR A Rotate A right by 1 bit 

A = A >> 1 

only A     

RRC A Rotate A right through Carry 

A = (A >> 1) + (C << 7) 

C = bit 7 of the original value of A 

only A     

SWAP A Swap nibbles of A only A     

2.3.5.4 Bit-variable operations 

MNEMONIC OPERATION (C-style syntax) 

ANL C,bit C = C && bit 

ANL C,/bit C = C && !bit 

ORL C,bit C = C || bit 

ORL C,/bit C = C || !bit 

MOV C,bit C = bit 

MOV bit,C bit = C 

CLR C C = 0 

CLR bit bit = 0 

SETB C C = 1 

SETB bit bit = 1 

CPL C C = !C 

CPL bit bit = !bit 
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2.3.5.5 Data move operations 

MNEMONIC OPERATION 

(C-style syntax) 

ADDRESSING 

DIR IND REG IMM 

MOV A,byte A = byte     

MOV byte,A  byte = A      

MOV byte1, byte2 byte1 = byte2     

MOV DPTR,#const16 DPTR = 16-bit immediate constant     

PUSH byte SP = SP+1 

RAM[SP]= byte 

    

POP byte byte = RAM[SP] 

SP = SP-1 

    

XCH A,byte exchange the content of A and byte     

XCHD A,@Ri exchange low nibbles of A and 

RAM[Ri] 

    

2.3.5.6 External and code memory access 

MNEMONIC  OPERATION (C-style syntax) 

MOVX A,@Ri A = XRAM[Ri] 

MOVX @Ri,A XRAM[Ri]= A 

MOVX A,@DPTR A = XRAM[DPTR] 

MOVX @DPTR,A XRAM[DPTR] = A 

MOVC A,@A+DPTR A = CODE[A+DPTR] 

MOVC A,@A+PC A = CODE[A+PC] 
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2.3.5.7 Jump and subroutine call  

MNEMONIC  OPERATION (C-style syntax) 

JMP address Jump to address 

PC = address 

JMP @A+DPTR Jump to A+DPTR  

PC = A+DPTR  

ACALL address Call subroutine at 11-bit <address> 

PC = PC+2 

SP = SP+1 

RAM[SP] = PC lower order byte 

SP = SP+1 

RAM[SP] = PC higher order byte 

PC = address  

LCALL address Call subroutine at 16-bit address 

PC = PC+3 

SP = SP+1 

RAM[SP]= PC lower order byte 

SP = SP+1 

RAM[SP] = PC higher order byte 

PC = address 

2.3.5.8 Return from subroutines and interrupts 

MNEMONIC  OPERATION (C-style syntax) 

RET  Return from subroutine  

PC = RAM[SP]*256 + RAM[SP-1] 

SP = SP-2  

RETI  Return from interrupt  

PC = RAM[SP]*256 + RAM[SP-1] 

SP = SP-2 

restore the interrupt logic to accept further interrupts 

NOP  No operation 
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2.3.5.9 Conditional jumps 

Note that if a conditional jump occurs, the program counter is updated as PC=PC+address, 

where the address is an 8-bit two’s complement number in the range of -128 to 127.  

MNEMONIC OPERATION ADDRESSING 

DIR IND REG IMM 

JZ address Jump if A = 0 only A 

JNZ address Jump if A !=0 only A 

DJNZ byte, address Decrement and jump if not zero     

CJNE A,byte, address Jump if A != byte     

CJNE byte,#const, address Jump if byte != const     

JC address Jump if C = 1     

JNC address Jump if C = 0     

JB bit, address Jump if bit = 1     

JNB bit, address Jump if bit = 0     

JBC bit, address Jump if bit = 1; CLR bit     

2.3.6  Instruction timing and coding 

The CIP-51 architecture executes most of the operations in 1 or 2 system clock cycles. 

Depending on the specific device, the system clock can have maximum frequencies from 

25 MHZ to 100 MHz; therefore, the fastest instruction execution time can be as low as 10 ns. 

The following table shows the distribution of the cycle time for the available instructions. Note 

that processors operating at clock frequencies above 25 MHz may use pipelining (prefetching 

instructions into a fast buffer) due to flash code memory access time limitations. This means 

that the processor may stall for a few clock cycles in some cases (for example, when a jump or 

a branching occurs). 

cycles  1 2 2 or 4 3 3 or 5 4 5 4 or 6 6 8 

instructions  26 50 5 10 7 5 2 1 2 1 

The 2 or 4, 3 or 5 and 4 or 6 cycles correspond to conditional branch instructions that have two 

different execution times depending on the evaluation result of the condition. If the jump 

occurs, i.e. the condition is met, then the execution needs two more clock cycles for the jump. 

For example, JZ takes 4 clock cycles, if the accumulator is zero, and two less otherwise. 

The CISC architecture of the 8051 processors allows instructions to be coded using 1, 2 or 3 

bytes. The first byte is associated with the type of the instruction, while the remaining one or 

two identify the operands. A few examples are shown in the next table. 

instruction  1. byte 2. byte 3. byte cycles 

ADD A, Rn  0010 1nnn   1 
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ADD A, #10  0010 0100 0000 1010  2 

ANL 15,#10  0101 0011 0000 1111 0000 1010 3 

DIV AB  1000 0100   8 

JZ address 0110 0000 relative address  2 or 4 

 

2.3.7  Interrupt handler 

Event handling is one of the most important aspects of embedded programming. Events can 

be generated by peripherals such as timers, communication ports, and analogue-to-digital 

converters and also by changes of external signals. In the 8051 environment, events can 

generate interrupts, which can be serviced by subprograms. If an event occurs, a flag is set 

(which can even be polled by software) and an associated interrupt routine is called if enabled. 

The interrupt mechanism is visualised in Figure 2.4. When the event occurs, the system detects 

this within the system clock cycle time t (the reciprocal of the system clock frequency). Upon 

completion of the currently running instruction (which can take from 1 to 8 cycles; see the 

previous chapter), an LCALL instruction is executed and the program jumps to the interrupt 

service routine. After processing, a RETI instruction is executed to return to the main program 

and restore the interrupt logic to accept further interrupts. One can easily see that the time 

elapsed from the event to the execution of the first instruction of the interrupt handler requires 

a minimum latency time and has some uncertainty as well.  

 

Figure 2.4. Interrupt mechanism. The interrupt latency time varies from 7 to 19 

system clock periods. 

It is very important to keep this in mind, since in a real-time application it can cause problems. 

For example, if a periodic interrupt is used to generate a square wave, this causes some 

fluctuation of the switching times, which should be considered, especially when switching 

times are short. For example, if a 100-kHz square wave is to be generated by a timer interrupt 

routine, the routine must be called 200000 times per second to change the signal state at every 

5 s. At a system clock frequency of 25 MHz, the clock period is 40 ns, so the latency time can 
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vary from 740 ns to 1940 ns, resulting in an uncertainty of (19-7)40 ns=480 ns. This can 

cause a maximum error of 9.6% in the 5-s switching time. 

The main program can be interrupted at any time, even during a task requiring multiple 

instructions. This means that all temporary variables and register content modified by the 

interrupt service routine must be saved at the beginning of the interrupt handling routine and 

must be restored upon return to the main program. Also note that the peripheral state or the 

input/output can also be changed during interrupt handling, which also needs careful 

attention. 

If an interrupt service routine is running, another request can only be serviced if it has higher 

priority. Only two priority levels are provided, so no further interrupts can be serviced. The 

priority of the interrupts is defined by the bits of the IP, EIP1 and EIP2 registers. 

Correspondingly, there are only two priority levels: normal and high. If more interrupts are 

detected simultaneously, the higher priority interrupt will be serviced first. Since the interrupt 

flag set by the event can be cleared only when the associated interrupt routine is called, no 

interrupts are lost if multiple requests are detected or the request occurs during the servicing 

of another one. Of course, if a request is generated two or more times without servicing, only 

the last request can be serviced. 

Interrupt sources are associated with a number that also defines priority (lower number means 

higher priority). The execution address of the interrupt routines is fixed and only 8 bytes are 

available up to the next address. Therefore, longer routines are located elsewhere and only a 

jump to that space is needed here. 

A few interrupt flags are automatically cleared by the hardware when the service routine is 

called; all others must be cleared by the software – otherwise, the request will remain active 

and will be serviced continuously.  

Interrupts can be individually enabled and disabled using the bits of the IE, EIE1 and EIE2 

registers. IE.7 (which can also be accessed as the SFR bit EA) is a global enable bit. Note that 

if an interrupt is enabled, it must have an interrupt handler code (interrupt service routine); 

otherwise, the processor can go into an uncertain state. 

The interrupt sources available on C8051F410 processors are listed in the following table [6].  

Source 
Execution 

Address 

N
u

m
b

e
r 

E
n

a
b

le
 b

it
 

P
ri

o
ri

ty
 b

it
 Flag 

name 
Cleared by 

hardware 

Reset 0x0000 -   -  yes 

/INT0 external 0x0003 0 IE.0 IP.0 IE0 yes 

Timer 0 overflow 0x000B 1 IE.1 IP.1 TF0 yes 

/INT1 external 0x0013 2 IE.2 IP.2 IE1 yes 

Timer 1 overflow 0x001B 3 IE.3 IP.3 TF1 no 

UART 0x0023 4 IE.4 IP.4 RI, TI no 

Timer 2 overflow 0x002B 5 IE.5 IP.5 TF2H, TF2L  no 
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SPI0 0x0033 6 IE.6 IP.6 SPIF, WCOL,MODF, 

RXOVRN 

no 

SMB0 0x003B 7 EIE1.0 EIP1.0 SI  no 

smaRTClock 0x0043 8 EIE1.1 EIP1.1 ALRM, OSCFAIL  no 

ADC0 Window 

Comparator  

0x004B 9 EIE1.2 EIP1.2 
AD0WINT  no 

ADC0 End of 

Conversion  

0x0053 10 EIE1.3 EIP1.3 AD0INT no 

Programmable 

Counter Array  

0x005B 11 EIE1.4 EIP1.4 CF, CCFn (up to six 

flags) 

no 

Comparator 0  0x0063 12 EIE1.5 EIP1.5 CP0FIF, CP0RIF no 

Comparator 1 0x006B 13 EIE1.6 EIP1.6 CP1FIF, CP1RIF no 

Timer 3 overflow  0x0073 14 EIE1.7 EIP1.7 TF3H, TF3L no 

Voltage regulator 

dropout  

0x007B 15 EIE2.0 EIP2.0 - no 

Port match 0x0083 16 EIE2.1 EIP2.1 - no 
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3 Assembler and C programming 

Programming 8051 microcontrollers requires special attention due to limited processing 

power, small memory space and the direct access of peripherals. No operating system is used 

in most cases; therefore, the programmer must take care of everything that the microcontroller 

does. The programmer must have extensive knowledge about the hardware, including memory 

types, instructions, SFRs, the interrupt handler and digital and analogue peripherals. 

Simple programs can be written in assembler, but C is recommended for general-purpose code 

development. Although code optimisations are done by the C compiler, some fragments of code 

can be further enhanced by mixing assembler and C. C compilers allow inserting assembly code 

in C and C and assembly code can work on the same variables. C programmers can write 

efficient embedded code only if they know assembler as well. 

3.1  SDCC C compiler 

There are many 8051 C Compilers on the market. The most popular professional compiler is 

the KEIL C51 [3] and there exists an open-source alternative called Small Device C Compiler 

(SDCC) [4]. The free availability, good quality and the detailed documentation of SDCC make 

it an ideal tool to use in education. Here only the most important additions to C are mentioned 

that are needed to use the features of the 8051 processor. 

Variables can be placed in different memory types; for this purpose, the compiler supports the 

declaration of storage classes: 

__data unsigned char x;   // internal RAM 

__xdata unsigned char x;  // external RAM 

__idata unsigned char x;  // internal indirectly addressable RAM 

__pdata unsigned char x;  // 8-bit addressed external RAM 

__code unsigned char x=3; // constant in code memory 

__bit b;                  // bit addressable RAM 

__sfr __at 0x80 P0;       // SFR byte 

__sbit __at 0xD7 CARRY;   // SFR bit 

__xdata __at (0x4000) unsigned char x[16];   // external RAM, absolute address 

__code __at (0x7f00) char Msg[] = "Message"; // code memory, absolute address 

__bit __at (0x80) GPIO_0;                    // bit, absolute address 

Inserting assembly into C can be done using the __asm and __endasm directives: 

unsigned char x; 

__asm              // beginning of assembly code fragment 

 clr  a         /* C style comment */ 

 mov  R0,#0     // P0, C++ style comment  

 mov  R1,#0x80  // C style hexadecimal constant 

 mov  a,R2      // copy the content of R2 register to accumulator 

 mov  _x,a      // accessing x declared in C 

 jz   L1        // use of a label 

 mov  R0,#0     // clear register R0 

L1: 

 mov  R1,#1     // load 1 into register R1 

__endasm;          // end of assembly code fragment 

The variable types are listed in the following table. 
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type width 

(bits) 

default signed range unsigned range 

__bit 1  unsigned  -  0,1  

char  8  signed  -128–127  0–255  

short  16  signed  -32768–32767  0–65535  

int  16  signed  -32768–32767 0–65535  

long  32  signed  -2147483648 

+2147483647  

0–4294967296  

float  

IEEE754  

32  signed   1.175494351 ∙ 10-38, 

3.402823466 ∙ 10+38  

pointer  8-24  generic    

Most of the variable types are the same as in standard C, but due to the limited resources, there 

are some exceptions. For example, the SDCC compiler allows defining bit variables using the 

__bit keyword. The variable can be placed in the bit addressable memory space, optimising 

memory usage. Floating-point arithmetic is supported; however, only single precision 4-byte 

wide float type variables can be used. This is fine in most embedded applications due to its 6-

7 digits of precision. Double precision is not available, because it would take a long execution 

time and significantly longer code. 

Generic pointers are rather special, since the 8051 microcontroller uses several different 

memory types. The 3-byte wide generic pointer defines the address in two bytes and the 

memory type (internal RAM, external RAM or code memory) on the third byte. Of course, the 

programmer can declare a pointer that points explicitly to an internal memory location. This 

pointer is stored in a single byte since only 256 different locations are possible. 

Microcontroller programming often requires the manipulation of bits. Here are two simple 

examples: 

x = x & ~(1 << 3);  // clearing a bit 

x = x | (1 << 3);   // setting a bit 

Working with integer numbers that are not 8, 16 or 32 bits long is also common. Left or right 

shifting may be required, but care must be taken concerning signed and unsigned numbers, 

since the behaviour of the shift operator is different for signed and unsigned numbers. In most 

cases, unsigned integers are used for the data of the peripherals (such as counter value or ADC 

value). The programmer should always declare the variable as unsigned if it contains an 

unsigned number. However, the use of negative constants can help in some cases, especially 

when calculating the value used in timer programming (see Chapter 5): 

unsigned short x;  // define an unsigned 16-bit integer variable  

x = -100;  // this is equivalent to 65536-100, i.e. 65436 

Note that 65536 cannot be represented by an unsigned short variable and long arithmetic 

would take more time and longer code. 

3.2  Interrupt programming in assembler  

A simple assembler interrupt service routine example code is listed below. At the beginning, 

the registers in use are pushed onto the stack and restored at the end of the routine. The 
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interrupt pending flag (in this example RI) is cleared. Note the use of assembler-style 

comments. 

push ACC    ; ACC (SFR access of A) to the stack 

push PSW    ; status register to the stack 

clr  RI     ; clear interrupt flag 

mov  A,SBUF ; A is changed here 

add  A, #1  ; A and PSW are changed here 

mov  P0,A   ; copy the content of the accumulator to port P0 

pop  PSW    ; PSW restored here 

            ; reverse order!  

pop  ACC    ; ACC (A) is restored here 

reti        ; return to the main program 

If the R registers are used, they must be saved and then restored as well. However, the 8-byte 

register bank can be moved to four memory locations; therefore, the interrupt routine can use 

one bank while the main code uses another bank. 

push PSW    ; status register to the stack 

mov  PSW,#8 ; use register bank #1 

; use R registers here 

pop  PSW    ; PSW and the register bank selection is restored here 

The following complete assembler code illustrates the use of a timer interrupt to make an LED 

blink. The system clock after reset for the C8051F410 processor is 191406 Hz, and its 16-bit 

Timer 2 runs with 1/12 of this rate by default: 191406/12 Hz  15950 Hz. Since the interrupt 

occurs when the 16-bit timer overflows, 15950 steps are needed to reach 216=65536 in order to 

wait 1 second before overflow. Therefore, the initial value of the timer should be set to 65536-

15950 = 49586 = 0xC1B2, and this value will be reloaded upon overflow automatically. This 

way, a periodic interrupt will be generated every second. Note that the detailed description of 

the peripherals can be found in the following chapters. 

 

$include (C8051F410.INC) ; load the definitions used for the C8051F410 MCU 

 

LED     EQU  P0.2       ; the LED is connected to bit 2 of port 0. 

 

CSEG at 0000h 

   jmp  Main            ; reset, jump to the label ‘Main’ 

 

ORG 002Bh               ; Timer 2 interrupt location 

   anl TMR2CN,#07Fh     ; clear interrupt flag 

   cpl LED              ; complement LED 

   reti                 ; return from interrupt 

Main: 

   anl  PCA0MD,  #0BFh  ; switch watchdog off 

   mov  PCA0MD,  #000h  ; switch watchdog off 

   mov  XBR1,    #040h  ; enable the crossbar to allow input and output 

   mov  TMR2RLL, #0B2h  ; set the Timer 2 reload register (low and high bytes) 

   mov  TMR2RLH, #0C1h  ; to provide 1-Hz interrupt rate 

   mov  TMR2L,   #0B2h  ; Timer 2 counter initial value 

   mov  TMR2H,   #0C1h  ; is the same as the reload value 

   mov  TMR2CN,  #004h  ; Start Timer 2 now 

   mov  IE,      #0A0h  ; enable global interrupts and Timer 2 interrupt 

   jmp  $               ; repeat forever, interrupt routine will blink the LED 

END 
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3.3 Interrupt handling in C  

The SDCC C compiler for the 8051 family of processors supports interrupt programming. If a 

function is intended to be an interrupt service routine, it must be declared accordingly. The 

programmer should use the __interrupt keyword and include the number of the interrupt to 

identify which interrupt will be handled. For example:  

void Timer2_ISR(void) __interrupt 5 

or preferably using predefined constants 

void Timer2_ISR(void) __interrupt INT_TIMER2 

This code defines an interrupt service routine (no return value or input arguments can be 

defined) for the Timer 2 interrupt that is numbered as 5. The location of the R0—R7 register 

bank can also be defined: 

void Timer2_ISR(void) __interrupt INT_TIMER2 __using 1 

where the number following __using keyword defines which one of the four possible register 

banks are used (the default is 0). This can help the compiler to generate faster code since 

saving/restoring the registers is not necessarily needed. 

An interrupt service routine can use local variables, which are initialised in any execution of 

the routine. A simple example is the use of temporary variables. However, in some cases a 

variable must retain its value after exiting from the interrupt service routine. For example, if 

the code must count how many interrupts are generated, a counter value must be incremented 

each time the interrupt routine is called. This variable can be declared as a global variable just 

at the beginning of the code, but if it is used in the interrupt routine only, it is best to hide the 

variable from other parts of the code. In this case, the variable should be declared in the 

interrupt service routine using the static keyword. The following example code toggles the state 

of an LED upon every hundredth Timer 2 overflow interrupt request. The static variable named 

‘counter’ counts how many requests are detected, and if this number reaches 100, the LED is 

toggled. Since the counter value is only used in the interrupt routine, it can be declared within 

the scope of the routine. Note that the initialisation of the variable is done only when the 

program starts. 

/************************************************************************* 

Timer 2 interrupt service routine 

**************************************************************************/ 

void Timer2_ISR(void) __interrupt INT_TIMER2 

{ 

 static unsigned int counter = 0; // will be initialised only once! 

 TMR2CN&=~0x80;  // or TF2H=0, clear interrupt pending flag 

 counter++;      // increment the value of the counter variable 

 if (counter == 100) // the routine has been called 100 times 

 { 

  counter = 0;   // reset counter 

  LED = !LED;    // complement LED 

 } 

} 

If a variable is used both in an interrupt routine and in other parts of the program then it must 

be declared as volatile: 

// define the global variable that is used both in the interrupt routine 

// and in the main program  

volatile unsigned char counter; 
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/************************************************************************* 

Timer 2 interrupt service routine 

**************************************************************************/ 

void Timer2_ISR(void) __interrupt INT_TIMER2 

{ 

 TMR2CN&=~0x80;  // or TF2H=0, clear interrupt pending flag 

 counter++;      // increment the value of the counter variable 

} 

The volatile keyword tells the compiler that the variable can be changed at any time, so it 

cannot be assumed to remain unchanged in a sequence of a few lines of computations. It is a 

typical error to get unexpected results due to missing volatile declarations. 

There are several considerations to be kept in mind if both interrupts and regular code work 

on the same data. The main program may work on data in several assembler instructions that 

are hidden from the programmer. For example, checking the value of a 16-bit number needs 

several assembler instructions: the higher- and lower-order bytes must be separately checked 

– it is not an atomic operation. If an interrupt routine changes the value of this integer during 

this process, an unexpected error can occur. Therefore, non-atomic operations must be 

protected. Even if the variable is an atomic type (bit or byte), it may be used multiple times in 

an instruction like in y=x*x. 

One solution is the use of critical blocks as shown below: 

volatile unsigned short x;  // variable declaration 

. 

. 

/************************************************************************* 

Interrupt service routine 

**************************************************************************/ 

void Timer2_ISR(void) __interrupt INT_TIMER2 

{ 

 TF2H=0;  // clear interrupt pending flag 

 x++;     // increment the value of x 

} 

. 

. 

. 

__critical  // define the critical block 

{ 

 if (x>1024) Do_Something();  // here x cannot be changed by 

} 

At the beginning of the critical block, the compiler disables interrupts (saves then clears EA) 

and at the end re-enables them if necessary (restores the value of EA); therefore, no interrupt 

can be executed within the critical block. Note that this may cause extra interrupt latency and 

even missing interrupts if the critical block needs too much time to complete. 

A better solution is to copy the value to be used into a temporary variable 

unsigned short temporary; 

__critical 

{ 

 temporary = x;   // fast execution 

} 

if (temporary >1024) Do_Something(); 

In this case the interrupts are disabled for a short time. 
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During the execution of the __critical block all interrupts are disabled. It is also possible to 

disable only the interrupt that can modify the variable: 

unsigned short temporary; 

unsigned char saved_IE = IE; 

IE &= ~0x20; 

temporary = x;   // fast execution 

IE = saved_IE; 

if (temporary >1024) Do_Something(); 

It is also possible to protect a variable from being modified by the interrupt routine without 

disabling the interrupt by introducing a user flag as illustrated in the following example. 

In the main code: 

volatile __bit protect_x;   // flag variable 

volatile unsigned short x;  // this variable can be changed in the 

                            // interrupt service routine 

 

protect_x=1;                // switch protection on 

if (x>10) Do_Something();   // here x cannot be changed 

protect_x=0;                // switch protection off 

In the interrupt service routine: 

if (!protect_x)             // allow changes only if protect_x is 0 

{ 

 x=(ADC0H << 8) | ADC0L; // do the change of x 

} 

In some cases, it can be useful to update the variable only if it is required by the main program. 

In the main code: 

volatile __bit update_x;    // flag variable 

volatile unsigned short x;  // this variable can be changed in the 

                            // interrupt service routine 

 

update_x=1;                 // initiate update 

while (!update_x); 

if (x>10) Do_Something();   // here x cannot be changed 

In the interrupt service routine: 

if (update_x)               // apply changes only if update_x is 1 

{ 

 x=(ADC0H << 8) | ADC0L; // do the change of x 

 update_x = 0;           // notify about the update 

} 

Note that some events generate the same interrupt. For example, interrupt 6 corresponds both 

to serial port receive and transmit. Therefore, the interrupt service routine must check if the 

RI or the TI interrupt flag is set and execute the code accordingly. 

3.4  Interrupt programming guidelines  

Interrupt programming is rather difficult, as there are many potential pitfalls. Response time, 

latency, processing time, variable and memory content, priority, peripheral status, 

simultaneous requests and a lot more are all to be considered carefully. Debugging is not easy 

due to the complexity and the differences between real-time versus single stepping operating 

modes. Here are some guidelines to follow to reduce the probability of unexpected behaviour. 
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 If the interrupt service routine and the rest of the code work on the same data, 

synchronisation must be carefully designed. 

 Atomic and non-atomic operations should be identified. Temporary results of non-

atomic operations on data must be protected from being modified by an interrupt 

service routine. If the programmer is not absolutely sure if a variable is used only once 

in an atomic operation, the variable must be protected from change by the interrupt 

service routine. 

 Before enabling the interrupt, the corresponding peripheral must be configured and 

the variables used must be initialised. 

 An enabled interrupt must have an interrupt service routine. 

 The stack must have enough space for saving and restoring variables and for 

subprogram calls. It is best to set the initial value of the stack pointer (SP) to the first 

free location of data memory, just above the variables. In this case, all free memory is 

available as stack. C compilers typically do this. 

 Interrupt routines should take as short a time as possible, and only the most important 

processing that cannot be done by the main program should be performed here. 

 Too frequent interrupt calls can slow the processor down; too frequent multiple 

concurrent interrupt requests can cause a failure to service certain requests. 

 Multiple interrupts can generate extra interrupt latency time – another reason to keep 

interrupt service routine execution time as short as possible. 

 Interrupt pending flags must be cleared in the interrupt service routine. 

 Interrupt priorities must be taken into account. Priority of critical interrupts requiring 

fast response must be set to high. 

 Consider using different register banks for interrupts. 

 Several interrupt flags can be associated with the same interrupt routine; therefore, the 

routine must take care all of them. 

 Do not mix event handling by polling the interrupt pending flag with event handling by 

an interrupt service routine. Choose between the two possibilities. 

 Avoid the use of functions (except inline functions) in interrupt service routines. They 

can be slow and can be non-reentrant. Only reentrant functions can be called while one 

instance is already running. On the other hand, reentrant functions are slower and need 

more resources. For example, floating-point arithmetic and 16-bit and 32-bit integer 

multiplication, division and modulus operations use non-reentrant support functions. 

See the SDCC manual how to overcome this limitation. 

3.5 Using an integrated development environment and the associated tools 

Silicon Laboratories provides a free integrated development environment (IDE) and several 

other software tools to support code development [1]. 

Many different compilers can be integrated with the IDE, including the open-source and free 

SDCC C compiler. In the Tool Chain Integration menu item the compiler can be selected. 

Projects can be created and header and C source files or libraries can be added to the project 

as usual in IDEs. 

The IDE handles the USB debug adapter that connects the PC to the target microcontroller. 

The adapter allows the downloading of the compiled code and also provides debug functions. 

After compilation, the code can be downloaded.  
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Breakpoints can be defined, so after starting the code, real-time execution will automatically 

stop when a breakpoint is found. This means that the real system can be monitored and no 

simulation is performed. During debugging both the assembly and C code can be viewed. 

Another very useful feature is the watch window, which can show the actual content of several 

variables. Besides this, there are many debug windows available to view and even change the 

contents of the registers, memories and peripherals of the 8051. 

Single stepping, full speed execution, run-to-cursor execution are all possible. An example 

screenshot of the IDE can be seen in Figure 3.1. Solid red circles indicate breakpoints, while 

the blue bar shows the current source line being executed. Keyword highlighting is also 

provided. 

On the right the peripheral watch windows – programmable counter array (PCA) window; the 

8051 register (including the program counter, PC and accumulator, ACC) window; the 

disassembly windows and the variable watch window (which shows the INT0counter and the 

PCAcounter) – can be seen. Red colour indicates recently changed values. 

 

Figure 3.1. Debugging in the Silicon Laboratories IDE. 

Note that peripherals are stopped if the program is paused in the debugger, and after a single-

step operation the code is halted again. This means that all peripherals are stopped at this 

point. This must be kept in mind, because full-speed execution might differ significantly. 

Examples are given below. 

 Assume that the voltage reference is switched on in a program line and in the next line 

an analogue-to-digital conversion is initiated. Since the voltage reference needs a 
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settling time of a few milliseconds, at full-speed execution the A/D conversion value 

will be invalid (switching the reference on needs only a few clock cycles), while in single 

stepping mode there is enough time for the voltage reference to settle. 

 Sending a byte over a serial port is initiated by writing the SBUF register, for example: 

SBUF=0xAA;. Since the individual bits of SBUF are transferred at a certain rate (at 

each overflow of a timer), several clock cycles are needed to complete the transfer. 

Therefore, if the user places a breakpoint after SBUF loading (that is a two-cycle 

instruction) or performs single stepping, the data will not be transferred, because the 

timers will be halted. 

3.6  Config Wizard 

The C8051Fxxx processors have a very rich set of peripherals that are configured with many 

SFRs — typically each has independent configuration bits. Therefore, it would be very hard to 

read the datasheet and set the individual bits of these SFRs accordingly, and the probability of 

making an error would be rather high. The Config Wizard 2 free graphical user interface 

development tool helps to configure the processor and its peripherals very efficiently. After 

choosing the processor, it is possible to configure any of its peripherals by dialogue boxes and 

the corresponding source code will be generated in C or assembly format. This code can be 

copied into the user code. Figures 3.2 and 3.3 show two examples: the Port input/output and 

the Timer configuration dialogue boxes. 

 

Figure 3.2. Port input/output configuration dialogue box. 
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Figure 3.3. Timer configuration dialogue box. 
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4 Digital input and output; crossbar 

Microcontrollers provide ports for general-purpose digital input and output signals [6]. The 

ports are organised in 8-bit groups (named P0, P1, etc.), but bits can also be accessed 

individually (for example, P1.3 in assembler or P1_3 in SDCC to access the third bit of port 

P1). All port bits are associated with the pins of the package of the chip and can be configured 

as input or as output, and have several operating modes. Some port pins can also be configured 

in analogue mode. 

4.1 The I/O structure  

The port structure can be seen in Figure 4.1. 

 

Figure 4.1. I/O port structure. 

Writing to a port (for example, MOV P0, #1 in assembler or P0=1 in SDCC) means writing the 

data into a D-latch that is connected to a port pad via the port driver. During reading from a 

port, the port pad is connected to the internal data bus. Note that read-modify-write 

instructions (for example, INC P1, ANL P1,#1 in assembler and P1++, P1&=1 in C) do not 

read the state of the external signal itself, but rather use the output of the D-latch instead to 

guarantee consistent operation. 

The simplified schematic of the port driver is shown in Figure 4.2. A complementary transistor 

pair can pull the line down to GND or up to Vdd (power supply of the driver stage) and a third 

transistor can switch on a weak pull-up. The port input uses a Schmitt trigger to guarantee 

valid logic levels for slowly changing or noisy signals. In order to use the analogue mode, all 

transistors must be switched off and the input Schmitt trigger must also be disabled. 
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Figure 4.2. Simplified schematic of the I/O port driver. Bold indicates internal 

I/O signals. 

4.1.1  Port input 

The port can be configured as digital input by switching off the output drivers. Therefore, it is 

important to write logic 1 to the corresponding port bit, otherwise the transistor connected to 

the ground will short-circuit the port pin to the ground. Push-pull mode must be disabled. The 

weak pull-up (Rp, roughly 100 kΩ, actually a weak P-channel FET) can be enabled or disabled 

globally for all port pins. When disabled, the leakage current is typically 10 nA at room 

temperature and is guaranteed to be less than 1 A. This must be considered in analogue mode, 

whereas digital signals will not typically be affected by this small current that is matched with 

the specifications of other CMOS devices. The input capacitance is close to 5 pF and the diodes 

protect the internal circuitry against electrostatic discharge (ESD). The simplified equivalent 

schematic is shown in Figure 4.3. 

 

Figure 4.3. Port input configurations. On the left, the digital input with weak 

pull-up is shown. On the right, the digital input with no pull-up and the 

analogue input can be seen. The typical IL leakage current is about 10 nA but 

can be as high as 1 A. 

Note that the diodes protect the inputs from electrostatic discharge (ESD) and from over- or 

undervoltage, but the current cannot exceed the specifications given in the absolute 
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maximum ratings section in the datasheet. Since the supply voltage is less than 5 V, some 

ports provide 5 V tolerant inputs. In this case, the diode connected to Vdd is missing. 

4.1.2  Port output 

The ports can operate either as open-drain or as push-pull outputs. 

In open-drain mode, the weak pull-up can be switched on (reset default) or off. Logic 1 state 

can only be set by the large value (roughly 100 kΩ) pull-up resistor; therefore, the port cannot 

be loaded and signal transition from 0 to 1 will be rather slow, since the external capacitances 

can only be charged through the resistor. For example, a loading of 50 pF will reduce the rise 

time (90% of the final value) to about 10 s. External pull-up resistors (down to about 1 kΩ) 

can make the switching faster and can source more current to the load at the expense of a larger 

quiescent current when 0 is written to the port bit. Some peripherals (such as I2C) require open 

drain mode. 

In push-pull mode the output drive strength is symmetric, and the port can sink and source 

large currents and guarantee fast switching from 0-to-1 and from 1-to-0. Therefore, it is 

strongly recommended to use push-pull mode for the output in most applications, especially 

for communication peripherals, in order to avoid data corruption. 

 

Figure 4.4. Open-drain and push-pull output modes. 

 

4.2 Crossbar 

After reset, the ports are not connected to the core and all peripherals are idle. Port pins can 

be associated with the port latches or with the enabled peripherals, which can output or input 

signals (see Figure 4.5). The priority crossbar provides a flexible way to connect the internal 

peripherals and port latches to the port pins. If it is enabled, the port pins are accessible. If a 

peripheral is used, its signals are associated with port pins. Peripherals are numbered and the 

port pins are associated in this order with the enabled peripherals. For example, if peripheral 

#1 is enabled with two signals and peripheral #5 is enabled with three signals, peripheral #1 

will be connected to the first two pins (P0.0 and P0.1), while peripheral #5 will be associated 

with the next three pins (P0.2, P0.3 and P0.4). The state of these pins cannot be modified by 

writing to the port latches but their state can be monitored by reading the corresponding port 

bit. The push-pull or open-drain settings can still be set by firmware. 
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Figure 4.5. The crossbar assigns peripherals and port latches to port pins. 

Crossbar settings and peripheral configuration are typically done just after reset. However, it 

is possible to reconfigure the system during execution. In this case, the crossbar must be 

disabled first, then can the changes be made before re-enabling the crossbar. Note that during 

this process the port pins may exhibit transitions, which must be tolerated by the system. 

4.3 Port I/O applications 

In this chapter port input and output application examples will be shown. The port I/O allows 

realising various user interfaces and communication with external circuits. 

4.3.1  Reading buttons and switches 

One of the simplest and most common digital input types is the state of a button or a switch. 

Figure 4.6 shows simple ways of connecting buttons to the port pins. The most popular 

connection uses a pull-up resistor and a grounded button. If the button is pressed, the 

corresponding logic value is 0. A capacitor is sometimes used to eliminate bouncing and to 

reduce noise. Positive logic can be realised by swapping the resistor and the button: in this case 

logic 1 is obtained when the button is pressed.  
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Figure 4.6. Connecting a button or switch to the port pins. The value of R is 

typically 10 kΩ. The 1 kΩ resistor can protect the port is it is accidentally 

configured as output (including the case if 0 is written to the port). They can be 

omitted if misconfiguration is surely avoided. 

The 1 kΩ series resistors protect the port if it is configured to source of sink current. This 

happens if it is configured in push-pull mode or if 0 is written to the port latch. The resistors 

can be omitted in a final version of a circuit when the programmer is sure about proper 

configuration. In a general purpose development board the code is often changed for different 

tasks, therefore the resistors are required. 

Figure 4.7 shows that if the internal weak pull-ups (Rp) are switched on, the external pull-up 

resistor can be eliminated. Although the external capacitor may cause voltage at the input to 

change slowly, the internal Schmitt trigger ensures reliable operation. 
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Figure 4.7. Using internal pull-up resistors for handling buttons and switches 

The following, very simple source code shows an example of reading the state of a button 

connected to the third bit of port P0: 

#define BUTTON_ON (!P0_3) // define an alias to access 

                          // the port bit of the button 

 

/************************************************************************* 

The main function 

**************************************************************************/ 

void main(void) 

{ 

 while (1)  // infinite loop; the microcontroller never stops 

 { 

  if (BUTTON_ON)          // if the button is pressed 

  { 

   while (BUTTON_ON);  // wait while button is released 

   Do_Short_Process(); // some process to be completed 

  } 

 } 

} 

There are many problems associated with the code above. For example, potential bouncing is 

not handled and during process execution button pressings are lost.  

An improved code uses a timer interrupt to detect button pressing only if the button is pressed 

for a period of at least 100 ms: 

#define BUTTON_ON (!P0_3) // define an alias to access 

                          // the port bit of the button 

#define BUTTON_ON_TICK 10 // number of ticks to be counted 

                          // defines the minimum time for button detection 

 

volatile bit button_pressed; // variable to indicate if the button 

                             // has been pressed 

 

/************************************************************************* 

Timer interrupt service routine 

**************************************************************************/ 

void Timer_ISR __interrupt TMRVECTOR // 10-ms period 

{ 

 // static variables retain their values upon exiting the function 

 static bit button_state=0; // this bit stores the state of the button 

 static bit detected=0;     // set if button pressing is detected  
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 static unsigned char counter=0; // counter for ticks 

 

 if (button_pressed)         // button pressing not yet handled 

  return;                // nothing to do 

 if (BUTTON_ON)             // button is in a pressed state 

 { 

  if (button_state)       // it has already been pressed 

  { 

   counter++;         // increment time interval counter 

   if (counter == BUTTON_ON_TICK) // if enough time has elapsed 

    detected=1;                // pressing detected 

  } 

  button_state=1;       // save button state 

 } 

 else                     // it is in a released state 

 { 

  button_state=0;       // save button state for the next function call 

  counter=0;           // reset time interval counter 

  if (detected) 

  { 

   button_pressed=1; // notify main program 

   detected=0;      // reset; end of detection; enable next detection 

  } 

 } 

} 

// in the main function: 

   … 

 if (button_pressed)    // button pressing has been detected 

 { 

  Do_Something();    // execute a process 

  button_pressed=0;  // clear flag to enable further detections 

 } 

 

4.3.2  Reading a keyboard 

A more advanced user input interface is the keyboard. Keys are arranged in columns and rows. 

Columns and rows have associated wires, which are connected to each other if a key is pressed. 

Figure 4.8 shows how to interface the keyboard to the microcontroller. The wires of the rows 

are connected to port pins configured as inputs (Pn.3 to Pn.6), while the columns are driven 

by port pins configured as outputs (Pn.0 to Pn.2). Note that the optional pull-up resistors may 

be used on the inputs (Pn.3 to Pn.6). 

   

Figure 4.8. Connecting a keyboard to the microcontroller port. 
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The microcontroller typically scans all keys to determine which key is pressed. To do so, one of 

the column wires must be pulled down (by clearing one of the Pn.0, Pn.1 or Pn.2 outputs while 

the others are at logic 1) and check which row wire is at logic low. This procedure must be 

performed on all columns to determine which keys are pressed. In most cases, the algorithm 

can be stopped if a key if found to be pressed and no further keys need to be checked. 

4.3.3  Driving LEDs 

LEDs are the simplest indicators that can inform the user about logic values. They can be 

connected in negative or positive logic, i.e., they can be lit by writing either logic low or logic 

high to the corresponding port bit. Figure 4.9 shows all connections. Open-drain output mode 

can only be used if the anode is connected to the supply, while push-pull mode can be used in 

both connections. 

 

Figure 4.9. An LED can be connected between a port pin and the supply or 

ground via a series resistor that sets the current. The push-pull configuration is 

needed to drive an LED whose cathode is grounded. Note that the push-pull 

mode can be used in both cases. 

The current setting resistor should be selected to provide enough light intensity, but keep in 

mind that output current of the port is limited and if many LEDs are driven, the total current 

sourced or sunk can be too large. Values from 330 Ω to 1 kΩ are typical. External drivers or 

transistors can be used to overcome this limitation. 

4.3.4  Driving 7-segment displays 

The 7-segment display contains 7 LEDs to display a decimal digit and one LED to represent an 

optional decimal point if multiple displays are used. The anodes or cathodes of the LEDs are 

connected to support positive or negative logic. Figure 4.10 shows the common-anode version 

associated with the negative-logic mode, which allows the port output to be configured either 

in open drain or in push-pull mode. 
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Figure 4.10. An 8-bit port can drive a 7-segment display. 

The following table shows the port bits and the port byte to be written to display a specific digit. 

Digit G F E D C B A PORT 

0 0 1 1 1 1 1 1 0x3F 

1 0 0 0 0 1 1 0 0x06 

2 1 0 1 1 0 1 1 0x5B 

3 1 0 0 1 1 1 1 0x4F 

4 1 1 0 0 1 1 0 0x66 

5 1 1 0 1 1 0 1 0x6D 

6 1 1 1 1 1 0 1 0x7D 

7 0 0 0 0 1 1 1 0x07 

8 1 1 1 1 1 1 1 0x7F 

9 1 1 0 1 1 1 1 0x6F 

Note that multiple 7-segment displays can be connected to the same port provided that only 

one is enabled at a time. For example, the extension board (see the Appendix) has two 7-

segment displays connected to Port 2 and one bit (P1.3) selects the display whose common 

cathode will be connected to Vdd. Therefore, only one display can be active at a time, but if 

they are toggled quickly enough, the user will see both displays working with different 

numbers. Of course, the brightness will be halved in this case. 

4.3.5  Driving alphanumeric LCD displays  

A much more powerful popular user interface is the alphanumeric liquid crystal display (LCD). 

The microcontroller can communicate with its integrated processor over a special 8-bit parallel 

interface that can also be configured as a 4-bit interface. A detailed description can be found 

in the datasheet of the HD44780 or a compatible processor [16]. 

The LCD display can communicate with the processor over its parallel interface. The 8-bit 

bidirectional bus can be connected to one port. This port can be configured in open-drain 

mode, but in this case external pull-up resistors may be needed (3 kΩ-10 kΩ) to ensure the 

short rise time of the signals. Alternatively, the port can be configured in push-pull mode and 

should be changed to open drain only for read operations. The 3 control lines are driven by the 

port bits of the microcontroller; push-pull mode is strongly recommended. The R/W line 

selects between read (R/W=1) and write (R/W=0) operations. RS selects which one of the two 
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register sets are written or read. If RS is logic high, then the display RAM is accessed and 

characters can be written to the display; otherwise instructions to the LCD display can be sent 

(for example clearing the display). A pulse on E reads or writes the data. Vdd (5 V in most 

cases) and GND are the supply lines. The voltage input V0 is used to set the contrast of the 

display. If the LCD display has internal backlighting LEDs, pins 15 and 16 can be used to power 

these. The anode and cathode can be connected in both ways; the datasheet must be consulted 

to determine the proper connection. Figure 4.11 shows the connector pinout of the LCD display. 

 

Figure 4.11. Pinout of the standard LCD display connector. 
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0  0  0  0  0  1  ID  S  Entry mode:   

ID=1:cursor right 

S=1:entire display shift  

Display 

on/off  

0  0  0  0  1  D  C  B  D=1 display on, 

C=1 cursor on, B=1 cursor blinks 

Cursor or  

display 

shift  

0  0  0  1  SC  RL  -  -  SC=1:display, 0:cursor 

RL=1:right, 0: left shift  

Function  

set  

0  0  1  DL  N  F  -  -  DL=1:8-bit, 0:4-bites mode 

N=1:2 sor, 0:1 sor 

F=1:5x10, 0:5x8 pixels 

Set 

CGRAM 

address 

0  1        Address of writing to the character 

generator RAM, defining 

characters 

G
N

D
V

D
D

V
o

R
S

R
/W

E D
B

0
D

B
1

D
B

2
D

B
3

D
B

4
D

B
5

D
B

6
D

B
7

B
LA

/C
B

LC
/A

1 16



Digital input and output; crossbar 

 

Set 

DDRAM 

address 

1  0        Address of writing to a specific 

location of the display, cursor 

positioning 

When writing to or reading from the display, certain timing conditions must be met (see Figure 

4.12). The display is a rather slow external peripheral, and the microcontroller code must be 

written with this taken into account. 

 

Figure 4.12. Time diagram of write and read operations (for details see the 

HD44780 datasheet [16]). 

The following example code introduces a few functions to initialise the display and to write to 

the display. 

#define LCD_RS   P0_5  // RS is the register select input 

#define LCD_RW   P0_6  // specifies read or write 

#define LCD_E    P0_7  // enable line serves as write or read pulse 

#define LCD_PORT P1    // the data bits are connected to port P1 

 

unsigned char line_address[4];  // this array holds the address of the 

                                // first character in a row 

 

/************************************************************************* 

LCD initialisation function 

Input parameters are the number of rows and columns  

**************************************************************************/ 

void LCD_Init(unsigned char rows, unsigned char columns) 

{ 

 unsigned char i; 

 

 line_address[0]=0;     // initial address of the first row 

 line_address[1]=0x40;  // initial address of the second row 

 line_address[2]= columns;      // initial address of the third row 

 line_address[3]=0x40+ columns; // initial address of the fourth row 

 LCD_RW=0;        // assume write operations as default 

 LCD_E=0;         // the E line should be inactive 

 LCD_RS=0;        // register select must be 0 to send commands 

 Delay_ms(50);    // special initialisation sequence after 50 ms of delay 

 LCD_DATA=0x30;   // 8-bit mode is selected 

 LCD_PulseE();    // generate pulse on the E line 

 Delay_ms(5);     // wait for approximately 5 ms 
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 LCD_PulseE();    // generate pulse on the E line 

 Delay_ms(1);     // wait for approximately 1 ms 

 LCD_PulseE();    // generate pulse on the E line 

 LCD_Write(0x38); // set 8-bit mode, 2 lines 

 LCD_Write(0x08); // set display off 

 LCD_Write(0x01); // execute display clear function 

 LCD_Write(0x06); // set entry mode: increment cursor 

 LCD_Write(0x0C); // switch display on; no cursor; no blinking selected 

} 

 

/************************************************************************* 

Pulses the E line to initiate a write to or read from the LCD 

**************************************************************************/ 

void LCD_PulseE(void) 

{ 

 __asm            // wait for about 1 µs 

  mov R7,#7    // system clock frequency in MHz divided by 4 

 L1: djnz R7,L1   // loop to wait for the specified time 

 __endasm; 

 LCD_E=1;         // set E 

 __asm            // wait for about 1 µs 

  mov R7,#7    // system clock frequency in MHz divided by 4 

 L2: djnz R7,L2   // loop to wait for the specified time 

 __endasm; 

 LCD_E=0;         // clear E 

} 

 

/************************************************************************* 

Writes a byte to the LCD 

**************************************************************************/ 

void LCD_Write(unsigned char a) 

{ 

 LCD_DATA=a;      // set the data bus according to the value of a  

 LCD_PulseE();    // generate pulse on the E line 

 Delay_ms(2);     // wait 2 ms here or, alternatively, check busy flag 

} 

 

/************************************************************************* 

Clears the entire LCD display 

**************************************************************************/ 

void LCD_Clear(void) 

{ 

 LCD_RS=0;        // register select must be 0 to send commands 

 LCD_Write(1);    // write command to LCD 

 LCD_RS=1;        // register select default value is 1 (display RAM) 

} 

 

/************************************************************************* 

Moves the cursor to the specified location 

**************************************************************************/ 

void LCD_MoveTo(unsigned char line, unsigned char pos) 

{ 

 LCD_RS=0;        // register select must be 0 to send commands 

 LCD_Write(0x80 | (line_address[line]+pos));  // select position of char 

 LCD_RS=1;        // register select default value is 1 (display RAM) 

} 

 

/************************************************************************* 

Redirects the standard C output to the LCD 
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**************************************************************************/ 

void putchar(char c) // redefined standard output function 

{ 

 LCD_Write(c);    // send the character to the LCD 

} 

 

LCD_MoveTo(0,10);    // first line, 10th position 

printf("Hello");     // write to the display 

4.3.6  Driving relays and motors 

Microcontrollers must sometimes control higher power devices such as motors, stepper 

motors, valves or high power LEDs. Since the output can source and sink only a few 

milliamperes, external drivers are required for heavy loads. A simple solution is to use bipolar 

or MOS transistors connected to port pins configured as push-pull, as shown in Figure 4.13. 

Inductive loads – coils or motors – can cause very high voltage spikes during turn-off; 

therefore, a protection diode is used across the two terminals of such a load.  

 

Figure 4.13. Higher power loads can be driven by external transistors. 

4.4  Application guidelines 

 The crossbar must be enabled to connect the port bits and peripherals to the pins. 

Analog and open drain mode can be used without enabling the crossbar, but it is not 

recommended. 

 Pins used as digital inputs should be configured as open-drain and logic high must be 

written to the corresponding port bits. 

 After reset, the port latches are set to 1. 

 Pins used as digital outputs should be configured as push-pull. 

 The sink current (open-drain or push-pull mode) or source current (push-pull mode 

only) must not exceed the datasheet specifications (about 3 mA-4 mA). The total 

current of all output pins should be limited to meet the specifications. 

 An LED can be connected to an output via a series current limiting resistor (330 Ω–

1 kΩ). If using open drain output, the cathode must be connected to the supply voltage. 

 Buttons can be connected between the input and GND. An optional pull-up resistor of 

about 10 kΩ can be used. Parallel capacitors may help to reduce switching noise. 
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4.5 Troubleshooting 

Problem: 

 Cannot read from or write to the port pin; unexpected output or input values 

experienced. 

Possible reasons: 

 The crossbar is disabled. Enable the crossbar. 

 Writing 1 to a port bit does not mean that reading it returns 1, since the voltage can be 

pulled low by an external circuit. 

 Push-pull is not set for an output. Open-drain output cannot source current. 

 Be sure that for input the port pin is configured as open-drain and 1 is written to the 

port bit. 

 External short-circuit on the pin can be present. Check the voltage with a voltmeter. 

 Improper logic voltage level may be present on the pin. 

 The output drive current limit may be violated; too high a load may be present on the 

pin. 

 A peripheral is associated with the port pin by the crossbar. In this case the pin state 

can only be driven by the peripheral. 

 Short glitches (temporary pulses) on a signal can corrupt reading. 

4.6  Exercises 

 Write a program that reads the state of a button and toggles the state of an LED on 

each pressing. Successive button pressings within 200 ms should not be detected. 

Continuously pressing a button should be detected as a single pressing. 

 Connect four LEDs and a button to the microcontroller and write code that illuminates 

only one LED and switches to the next LED if the button is pressed. The first LED 

should follow the last one. 

 Write code that displays incremented numbers from 0 to 9 in a cyclic manner upon 

each pressing of a button. 

 Write a program that detects the first button pressing for a longer time and halves the 

detection time for additional detections if the button is continuously pressed. 

 Change the code to reduce detection period if the button is continuously pressed. 

 Write code to read which key is pressed on a 3 × 4 keyboard matrix. Flash an LED as 

many times as the number corresponding to the key pressed. 

 Write code to display the number of button pressings on an LCD display. 

 Connect a unipolar stepper motor to four pins of the microcontroller. Write a program 

that energises only one coil at a time and switches to the next coil ten times per second. 

 Modify the program to switch between rotating clockwise and anticlockwise 

directions when another button is pressed. 
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5 Timers and counters 

The basis of the timers integrated into microcontrollers is a binary counter. It realises a timer 

function if it is driven by an oscillator. It can be used to count events corresponding to falling 

or rising edges of an external logic signal. 

5.1  Timer 0 and Timer 1 

C8051Fxxx processors contain enhanced versions of the standard 16-bit 8051 timers Timer 0 

and Timer 1 [6]. Their clock input can be configured as shown in Figure 5.1. SYSCLK is the 

system clock; EXT OSC represents an external oscillator. In timer mode, the TCLK signal 

driving the timer clock input is derived from these sources, while in counter mode the T0 input 

is used. The TR0 SFR bit enables the timer and the /INT0 input can be used to gate the timer 

depending on the state of the IN0PL and GATE0 SFR bits. The timer/counter values can be 

accessed via the SFRs TH0 and TL0 as well as TH1 and TL1, representing the higher and lower 

order bytes of Timer 0 and Timer 1, respectively. If the timer overflows, a flag is set (TF0 for 

Timer 0 and TF1 for Timer 1) and an interrupt can be generated if enabled. 

 

Figure 5.1. Timer input clock configuring circuit. Labels in bold indicate external 

signals and configuration bits are in italic. 

Timer 0 and 1 have four modes of operation. In mode 0, they are operated as 13-bit timers; 

only the lower 5 bits of the lower order byte of the timers are used (see Figure 5.2).  

 

Figure 5.2. Timer 0 in mode 0 (13-bit timer) and in mode 1 (16-bit timer). Each 

falling edge on TCLK0 increments the timer. 

In mode 2, only the lower 8 bits are used for counting and the higher order byte is used as a 

starting value upon overflow. This is called auto reload mode and is useful for generating 

programmable periodic events. The block diagram of this mode is illustrated in Figure 5.3. 

SYSCLK/12

SYSCLK/4

SYSCLK/48

EXT OSC/8

SYSCLK

T0

/INT0

IN0PL

GATE0

XOR

OR
AND

AND
TR0

CLK0

TCLK0

TL0, 5 LSBs TH0TCLK0 TF0

TL0 TH0TCLK0 TF0

MODE 0

MODE 1



Timers and counters 

 

 

Figure 5.3. Timer 0 in auto reload mode. Upon overflow, the initial value is 

loaded to TL0 from TH0. 

The time that passes from the initial state (when the counter value TL0 is equal to TH0) to the 

overflow is  

 0TCLK)0256( tTHT  , (5.1) 

where tTCLK0 is the period of the input clock of the timer. 

The frequency of the periodic overflows can be given by 

 
0TH256

1
0TCLK


 ff , (5.2) 

where fTCLK0 is the frequency of the input clock of the timer 

If the initial value of the counter (TL0) is less than the reload value, an overflow must occur 

before generating the overflows with the desired rate. The mechanism of the auto reload mode 

is illustrated in Figure 5.4.  

 

 

Figure 5.4. Timer 0 operation in auto reload mode. 

Mode 3 is rarely used; here, the two 8-bit parts of Timer 0 are used as two 8-bit timers as shown 

in Figure 5.5. Timer 1 is inactive in this mode. 

TL0

TH0

TCLK0 TF0

0
1

255
252
253
254
255
252
253
254
255
252
253

0
t

TL0 TF0

0

0
1
1
1
1
1
1
0
0
1
1

CLR TF0



Timers and counters 

 

 

Figure 5.5. In mode 3, two 8-bit timers can be used. Labels in bold indicate 

external signals and configuration bits are in italic. 

5.2  Timer 2, Timer 3 and Timer 4 

C8051Fxxx processors have 2, 3 or 4 additional 16-bit timers with various features [6]. 

The timers of the C8051F410 can be operated as 16-bit auto reload timers or as dual 8-bit auto 

reload timers. 

 

Figure 5.6. Timers 2, 3 and 4 in 16-bit auto reload mode. The label in italic is 

used for the timer enable bit. 

Figure 5.6. shows the block diagram of the auto reload operation, while the operation itself is 

illustrated in Figure 5.7. 

 

Figure 5.7. Timer operation in 16-bit auto reload mode. 

SYSCLK/12

SYSCLK/4

SYSCLK/48

EXT OSC/8

SYSCLK

T0

/INT0

IN0PL

GATE0

XOR

OR
AND

AND
TR0

TH0 TF1

TL0 TF0

CLK0

TCLK0

SYSCLK/12

EXT OSC/8

SYSCLK

AND

TRn

TMRnL

TMRnRLL

TFnHTMRnH

TMRnRLH

TCLKn

TMR2RL
TMR2RL+1

65534

0
t

Nt

TMR2 TF2H ( interrupt)

0

0
0
1
1

0
0
1
1

65535
TMR2RL

TMR2RL+1

65534
65535

TMR2RL
TMR2RL+1

Software clears
TF2H

TMR2
=TMR2H*256
+TMR2L
TMR2RL
=TMR2RLH*256
+TMR2RLL

Nt

Hardware sets TF2H
generates interrupt

TMR2RL



Timers and counters 

 

Using Timer 2 the frequency of the periodic overflows is given by  

 
TMR2RLLTMR2RLH25665536

1

TMR2RL65536

1
2TCLK2TCLK





 fff ; (5.3) 

therefore, if the desired frequency is known, the value of the reload registers can be calculated: 

 

256modTMR2RLTMR2RLL

,
256

TMR2RL
TMR2RLH

,65536TMR2RL 2TCLK














f

f

 (5.4) 

The following example code illustrates the calculation of the reload value. The desired period 

is given in s units; the timer input clock must be entered in Hz units. 

/************************************************************************* 

steps = period/dt 

dt=1/timer clock 

steps = timer clock*period 

reload value = 65536-steps 

**************************************************************************/ 

 

unsigned long period;       // in µs 

unsigned long tmr_clk;      // timer clock in Hz 

unsigned short tmr_reload; // reload value 

 

tmr_clk = 24500000;                    // timer clock frequency is 24.5 MHz 

period = 100;                         // 100 µs 

tmr_reload = -period*tmr_clk/1000000L; // means 65536-period*tmrclk/1000000L 

Note that it is also possible to configure the timer as two 8-bit auto reload timers; see 

Figure 5.8. 

 

Figure 5.8. Timers 2, 3 and 4 in C8051F410 can be configured as two 8-bit auto 

reload timers. The label in italic is used for the timer enable bit. 

An enhanced timer is available in some C8051Fxxx processors, including, for example, the 

C8051F120 100-MHz microcontrollers. As illustrated in Figure 5.9, this timer can count up or 

down, and can be clocked by an external signal Tn. The external signal TnEX can be used to 

latch the counter value into the reload registers, which allows the accurate detection of the time 

instant of an event or a series of events. 
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Figure 5.9. Timers 2, 3 and 4 in C8051F120 can count up or down, toggle an 

output signal and capture the timer value. Labels in bold indicate external 

signals and italic is used for configuration bits. 

5.3 Timer applications 

Timers can be used in many applications. They are employed to generate periodic interrupts, 

to provide programmable clock frequency for serial communication ports and also to generate 

events at certain time instants and to measure the time elapsed between events. 

Some examples are given below. 

5.3.1  Delay generation 

Timers can be used to generate a desired amount of time delay. The time required to reach the 

overflow state from the initial value of Timer 0 (TH0, TL0) can be given by the following 

formula: 

    0TCLK0TL2560TH65536 tT  , (5.5) 

where tTCLK0 is the period of the input clock of the timer. The code example below implements 

a function that waits for a period equal to stepstSYSCLK. 

/************************************************************************* 

Waits for a specified number of Timer 0 steps 

**************************************************************************/ 

void Delay(unsigned short steps) 

{ 

 TMOD=(TMOD & 0xF0) | 0x01;  // 16-bit timer mode 

 CKCON=CKCON | 0x04;         // Timer 0 clock is SYSCLK 

 TH0=-steps >> 8;            // 65536-steps, higher-order byte 

 TL0=-steps;                 // 65536-steps, lower-order byte 

 TF0=0;                      // clear timer overflow flag 

 TR0=1;                      // run Timer 0 

 while (!TF0);               // wait for Timer 0 to overflow 

 TR0=0;                      // stop Timer 0 

} 

5.3.2 Generating periodic interrupts  

Periodic interrupt generation is a common application. Timer auto reload mode is one option. 

The following C8051F410 code is the C version of the code given in Chapter 3.2: 
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/************************************************************************* 

Timer 2 interrupt service routine 

**************************************************************************/ 

void Timer2_ISR(void) __interrupt INT_TIMER2 

{ 

 TF2H=0;     // clear interrupt pending flag 

 LED = !LED; // complement LED; flashing rate is half 

                // of the Timer 2 overlow rate 

} 

 

/************************************************************************* 

The main function 

**************************************************************************/ 

void main(void) 

{ 

 PCA0MD &= 0x40h; // switch watchdog off 

 PCA0MD  = 0x00h; // switch watchdog off 

 XBR1    = 0x40h; // enable the crossbar to allow input and output 

 TMR2RLL = 0xB2h; // set the Timer 2 reload register (low and high bytes) 

 TMR2RLH = 0xC1h; // to provide 1-Hz interrupt rate 

 TMR2L   = 0xB2h; // Timer 2 counter initial value 

 TMR2H   = 0xC1h; // is the same as the reload value 

 TMR2CN  = 0x04;  // start Timer 2 now 

 IE      = 0xA0;  // enable global interrupts and Timer 2 interrupt 

 while (1);       // infinite loop 

} 

Timer 0 and Timer 1 provide 8-bit auto reload mode; therefore, only higher frequencies can be 

generated. In the example below, the program sets the initial value upon overflow. Note that 

due to the latency time it is not as accurate as the hardware auto reload mode. 

TMOD=(TMOD & 0xF0) | 0x01; // 16-bit timer 

TR0=1;     // run timer 

IE=0x82;   // enable global & timer0 interrupts 

 

/************************************************************************* 

Timer 0 interrupt service routine 

**************************************************************************/ 

void Timer0_ISR(void) __interrupt INT_TIMER0  

{ 

 TR0=0;            // stop timer 

 TH0=-steps >> 8;  // initial value is 65536-steps (higher-order byte) 

 TL0=-steps;       // 65536-steps (lower-order byte) 

 TR0=1;            // restart timer 

 …                 // perform the required operation 

} 

5.3.3  Software extended counter  

The 16-bit counter can easily be extended by software. For example, if a 24-bit counter is 

needed, an 8-bit variable can be added to represent the most significant 8-bits while the 

hardware timer provides the least significant 16-bits. Upon overflow of the timer the variable 

is incremented as shown in Figure 5.10. 
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Figure 5.10. 24-bit timer operation emulated by software. 

 

/************************************************************************* 

Timer interrupt handler routine 

**************************************************************************/ 

void Timer_ISR(void) __interrupt TIMER_VECTOR 

{ 

 static unsigned char counter=0;     // static variable retains value 

 

 counter = (counter+1) % counter_max; // increment and implement overflow 

 if (!counter) Process();            // if counter returns to zero 

                                     // (overflows) 

} 

5.3.4  Pulse width measurement  

Timers can be used to measure event timing. Figure 5.11 shows the time diagram of a possible 

pulse width measurement. The /INT0 external signal is used to gate the timer: the timer counts 

while this signal is high. In order to set up properly, the code waits first for /INT0 to go low, 

then enables the timer. After this, the code should wait for the next falling edge of /INT0, which 

identifies the end of the pulse. Note that the /INT0 state or a falling edge can set the IE0 flag, 

which can be polled or used to generate an interrupt. /INT0 must be enabled using the 

crossbar.  

 

Figure 5.11. Time diagram of the pulse width measurement of the /INT0 signal. 
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TR0=0;        // stop timer 

TH0=TL0=0     // clear timer 

TMOD=0x09;    // T0: 16-bit gated timer mode 

IT0=0;        // set level-triggered /INT0 mode (IE0 is high if /INT0 is low) 

IE0=0;        // clear INT0 flag 

while (!IE0); // wait for input to go down 

IT0=1;        // set edge-triggered /INT0 mode to detect falling edge 

IE0=0;        // clear INT0 flag 

TR0=1;        // enable timer 

while (!IE0); // wait for end of pulse 

TR0=0;        // stop timer 

The result of the measurement is in the registers TH0 and TL0. 

Note that since part of the detection is done by software, the accuracy can be affected by 

accidental interrupts, which halt the main code for a while. 

5.3.5  Frequency measurement  

The time diagram of a possible frequency measurement algorithm can be seen in Figure 5.12. 

The timer is enabled for a given amount of time (for example 1 s) and the counter counts the 

external signal falling edges. Therefore, the frequency is the counter value divided by the 

running time.  

 

Figure 5.12. Time diagram of the frequency measurement. 

In the following example, Timer 1 is used to set TR0 high for a given amount of time, while 

Timer 0 counts the pulses. 

TCON=0;          // stop Timer 0 and Timer 1 

TMOD=0x15;       // Timer 0: 16-bit counter; Timer 1: timer 

TH0=0;           // initialise counter of Timer 0 (high byte) 

TL0=0;           // initialise counter of Timer 0 (low byte) 

TH1=-steps >> 8; // 65536-steps (high byte) 

TL1=-steps;      // 65536-steps (low byte) 

TF1=0;           // clear Timer 1 overflow flag 

TCON=0x50;       // run both timers (both TR0 and TR1 are set) 

while (!TF1);   // wait for Timer 1 overflow (Timer 0 counts during this time) 

TCON=0;          // stop both timers 

The result of the measurement is in the registers TH0 and TL0. 

Note that since part of the detection is done by software, the accuracy can be affected by 

accidental interrupts, which halt the main code for a while. 

5.3.6  Period measurement 

Period measurement means that the time of one or more periods is measured. If the period is 

short, it is better to measure the time of multiple periods. One timer can be used to count the 

Counting

T0

TR0
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periods; its initial value must be set to 65536 minus the number of periods to be counted. The 

other timer is driven by a clock source and runs while the first counter is counting. Therefore, 

the time of one period is the clock period of the second timer multiplied by the clock period 

and divided by the number of pulses counted. 

 

Figure 5.13. Time diagram of the period measurement. 

 

TCON=0;       // stop timers 

TMOD=0x15;    // T0: 16-bit counter; T1: timer dTCLK1 period 

TH1=0;        // timer1 initial value (high byte) 

TL1=0;        // timer1 initial value (low byte) 

TH0=-N>> 8;   // 65536-N 

TL0=-N;       // N events to TF0=1 

TF0=0;        // clear timer 0 flag 

TCON=0x50;    // run both timers 

while (!TF0); // wait for N events 

TCON=0;       // stop both timers 

The result of the measurement is in the registers TH1 and TL1. The period is: 

 
 

N

t
T TCLK11TL2561TH 
 , (5.6) 

Note that since part of the detection is done by software, the accuracy can be affected by 

accidental interrupts, which halt the main code for a while. 

5.4  Application guidelines 

 The timer input clock must be configured first. Choose a frequency value that allows 

the desired rate to be accurately set. If the clock frequency is too high, the overflow rate 

cannot be set low enough or longer time intervals cannot be measured. If it is too low, 

the accuracy of the timing can be low. 

 Verify the settings by calculating the timing using the timer SFR values. 

 Set the desired operating mode. 

 After proper setup, enable the timer. 
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 Enable the timer interrupt if needed. Do not forget to clear the interrupt pending flag 

in the service routine. 

 The timer interrupt must not be enabled if no service routine is defined. This is the case 

when the timer is used to generate a periodic signal for other communication or other 

peripherals (UART, PCA, etc.) 

 Keep in mind that using the timer for multiple purposes simultaneously needs special 

attention and is a potential source of problems. 

 Do not read 16-bit timer values during operation, since the high and low bytes cannot 

be read simultaneously and thus they may not correspond to the same timer value. 

5.5 Troubleshooting 

Problem: 

 The timer is not running or unexpected timing occurs. 

Possible reasons: 

 The timer is not enabled. 

 The timer is not configured in the proper mode. 

 The input clock is not configured properly. 

 Timer 0 and Timer 1 may be in gated mode and the gate signal may be inactive. 

 The SFR values are miscalculated or not properly written. 

Problem: 

 No timer interrupt occurs or the interrupt rate is not as expected. 

Possible reasons: 

 The timer is not enabled. 

 The associated interrupt is not enabled. 

 The interrupt flag is not cleared, so the interrupt is generated continuously. Most of the 

processor power is taken in this case. 

 Execution of other interrupt service routines can cause a delay of the timer interrupt. 

 The service routine may take longer than the time between two overflows; the overflow 

rate is too high. 

 The timer is used for multiple purposes simultaneously and the settings are different. 

Problem: 

 Unexpected frequency, period or pulse width of an external signal is experienced. 

Possible reasons: 

 The crossbar is not configured properly to connect the external signal to the timer. 

 The timer settings (like input clock or mode) are improperly set or miscalculated. 

 The resolution of the time measurement is too low; for example, short periods are 

measured by only a few timer increments. 

 The external signal is noisy; oscillations occur at transitions. 

 The software-dependent part of the measurement code is delayed by an unexpected 

interrupt. 
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5.6  Exercises 

 Write a function that waits for a specified number of milliseconds given by the 

argument of the function. Use Timer 0 to implement the function. 

 Write a program that flashes an LED at 1 Hz. Use a button to set the flashing rate: on 

each pressing of the button, the rate should be doubled, but at 16 Hz the pressing of 

the button should reset the rate to 1 Hz. 

 Write a program that emulates a pulse width modulated signal. An LED should be 

flashed at a rate of 100 Hz and the on time should be set by button pressings from 1 ms 

to 9 ms in a cyclic manner. 

 Write a program that generates an output signal of 100 Hz using Timer 2. Measure 

the period of this signal using the other timers. 

 Connect a 555 timer circuit based 100 Hz oscillator output to the microcontroller. 

Measure the frequency of this signal using timers. 

 Measure the pulse width of button pressings using timers. 
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6 Programmable counter array 

The programmable counter array (PCA) contains a simple 16-bit free-running counter, which 

is driven by a periodic clock signal [6, 17]. There are several (from 3 to 6) independent 

compare/capture registers, which can be used to latch the counter value upon an event (change 

in a digital input signal). These registers can also hold data to be compared with the counter 

value and to generate an event when a match occurs. The corresponding flag (CCFn) is set 

upon these events, while the CF flag is set when the main counter overflows. All of these events 

can generate interrupts; however, the same interrupt routine is called, so the flags must be 

checked to identify the source of the interrupt. The structure of the PCA is shown in Figure 6.1. 

  

Figure 6.1. The main counter (PCA0L and PCA0H) can be driven from different 

clock sources. There are up to six compare/capture registers (PCA0CPLn and 

PCA0CPHn). The label in bold indicates an external signal. 

Depending on the operating mode, several useful functions can be implemented. 

In the following, only one of the six compare/capture registers is shown, and the names of the 

corresponding SFRs are appended with an n that identifies one of the six possible registers. 

Note that all compare/capture registers can be associated with an external input/output signal 

named CEXn (n = 0, 1, …) via the crossbar. The function of this signal is determined by the 

operation mode. 

6.1 Edge-triggered capture mode  

The edge-triggered capture mode uses an external signal CEXn to latch the value of the 

counter into one of the capture registers (PCA0CPLn or PCA0CPHn). This can happen on 

rising or falling transitions, or on both. The CCFn flag is set and an interrupt can be 

generated, if enabled. Figure 6.2 shows the block diagram of the edge-triggered capture 

mode. 
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Figure 6.2. Edge-triggered capture mode. The label in bold indicates an external 

signal. 

 

Figure 6.3. Time diagram of the edge-triggered capture mode. 

 

6.2 Software timer and high-speed output mode 

The PCA0CPLn and PCA0CPLh registers can be compared to the actual value of the main 

counter, setting the CCFn flag and generating an interrupt if a match occurs. The software 

timer and the high-speed output mode are practically the same, except that in the output mode 

the CEXn output is toggled upon each match event. Figure 6.4 shows the block diagram of 

these modes. Note that a write to PCA0CPLn disables the comparator, while writing 

PCA0CPHn enables it. This ensures that both the low and the high byte of the 

capture/compare register are valid when the comparator is enabled. The programmer must 

take it into account, so PCA0CPLn must be written first and then should the value of 

PCA0CPHn be set. Changing only PCA0CPLn stops the operation. 

 

Figure 6.4. Software timer and high-speed output mode. The label in bold 

indicates an external signal. 
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Figure 6.5. Time diagram of the software timer and of the high-speed output 

mode. 

 

6.3 Frequency output mode 

Frequency output mode (Figure 6.6) can be used to output a periodic square wave. Only the 8 

least significant bits of the counter are compared to PCA0CPLn and upon a match the output 

is toggled and the PCA0CPLn is incremented by the value stored in PCA0CPHn. Of course, 

PCA0CPLn will overflow at a certain time but it does not affect the operation. 

 

Figure 6.6. Frequency output mode. 
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Figure 6.7 shows a sample time diagram when the output frequency is fPCA/6. 
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Figure 6.7. Time diagram of the frequency output mode when the frequency is 

1/6 of the PCA input frequency. 

6.4  8-bit and 16-bit PWM modes 

One of the most useful modes is the generation of pulse width modulated (PWM) signals. Since 

a single digital signal can only have two different values, its applications in control are strictly 

limited. Using PWM signals, this limitation can be significantly reduced. 

A PWM signal is a periodic pulse train whose pulse width can be varied. If the frequency of this 

signal is high enough, it can be used as a fine control of slow systems. Typical applications 

include motor control, temperature control and light control, where the driven system cannot 

follow fast changes and thus only the average of the signal will be effective. This average is 

proportional to the duty cycle of the PWM signal. 

The PCA module supports 8- and 16-bit PWM modes. In the 8-bit mode, only the 8 least 

significant bits of the counter are used. When the value is equal to PCA0CPLn, the output 

signal is set, and at the overflow of PCA0L, it will be reset; see Figure 6.8. This way, the signal 

is low for PCA0CPLn steps and high for 256-PCA0CPLn steps. This can be changed by writing 

a new value to PCA0CPHn, which will take effect only upon the overflow of PCA0L, ensuring 

reliable changes. The frequency of the PWM signal is fPCA/256. 

 

Figure 6.8. 8-bit PWM mode. The label in bold indicates an external signal. 
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Figure 6.9. Time diagram of the 8-bit PWM mode. 

The 16-bit PWM operation is similar, but here all 16 bits of the counter as well as compare 

registers are used; see Figure 6.10 and Figure 6.11. 

 

Figure 6.10. 16-bit PWM mode. The label in bold indicates an external signal. 

 

 

Figure 6.11. Time diagram of the 16-bit PWM mode. 

6.4.1  PWM DAC 

The PWM signal can also be used to generate analogue voltages if the signal is filtered with a 

low-pass filter. This way, a digital-to-analogue converter can be emulated. A simple first-order 

filtering is shown in Figure 6.12. The ripple of the signal depends on the filter and on the 

frequency of the PWN signal. If the ripple allowed at the PWM frequency is given, the filter 

corner frequency 1/(2RC) can be determined. 
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Figure 6.12. The PWM signal can be low-pass filtered to approximate a DC 

voltage with a low-ripple signal. 

A simple estimation can be made assuming a 50% duty cycle, which is the worst case. If V is 

small, the capacitor charging current is nearly constant; therefore, V can be approximated by 

the following formula 
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therefore, choosing 
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will keep the ripple under the desired limit. 

Note that the precision of the output signal is limited by the precision of the VIO supply voltage. 

The supply voltage tolerance is not strict; 10% is typical. If higher accuracy is required, external 

circuitry should be used.  

6.5 Application guidelines 

 The input clock must be configured first. Choose a frequency value that allows the 

desired timing to be accurately set. If the clock frequency is too high, longer timing can 

be impossible. If it is too low, the accuracy of the timing can be low. 

 Verify the settings by calculating the timing using the PCA SFR values. 

 Configure the compare/capture modules in the required mode. 

 After proper setup, enable the PCA counter and the modules used. 

 Enable the PCA interrupt if needed. Do not forget to clear the interrupt pending flag in 

the service routine. Note that all modules generate the same interrupt; therefore, all 

possible requests must be handled within a single service routine and the 

corresponding pending flag must be cleared. 

 Keep in mind that if the watchdog timer module is used, the PCA input clock cannot be 

changed while the watchdog timer is enabled. 

 The 16-bit PCA counter value can be safely read by reading the lower-order byte 

(PCA0L) first. 

 Always write the lower-order byte of the compare/capture registers (PCA0CPLn) first. 

Even if the higher-order byte is not changed, it must be written to re-enable the PCA 

comparator, which is disabled by writing to the lower-order byte. If only the higher-

order byte needs updating, writing to the lower-order byte is not required. 
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6.6  Troubleshooting 

Problem: 

 The PCA is not running or unexpected timing occurs. 

Possible reasons: 

 The PCA is not enabled. 

 The PCA modules are not configured in the proper mode. 

 The input clock is not configured properly. 

 The input clock source is missing – for example, the external signal is missing or Timer 

0 overflows do not occur. 

 The SRF values are miscalculated or not properly written. 

 The higher-order byte of the capture/compare register is not written, so the PCA 

comparator can permanently remain in a disabled state. 

Problem: 

 No PCA interrupt occurs or the interrupt rate is not as expected. 

Possible reasons: 

 The PCA or the modules are not enabled. 

 The associated interrupt is not enabled. 

 The interrupt flag is not cleared; therefore, the interrupt is generated continuously. 

 Execution of other interrupt service routines can cause delay of the timer interrupt. 

 The service routine may take longer than the time between two PCA interrupt requests; 

the interrupt request rate is too high. 

Problem: 

 Unexpected frequency, period or pulse width of an external signal is experienced. 

Possible reasons: 

 The crossbar is not configured properly to connect the external signal to the PCA. 

 The PCA settings (such as input clock or mode) are improperly set or miscalculated. 

 The resolution of the time measurement is too low; for example, short periods are 

measured by only a few timer increments. 

 The external signal is noisy, and oscillations occur at transitions. 

 The PCA interrupt requests are generated faster than the interrupt service routine can 

handle them. 

6.7 Exercises 

 Write code that can measure the width of a button pressing pulse using the edge-

triggered capture mode. Solve the problem both with polling and with interrupt 

techniques  

 Write code that generates a signal that is toggled with the following timing: 1 ms, 

2 ms, 4 ms and 8 ms, and repeats this sequence infinitely. Use the high-speed output 

mode to implement the code. Check the result on an oscilloscope. 
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 Write a program that drives an LED with a PWM signal at a rate of 1000 Hz, with 

the pulse width set by button pressings from 10% to 90% by steps of 10% in a cyclic 

manner. 

 Generate a 1-kHz PWM signal and pass it through a simple RC filter that reduces the 

ripple to 1%. Check the result with an oscilloscope. 
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7 Serial communication peripherals 

Today’s electronic equipment is optimised for small size, low cost and reliability. Board space 

must be kept small and the wiring of the printed circuit board must be simple. Integrated 

circuits can be smaller if their pin count is small. Reliability is also improved with a lower 

number of contacts and a simpler design. 

Since microcontrollers often communicate with other components, the above-mentioned 

requirements can be supported by serial interfaces that use only a few pins and wires to connect 

the devices. Microcontrollers provide several kinds of serial ports where the idea is to exchange 

bytes as bit streams, with one bit transferred at a time. 

7.1 UART 

One of the most popular serial interfaces is the so-called universal asynchronous 

receiver/transmitter (UART), developed with the aim of communicating with distant devices, 

using circuits that are typically on a separated printed circuit board [6]. Depending on the 

distance, a longer cable may be used to connect the devices, in which case a driver/receiver – 

aka transceiver – circuit is needed (for example, RS232 and RS485 transceivers). The data are 

sent over a single wire in one direction. The communicating devices have a transmit output 

(TX) and a receiver input (RX) pin. These must be cross-connected, i.e. the TX pin of one device 

should be connected to the RX pin of the other and vice versa. The interface is symmetrical: 

any side can send data asynchronously. If the TX pin can be disabled, even a single wire can be 

used for bidirectional data transfer. Sometimes one-directional data transfer is sufficient. 

Figure 7.1 summarises the connection possibilities. 

 

Figure 7.1. Typical UART interconnections. 
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Figure 7.2. RS-232 transceivers allow the use of longer cables between the 

communicating devices. 

The idle state of the signal is logic high; the transmission is started by setting the signal low for 

a given amount of time t. After sending this ‘start bit’, the data bits will be sent and each bit 

will be placed on the wire for time t. The transfer is terminated by a so-called stop bit, which 

is logic high for a duration of at least t. The transmitter and receiver must have the same 

timing; they detect the start bit and then sample the signal to determine the value of the bits. 

Sometimes a ninth bit is sent, which can be a parity bit or can be used in multiprocessor 

communication to mark the byte as a control or address word rather than data. Figure 7.3 

shows the time diagram of the data transfer. 

 

Figure 7.3. Time diagram of the data transfer. 

The 1/t bit rate (called the baud rate) is generated by timer overflows in two different ways 

depending on which processor is used: 

 baud rate = timer overflow rate / 16, (for example, C8051F120 UART 0) 

or 

 baud rate = Timer 1 overflow rate / 2 (for example, C8051F410 or C8051F120 UART 1). 

Using Timer 1 in auto reload mode, the timer reload value can be determined in the following 

way: 

 TH1=256-TCLK0/(16baud rate) (for example, C8051F120 UART 0), 
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 TH1=256-TCLK0/(2baud rate) (for example, C8051F410 or C8051F120 UART1). 

If one of Timers 2–4 is used, the 16-bit reload value is  

 TMRRL=65536- TCLK/(16baud rate). 

The timers must be configured in auto reload mode and must be enabled. The associated timer 

interrupts are not enabled. 

Note that the transmitter and receiver baud rate cannot be exactly the same since they are 

derived from different oscillators. Figure 7.4 shows a time diagram example of a 3% mismatch. 

 

Figure 7.4. Time diagram of data transfer with 3% baud rate tolerance. The red 

bits are not sampled properly. 

Depending on the signal transition time, the allowed tolerance is different. A higher baud rate 

or a longer transition time needs more strict matching [18]. It is strongly recommended to 

configure outputs as push-pull to keep transition times as short as possible. 

 

Figure 7.5. Depending on the rise and fall time of the signals, the valid state can 

be longer, which allows a less strict tolerance of the baud rate. 

The following C8051F410 code examples illustrate simple polling-mode UART 

communication. 

/************************************************************************* 

UART initialisation function 

**************************************************************************/ 

void UART_Init() 

{ 

 SCON0 = 0x10; // 8-bit, variable baud mode 

 TI=1;         // assume empty output buffer! 

} 

/************************************************************************* 

UART input function, polling mode 

**************************************************************************/ 

unsigned char UART_In(void) 
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 while (!RI); // wait for a byte 

 RI=0;        // clear UART receive flag 

 return SBUF; // return the byte 

} 

/************************************************************************* 

UART output function, polling mode 

**************************************************************************/ 

void UART_Out(char a) 

{ 

 while (!TI); // wait for end of previous transmission  

 TI=0;        // clear UART transmit flag 

 SBUF=a;      // transmit a byte, do not wait for end 

              // this will also trigger the transmission process 

} 

The next example shows the use of ring buffers to transmit and receive in interrupt mode.  

#define BUFFERSIZE 8 

 

// declare ring buffers for input and output queue 

volatile unsigned char tx_buffer[BUFFERSIZE]; 

volatile unsigned char rx_buffer[BUFFERSIZE]; 

 

// TX buffer read and RX buffer write pointers 

// used in the interrupt routine 

volatile unsigned char tx_read_ptr=0, rx_write_ptr=0; 

 

// TX buffer write and RX buffer read pointers 

unsigned char tx_write_ptr=0, rx_read_ptr=0; 

 

// Number of data available in the ring buffers 

volatile unsigned char tx_number_of_data=0; 

volatile unsigned char rx_number_of_data=0; 

 

/************************************************************************* 

UART interrupt routine 

**************************************************************************/ 

void UARTInterrupt(void) __interrupt UART_VECTOR 

{ 

 if (RI)   // if byte has been received 

 { 

  RI=0; // clear UART receive flag 

  if (rx_number_of_data < BUFFERSIZE) // does it fit in the buffer 

  { 

   rx_buffer[rx_write_ptr]=SBUF;   // save the byte into the buffer 

   rx_write_ptr = (rx_write_ptr+1) % BUFFERSIZE; // ring buffer 

indexing 

   rx_number_of_data++; // increment number of received bytes 

  } 

 } 

 if (TI)   // if byte has been transmitted 

 { 

  TI=0; // clear UART transmit flag 

  if (tx_number_of_data) // if there are still bytes to be sent 

  { 

   // this will also trigger the transmission process 

   SBUF=tx_buffer[tx_read_ptr]; // send the byte 

   tx_read_ptr = (tx_read_ptr+1) % BUFFERSIZE; // ring buffer indexing 

   tx_number_of_data--; // decrement the number of bytes in the queue 

  } 
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 } 

} 

 

/************************************************************************* 

UART input function, interrupt mode 

**************************************************************************/ 

unsigned char UART_In(unsigned char *c) 

{ 

 if (rx_number_of_data) // if bytes are available 

 { 

  rx_number_of_data--;  // decrement the number of available bytes 

  *c=rx_buffer[rx_read_ptr]; // read a byte from the buffer and return it 

  rx_read_ptr = (rx_read_ptr+1) % BUFFERSIZE; // ring buffer indexing 

  return 0; // return 0 if successful 

 } 

 return 1; // no byte could be read from the buffer 

} 

 

/************************************************************************* 

UART output function, interrupt mode 

**************************************************************************/ 

unsigned char UART_Out(unsigned char c) 

{ 

 if (tx_number_of_data < BUFFERSIZE) // is there space in the transmit queue  

 { 

  tx_number_of_data++;  // increment number of bytes in the transmit queue 

  tx_buffer[tx_write_ptr]=c; // put the byte in the transmit queue 

  tx_write_ptr = (tx_write_ptr+1) % BUFFERSIZE; // ring buffer indexing 

  return 0; // return 0 if successful 

 

 } 

 return 1; // no byte could be placed into the transmit queue 

} 

7.1.1 Application guidelines 

 UART must be enabled on the crossbar and the TX output must be configured as push-

pull. 

 The baud rate should be set by configuring the associated timer overflow rate. The 

maximum baud rate is SYSCLK/16; however, for transmission, the baud rate can be 

SYSCLK/2 if the baud rate is equal to the timer overflow rate divided by 2. 

 The timer must be enabled but the timer interrupt must not. 

 The UART reception must be enabled. 

 Either polling or interrupt mode can be used but the two modes should not be used 

simultaneously. 

 If interrupt mode is used, the UART interrupt must be enabled. The interrupt pending 

flag must be cleared in the service routine. Note that both transmit and receive 

interrupts invoke the same service routine, so both events should be handled. 

 The UART has a single-byte input buffer; therefore, the input data will be overwritten 

by the next incoming byte of data if the buffer has not been read by the processor in 

time. 

 In order to avoid data loss, some kind of handshaking can be implemented. For 

example, a received byte can be sent back to confirm reception. 
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7.1.2 Troubleshooting 

Problem: 

 The UART does not seem to send or receive data. 

Possible reasons: 

 The UART is not enabled on the crossbar or the crossbar is not enabled. 

 The UART reception is not enabled. 

 The UART baud rate timer is not enabled. 

 The baud rate time is not configured properly. 

 Broken or short-circuited wires or links between the communicating devices. 

Problem: 

 The data sent or received do not seem to be valid. 

Possible reasons: 

 The baud rates of the communicating devices do not match (due to improper settings 

or the limited accuracy of the internal oscillator, etc.). 

 The baud rate is too high (higher than SYSCLK/16). 

 The baud rate timer is used for another purpose and has been overwritten accidentally. 

 The TX output signal is not configured as push-pull. 

Problem: 

 Some bytes are missing during data transfer. 

Possible reasons: 

 The receive buffer is not read in time by the processor before new data are received. 

 The data transfer is too fast. 

7.2 SPI 

Serial peripheral interface (SPI) is normally used to connect integrated circuits – sensors, 

ADCs, DACs, other microcontrollers, etc. – on the same board in a master-slave fashion [6]. 

SPI uses one wire for outgoing data (master out – slave in, MOSI) and another for incoming 

data (master in – slave out, MISO). A third wire (serial clock, SCK) driven by the master 

synchronises the transfer by providing a clock signal that changes when a bit of the data is 

available. Typically, the data are shifted out on one edge and can be read on the following 

opposite transition; the polarity can be chosen. An optional active low fourth signal (often 

called negated slave select, NSS) can be used to select the slave device, which ignores all 

communication signals if this line is inactive. This is useful to provide a safe frame (accidental 

pulses on the SCK line can corrupt data transmission) or to use multiple slave devices on the 

same bus. 
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Figure 7.6. SPI master and slave connections. 

The time diagram of a 3-wire transaction can be seen in Figure 7.7, while Figure 7.8 illustrates 

the use of the NSS signal. Note that there is no separate read operation; during a read the MOSI 

wire is driven. The slave device typically ignores this byte, but the datasheet must be consulted 

to ensure proper operation.  

The SPI clock rate can be expressed as: 

 
 1SPI0CKR2

SYSCLK
SCK


f , (7.1) 

where SPI0CKR is an SFR that can be given by the following formula: 

 1
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f

. (7.2) 
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Figure 7.7. Time diagram of an SPI transaction. The clock polarity and phase 

can be programmed. 

 

 

Figure 7.8. Time diagram of a 4-wire SPI transaction. 

The following is a polling-mode SPI example code. 

/************************************************************************* 

SPI output function, polling mode 

**************************************************************************/ 

void SPIOut(unsigned char c) 

{ 

 SELECT  = 0;   // activate the select signal (negative logic)  

 SPIF    = 0;   // clear the end of transmission flag 

 SPI0DAT = c;   // place the byte into the transmit register 

                // this will also trigger the transmission process 

 while (!SPIF); // wait until the end of transmission 

 SELECT  = 1;   // deactivate the select signal (negative logic) 

} 

 

/************************************************************************* 

SPI input function, polling mode 

POL=1

PHA=0

POL=0
SCK

B7 B6 B5 B4 B3 B2 B1 B0MOSI

B7 B6 B5 B4 B3 B2 B1 B0MISO

B7 B6 B5 B4 B3 B2 B1 B0MOSI

B7 B6 B5 B4 B3 B2 B1 B0MISO

PHA=1

POL=1

PHA=0

POL=0
SCK

B7 B6 B5 B4 B3 B2 B1 B0MOSI

B7 B6 B5 B4 B3 B2 B1 B0MISO

NSS



Serial communication peripherals 

 

**************************************************************************/ 

unsigned char SPIIn(void) 

{ 

 SELECT  = 0;    // activate the select signal (negative logic)  

 SPIF    = 0;    // clear the end of transmission flag 

 SPI0DAT = 0;    // dummy write starts SPI clocking and therefore reception 

 while (!SPIF);  // wait until the end of reception (8 bits) 

 SELECT  = 1;    // deactivate the select signal (negative logic) 

 return SPI0DAT; // return the received byte 

} 

 

7.2.1 Application guidelines 

 The SPI must be enabled on the crossbar and the outputs (MOSI and SCK in master 

mode, MISO in slave mode, and the select signal if applicable) must be configured as 

push-pull. 

 The SCK clock rate should be set by setting the dedicated system clock divider value 

SPI0CKR. The maximum clock rate in master mode is the SYSCLK/2 or 12.5 MHz, 

whichever is lower; in slave mode, it must be less than SYSCLK/10. 

 All parameters of the SPI port – clock phase, polarity, 3- or 4-wire mode and master or 

slave mode – must be set according to the communication requirements. 

 Use either polling or interrupt mode, but not the two modes simultaneously. 

 If interrupt mode is used, the SPI interrupt must be enabled. The interrupt pending 

flag must be cleared in the service routine. Note that several SPI events are handled by 

the same service routine, so care should be taken to handle interrupts from all possible 

sources in the routine. 

 The SPI has a single-byte input buffer; therefore, the input data will be overwritten in 

slave mode by the next byte of incoming data if the buffer has not been read by the 

processor in time. 

7.2.2 Troubleshooting 

Problem: 

 The SPI does not seem to send or receive data. 

Possible reasons: 

 The SPI is not enabled on the crossbar or the crossbar is not enabled. 

 The SPI is not configured properly. 

 The select signal is used but inactive. 

 Broken or short circuited wires or links between the communicating devices. 

Problem: 

 The data received or sent do not seem to be valid. 

Possible reasons: 

 The setup (clock phase, polarity, etc.) of the communicating devices does not match  

 The clock rate is too high (higher than 12.5 MHZ or SYSCLK/10 in slave mode). 

 The output signals are not configured as push-pull. 

 The interface is not initialised properly; an accidental transaction has not finished. 
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7.3 SMBus 

System management bus (SMBus) is a two-wire master-slave interface to connect multiple 

masters (microcontrollers) and multiple slaves (digital output sensors, ADCs, DACs, flash 

memory, etc.) on the same bus [6]. It is practically compatible with the I2C (Inter-integrated 

circuit) bus; a few minor differences include timeout handling, clock speed and line driving 

specifications. The communicating chips are typically found on the same printed circuit board 

or at least in the same equipment. The bus is not designed to use long wires (more than a few 

tens of centimetres). 

One wire carries the data in both directions (serial data, SDA) and another (serial clock, SCL) 

is supplied by a master and synchronises the communication devices by clock pulses indicating 

valid bits on the bus. 

 

Figure 7.9. Connecting devices to the two-wire SMBus. 

The SMBus has open-drain output drivers and needs external pull-up resistors for proper 

operation. Higher value resistors (about 10 kΩ or greater) lower the power consumption, while 

smaller resistances (down to about 2 kΩ) provide higher speed. The open-drain structure only 

allows both the master and the slave to set the signal logic low (pull-down); the resistors ensure 

logic high when none of the devices pull the signal down. 

 

 

Figure 7.10. Block diagram of the SMBus peripheral of the microcontroller. 
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The bit rate can be set by Timer 0 and Timer 1 overflows and Timer 2 high or low byte overflows 

according to the following formula: 

 
3

RateOverflowTimer
SCL f . (7.3) 

The time diagram of a typical transaction can be seen in Figure 7.11. In the inactive state both 

SDA and SCL are high. Data exchange is initiated by a start condition, which is the master 

pulling the SDA low. Then the master sends 7 address bits to select a device and a direction bit. 

This bit is logic high if the master reads from the slave and is logic low otherwise. After this, 

the slave must pull the SDA line low to acknowledge (ACK) the request; otherwise, the 

transaction will fail. Depending on the direction, the master or the slave then puts data on the 

SDA line, while the master controls the timing by driving the SCL line. Each byte must be 

acknowledged. After the last byte has been sent, either the master or the slave can send a not-

acknowledge (NACK, release the SDA wire) to stop the data transfer. The transfer is ended by 

a stop condition: the master keeps SDA low while releasing the SCL to go high then releases 

the SDA line to let the external resistor to pull the line high. 

 

 

Figure 7.11. Time diagram of an SMBus transaction. 

The communication is more complicated than in the case of UART or SPI. Two examples in 

Figure 7.12 and 7.13 show read and write time diagrams and interrupt flag behaviour. It is 

recommended to handle the transfer in an interrupt routine; however, polling the interrupt bit 

(SI) can be easier to implement and understand in simple transfers. 
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Figure 7.12. SMBus write operation. 

 

 

Figure 7.13. SMBus read operation. 

A simple polling mode example code can be seen below. 

/************************************************************************* 

SMBus/I2C output function, polling mode 

**************************************************************************/ 

void SMBus_Out(unsigned char address, unsigned char c) 

{ 

 STO = 0;                 // stop condition bit must be zero 

 STA = 1;                 // start transfer 

 SI = 0;                  // continue 

 while (!SI);             // wait for start to complete 

 STA = 0;                 // manually clear STA 

 SMB0DAT = address << 1;  // A6..A0 + write 
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 SI = 0;                  // continue 

 while (!SI);             // wait for completion 

 if (!ACK)                // if not acknowledged, stop 

 { 

  STO = 1;             // stop condition bit 

  SI = 0;              // generate stop condition 

  return; 

 } 

 SMB0DAT = c;             // put data into shift register 

 SI = 0;                  // continue 

 while (!SI);             // wait for completion 

 STO = 1;                 // stop condition bit 

 SI = 0;                  // generate stop condition 

} 

 

/************************************************************************* 

SMBus/I2C input function, polling mode 

**************************************************************************/ 

unsigned char SMBus_In(unsigned char address) 

{ 

 STO = 0;                 // stop condition bit must be zero 

 STA = 1;                 // start transfer 

 while (!SI);             // wait for start to complete 

 STA = 0;                 // manually clear STA 

 SMB0DAT = (address << 1) | 1;  // A6..A0 + read 

 SI = 0;                  // continue 

 while (!SI);             // wait for completion 

 if (!ACK)                // if not acknowledged, stop 

 { 

  STO = 1;             // stop condition bit 

  SI = 0;              // generate stop condition 

  return; 

 } 

 ACK = 0;                 // NACK, last byte 

 SI = 0;                  // continue 

 while (!SI);             // wait for completion 

 STO = 1;                 // stop condition bit 

 SI = 0;                  // generate stop condition 

 return SMB0DAT; 

} 

7.3.1  Application guidelines 

 The SMBus must be enabled on the crossbar and the associated two pins must be 

configured as open-drain. 

 The SMBus data rate should be set by configuring the associated timer overflow rate. 

The maximum clock rate is SYSCLK/20. In most cases, rates close to the standard 

100 kbit/s are used  

 Master or slave mode can be selected. 

 The associated timer must be enabled but the timer interrupt must not. 

 Use either polling or interrupt mode, but not the two modes simultaneously. 

 If interrupt mode is used, the SMBus interrupt must be enabled. The interrupt pending 

flag must be cleared in the service routine. Note that several SMBus events are handled 

by the same service routine, so care should be taken to handle interrupts from all 

possible sources in the routine. 
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 External pull-up resistors must be used. The typical range is from 2 kΩ to 10 kΩ. Lower 

values enable higher speed; higher values lower the power consumption. 

7.3.2  Troubleshooting 

Problem: 

 The SMBus does not send and receive data or the data sent or received do not seem to 

be valid. 

Possible reasons: 

 The SMBus is not enabled on the crossbar or the crossbar is not enabled. 

 The SMBus is not configured properly. 

 The SMBus data rate timer is not enabled. 

 The data rate is not configured properly. 

 The device address is invalid or no device is present on the bus. 

 Broken or short-circuited wires or links between the communicating devices.  

 The device communication protocol is not followed properly. 

 The data rate (clock frequency) is too high and the clock pulse width is too narrow. 

 The devices are too far from each other, and if they are connected with a cable, it may 

be too long. 

 

7.4 C standard I/O redirection 

The standard C input/output functions in the SDCC environment use the putchar and getchar 

basic functions [4]. Therefore, it is possible to redirect the input and output to use a serial port. 

The printf, scanf and other functions will use the port. A code example of using the UART port 

can be seen below. 

/************************************************************************* 

Redirected standard C output function 

**************************************************************************/ 

void putchar(char c) 

{ 

 UART_Out(c);       // UART, SPI, SMBus, etc. 

} 

 

/************************************************************************* 

Redirected standard C input function 

**************************************************************************/ 

char getchar(void) 

{ 

 return UART_In(c); // UART, SPI, SMBus, etc. 

} 

 

… 

printf("x=%d",x);     // example write operation 
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7.5 Exercises 

 Write code that sends back every received byte over the UART. The baud rate should 

be 9600 bit/s; use a personal computer connected to the UART via a USB-UART 

converter to the microcontroller board. 

 Upgrade the UART example code to use the RTS and CTS handshake lines. 

 Connect the MCP4141 digital potentiometer via the SPI port to the microcontroller. 

Write code to set the potentiometer value. Check the result with a digital multimeter. 

 Connect the SST25VF020B 2-Mbit flash memory via the SPI port to the 

microcontroller. Write code to fill the first 256 locations with the location index and 

read back the data. Measure the SPI signals with an oscilloscope. 

 Read the temperature value using an LM75 sensor via the SMBus interface. Display 

the value on the two 7-segment displays in degrees. Measure the SMBus signals with 

an oscilloscope. 
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8 Analogue peripherals 

Modern microcontrollers have several built-in analogue peripherals – comparators, ADCs, 

DACs and voltage references – to support very compact real-world signal processing. Some 

sensors can be connected even without additional analogue circuitry. 

In this section, the analogue peripherals of the C8051F410 microcontroller will be detailed [6]. 

8.1  Comparators 

Comparators are the simplest digitising components. They have a single logic output that is 

logic high if the voltage on the positive input is greater than the voltage connected to the 

negative input. Some hysteresis turns the comparator into a Schmitt trigger, making it less 

sensitive to the noise on slowly changing signals, which can cause oscillations on the output 

when the signal is close to the switching threshold. 

  

Figure 8.1. Comparator and Schmitt trigger (comparator with hysteresis) 

waveforms. 

Note that comparators have some delay that varies from device to device and may also depend 

on the settings. 

 

Figure 8.2. Comparator delay. 

Comparators in C8051F410 processors have analogue multiplexers at their inputs so the 

signals can be chosen during program execution. The corresponding port pins must be 

configured as analogue input using the crossbar. The output of the comparators can be polled, 

used to generate an interrupt or connected to the pins of the microcontroller via the crossbar. 

In the latter case, the output can be either synchronised to the internal system clock or left as 

is (analogue mode). 
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Figure 8.3. C8051F410 comparator circuit. 

Comparators are useful for detecting levels of signals in applications such as heating control. 

They can be applied to convert a sinusoidal signal to a logic signal in order to measure its 

period; this way, the output of voltage-to-frequency converters can be digitised. They can also 

make the inputs compatible with different logic levels. 

The comparator is useful for implementing a certain kind of analogue-to-digital converter. 

Figure 8.4 shows how it can be used to digitise the time constant RC of a resistor-capacitor 

circuit. When the push-pull output port bit is switched to logic high, the capacitor will be 

charged through R and the positive input is fixed at a fraction of the driving voltage. The time 

t needed to charge the capacitor to reach this voltage can be measured by a timer. This time 

can be obtained from the following derivation: 
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The logic high voltage level is not accurate, but the time does not depend on it, so the accuracy 

is not degraded. There are several resistive and capacitive sensors whose signals can be 

digitised using this method. Note that the input leakage current and the input capacitance can 

affect accuracy if the charging current is low or if the capacitor value C is low.  
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Figure 8.4. The comparator can be used to measure the time constant of the RC 

circuit, thus R or C can be measured if one of them is known. 

8.1.1  Application guidelines 

 The comparator input pins must be associated with port pins using the input 

multiplexer. 

 The comparator input pins must be configured as analogue and must be skipped using 

the crossbar. 

 The comparator input pins must not be left floating. 

 The source impedance of the two input signals must be low and balanced to avoid an 

undesired voltage drop due to the input leakage current, and to reduce noise pickup. 

 The comparator raw analogue output or the output synchronised to the system clock 

can be connected to a port pin using the crossbar. 

 The comparator response time and power should be selected. 

 The hysteresis should be configured. Noisier or slower signals typically need higher 

hysteresis. 

 The input voltage range must be within the specifications; typically between ground 

and supply. 

 The comparator interrupt can be generated on falling edge, on rising edge or on both 

transitions. If used, it must be enabled and the interrupt pending flag must be cleared 

in the interrupt service routine. 

8.1.2  Troubleshooting 

Problem: 

 The comparator does not seem to detect the polarity of the voltage between its input 

terminals properly. 

Possible reasons: 

 The comparator is not enabled. 

 The input multiplexer is not configured to assign the desired signals. 

 The signals are out of the valid input range. 

 The signals never cross each other; for example, one of the inputs is at GND while the 

other is always positive. 

 The input signals are too fast; the polarity of the voltage between the input terminals is 

changing too quickly. 

 An input is floating  
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 The source impedances of the two input signals are highly different; therefore, the input 

leakage current causes an undesired voltage drop. 

Problem: 

 The comparator interrupt is not generated. 

Possible reasons: 

 The comparator is not configured properly, 

 The interrupt is not enabled or it is not configured properly. 

Problem: 

 The comparator output changes randomly or irregularly. 

Possible reasons: 

 The comparator is not configured properly. 

 One or both of the inputs are floating or the source impedance is too high. 

 The input signals are noisy or very slowly changing; the hysteresis is too small. 

8.2  Voltage reference 

Most of the analogue peripherals need a stable, clean and accurate voltage. Comparators may 

need accurate voltage levels to which they can relate their input signals. Analogue-to-digital 

converters compare the input voltage to a reference voltage and determine the ratio of these 

voltages. Digital-to-analogue converters output a current or voltage that is an integer multiple 

of a small quantity. Although some use the supply voltage as a reference, it is absolutely not 

recommended, since the value is not stable enough: it depends on loading, it can be rather 

noisy and its accuracy is very poor. One must always use a precise dedicated reference voltage. 

Note that the accuracy of the reference determines the accuracy of all circuits that use it. 

Mixed-signal microcontrollers have integrated voltage references but can use external 

references as well. Typically, the internal reference is not as accurate; some applications may 

need better performance. Typical parameters are the following. 

Absolute accuracy. Guaranteed minimum and maximum voltage limits. Sometimes the 

error is given as percentage of the nominal voltage. Internal references have accuracies of 1%-

2%, while external references can have accuracies below 0.1%.  

The C8051F410 value is 1.8%. 

Temperature coefficient. The reference voltage is somewhat temperature dependent. The 

value is given as ppm/K: parts-per-million change in the nominal voltage per degree. The value 

is typically around 30 ppm/K; for external references it can be below 3 ppm/K. 

The C8051F410 value is 35 ppm/K. 

Load regulation. The reference voltage depends slightly on the loading current. It can be 

given as voltage change per loading current or as ppm per loading current. A few ppm/A is 

typical. 

The C8051F410 value is 10 ppm/A. 

Power supply rejection. Changes in the value of supply voltage can cause small changes in 

the reference voltage. The smaller the change, the better the rejection. The ratio of the voltage 

reference change and the supply voltage change is given (mV/V or ppm/V). 
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The C8051F410 value is 2 mV/V. 

Maximum loading current. Voltage references can drive external resistor dividers and 

other circuitry. However, the loading current cannot exceed a certain value; otherwise, the 

specifications are not guaranteed.  

The C8051F410 value is 200 A. 

Turn-on time. The voltage reference can be turned on and off, which allows the use of an 

external reference and can help to optimise power management. Since the output voltage of 

the reference must be decoupled with capacitors (100 nF and 4.7 F-10 F), it takes a 

considerable amount of time – typically a few milliseconds – for the voltage to reach the final 

accurate value. It is a typical mistake to enable the reference and do an analogue-to-digital 

conversion without having waited for the reference settling time to pass. The error can be very 

large in this case. 

The C8051F410 value is about 7 ms using 100 nF and 4.7 F capacitors. 

Figure 8.5 shows typical reference connections. 

 

Figure 8.5. Both external and internal reference can be used. The decoupling 

capacitors must be placed as close as possible to the reference pin. 

8.2.1  Application guidelines 

 Decide whether to use internal or external reference. In both cases use decoupling 

capacitors. 

 If internal reference is used, it must be enabled and the internal reference buffer should 

also be enabled. 

 Do not overload the reference. It is a good practice to apply only loads well under the 

maximum (below 10%). Use an external operational amplifier buffer to provide higher 

current. 

 Consider the reference turn-on time. Use it only after the value is surely stabilised. 

 The reference port pin must be configured as analogue and must be skipped by the 

crossbar. 

8.2.2  Troubleshooting 

The troubleshooting for references is given in the following sections. 
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8.3 ADC 

The analogue-to-digital converter outputs a b-bit binary number d that depends on the input 

voltage as  

 







 5.02

ref

b

V

V
d , (8.5) 

where Vref is the voltage of the internal or external voltage reference [12]. The smallest voltage 

change that can be detected, Vref/2b, is called the voltage of the least significant bit (VLSB) or 

voltage resolution. There are also differential ADCs, which measure voltage difference between 

their inputs and output a 2s complement binary number. Negative voltages are not allowed, 

because they are out of the range of the supply voltage — microcontrollers do not have a 

negative supply. This means that external signal conditioning is needed if the signal is out of 

range, if it is too small or if it is not a low-impedance voltage. 

Figure 8.6 shows the block diagram of the 12-bit ADC integrated into the C8051F410 

microcontroller. This successive approximation register (SAR) ADC is a very common 

architecture. Note that the conversion takes several steps (the number of bits plus 1), so a start 

signal and a periodic clock (SAR clock) signal are needed for proper operation. 

The analogue multiplexer allows 27 different signals to be digitised. If the analogue signal 

(voltage) to be digitised is connected to a port pin, this pin must be configured as an analogue 

input using the crossbar and it must also be ‘skipped’, i.e. the crossbar must not assign any 

other peripherals to this pin. Note that the voltage reference pin (P1.2) must also be configured 

as an analogue input and skipped regardless of whether external or internal voltage reference 

is used. 

 

Figure 8.6. The A/D converter circuit of the C8051F410. 

The 12-bit result of the conversion can immediately go to the 16 bits of SFRs ADC0H and 

ADC0L in left- or right-justified format. It is also possible to accumulate 1, 4, 8 or 16 samples 

and transfer their sum to the ADC0H and the ADC0L. In this case, the data must be right-

justified, since the sum can take all 16 bits. A window comparator can set a flag or generate an 

interrupt depending on whether the result is in a specified range. 
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The conversion can be started in several ways, as shown in Figure 8.7. At the end of conversion 

the AD0INT flag is set and an interrupt can be generated. 

 

Figure 8.7. Start of conversion sources. 

It is important to note that before conversion, the input signal is sampled by a capacitor Cs, as 

shown in Figure 8.8.  

 

Figure 8.8. Simplified schematic of the ADC input.  

The capacitor must be charged to a voltage that is close enough to the input voltage. If the 

deviation is less than half of the voltage resolution ½ VLSB = Vref/213, the error thus introduced 

does not degrade the 12-bit resolution. Since the capacitor is charged through Rext and the 

internal resistance RMUX=5 kΩ, the sampling time must be at least 
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so at least a 540-ns signal tracking time is required. However, the datasheet specifies 1000 ns 

as minimum due to the uncertainty of the values 5 kΩ and 12 pF. In order to ensure reliable 

operation, it is best to keep a minimum of 1000 ns tracking time and add 200 ns for every kΩ 

of output impedance of the signal source: 
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t , (8.7) 

Even if a DC signal is measured, this minimum tracking (or sampling) time must be 

guaranteed, because the sampling capacitor is discharged during conversion. 

Note that the analogue input has a leakage current. It flows through Rext, therefore causes an 

error voltage. For higher impedances, an operational amplifier is recommended to provide 

low-impedance output. 

A more common connection can be seen in Figure 8.9, when an external capacitor is placed 

between the input and ground. This capacitor can remove high-frequency noise, charge the 

sampling capacitor quickly and isolate the signal source from the current transients caused by 

WRITE 1 TO AD0BUSY

TIMER 3 OVERFLOW

CNVSTR (P0.6)

TIMER 2 OVERFLOW

START CONVERSION

C8051F410

RMUX

Cs

12-bit A/D
converter

Rext

TRACK CONVERT

IL



Analogue peripherals 

 

the switched sampling capacitor. The latter is especially useful when the signal source is the 

output of an operational amplifier. Cext is typically chosen to be much greater than the sampling 

capacitance. For example, if it is 1000 times greater, it can charge the sampling capacitor to 

99.9% even without drawing current from the signal source. However, between conversions 

the external capacitor must be recharged to represent the input voltage with a specified 

accuracy. 

 

Figure 8.9. Signal source connected to the input via a series resistor (Rext) and a 

capacitor (Cext).  

In order to make it clearer, an example follows. Let us assume that the voltage of the source is 

Vin and the sampling frequency is fs. This means that in every conversion cycle the sampling 

capacitor drains a charge of VinCs, so the average current flowing to the input is the charge 

divided by the sampling period ts (which is equal to 1/fs): 
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This current flows through Rext, therefore causes an average voltage drop on it: 

 ;ssinext fCVRV   (8.9) 

therefore, the relative error can be estimated as 
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Thus at a given sample rate and relative error the Rext resistance is limited as 
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or for a given Rext value the sample rate must be limited as 

 
extsin
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 . (8.12) 

For example, if 0.1% error is allowed, then at a sample rate of 10 kHz Rext must be less than 

0.001/(1210-12104) Ω  8333 Ω. 

In summary: 

 when no external capacitor is used, the minimum tracking time is given by Equation 

8.7; 

 using an external capacitor much (about 1000 times) greater than the sampling 

capacitor, the tracking time can be kept at its minimum, but the sample rate is limited 

according to Equation 8.12. 
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According to the above the external resistor and capacitor can only be used as a simple anti-

aliasing filter if Equations 8.11 and 8.12 are satisfied. On the other hand, single pole filters do 

not reduce higher frequency components properly. If the signal contains significant 

components above fs/2, then an active anti-aliasing filter is preferred. A popular simple 

second-order low-pass filter [11] is shown in Figure 8.10. 

 

Figure 8.10. Sallen-Key second-order low-pass filter. Note that Rext and Cext are 

not parts of the filter. 

The transfer function of this filter can be given as: 
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where  is the angular frequency: =2f. 

The general formula of a second-order low pass filter can be written as: 
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The values of Q and 0 can be obtained from tables or by using filter design software, while the 

values of the resistors and capacitors can be determined. 

Higher-order filters with better high-frequency rejection can be realised by cascading several 

first- or second-order stages. Note that Rext and Cext are not parts of the filter: these components 

are needed to isolate the output of the operational amplifier from the transient load caused by 

the switched sampling capacitor. 

The C8051F410 microcontroller offers several tracking options that are illustrated in Figure 

8.11. 
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Figure 8.11. Time diagram of the different tracking modes. 

The safest mode is the dual tracking mode. The post-tracking mode can be used to save power, 

since the ADC is in an idle state between conversions. The pre-tracking mode can help to 

achieve the highest possible conversion rate, but one must be very careful, because a minimum 

tracking time is not guaranteed. Therefore, the use of this mode is not recommended. 

The following simple example code illustrates ADC handling in polling mode. 

P0MDIN  = 0xFE;  // P0.0 analogue input 

P1MDIN  = 0xFB;  // P1.2 analogue input (VREF) 

P0SKIP  = 0x01;  // skip P0.0 since it is an analogue input 

P1SKIP  = 0x04;  // skip P1.2 since it is an analogue input 

REF0CN  = 0x13;  // enable internal VREF 

ADC0CF  = 0x00;  // 191406-Hz ADC clock 

ADC0CN  = 0x80;  // enable ADC (conversion start: set AD0BUSY) 

 

unsigned int GetADC(unsigned char channel) 

{ 

 ADC0MX = channel; // set the multiplexer 

 ADC0CN = 0x80;    // enable the ADC 

 AD0INT=0;         // clear the end of conversion flag 

 AD0BUSY=1;        // start A/D conversion 

 while (!AD0INT);  // wait for end of conversion 

 AD0INT=0;         // clear the end of conversion flag 

 return (ADC0H << 8)+ADC0L; // return the result of the A/D conversion 

} 

A more efficient way is to read the converted data in an interrupt service routine. One possible 

implementation can be seen below. 

TMR2RLL = 0x60;  // high byte of reload register for a 100-Hz overflow rate 

TMR2RLH = 0xFF;  // low byte of reload register for a 100-Hz overflow rate 

TMR2CN  = 0x04;  // enable Timer 2 

P0MDIN  = 0xFE;  // P0.0 analogue input 

P1MDIN  = 0xFB;  // P1.2 analogue input (VREF) 

P0SKIP  = 0x01;  // skip P0.0 (input signal) 

P1SKIP  = 0x04;  // skip P1.2 (VREF) 

REF0CN  = 0x13;  // enable internal VREF 

ADC0CF  = 0x00;  // 191406-Hz ADC clock 

ADC0CN  = 0x83;  // enable ADC (conversion: TIMER 2) 

EIE1    = 0x08;  // enable ADC interrupt 

IE      = 0x80;  // enable interrupts 
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/************************************************************************* 

ADC interrupt service routine 

**************************************************************************/ 

void ADC_ISR(void) __interrupt ADC_VECTOR 

{ 

 AD0INT = 0; // clear the end of conversion flag 

 adc_data = (ADC0H << 8) | ADC0L; // save the result of the A/D conversion 

} 

8.3.1  Application guidelines 

 The ADC should be enabled for proper operation. 

 Select the event that starts the conversion: it can be the write signal to AD0BUSY SFR 

bit, the overflow of Timer 2 or Timer 3 or a rising edge of an external signal (CNVSTR, 

P0.6). If CNVSTR is used, the port pin must be skipped and configured as open-drain 

and 1 must be written to the corresponding port bit. 

 If a timer overflow is used to start a conversion periodically, the timer must be 

configured properly, and the timer interrupt should not be enabled. 

 Select the input signal by setting the multiplexer to the desired port pin. The pin must 

be configured as analogue and must be skipped using the crossbar. If multiple signals 

must be converted, then all associated pins must be configured as analogue and must 

be skipped. 

 Select the desired ADC SAR conversion clock. Choose the highest frequency available 

but not higher than the specified maximum (3 MHz for the C8051F410). The full 

conversion takes 13 cycles plus the tracking time. 

 If the system clock frequency is low or low-power operation is needed, the use of burst 

mode is recommended. In this mode, the ADC is operated from a high-speed clock 

independent of the system clock and is only out of idle state during conversion. 

 Select the proper tracking mode and post-tracking time. Dual tracking mode is 

preferred in most cases, since it guarantees a minimum tracking time. Post-tracking 

mode can be used when low-power operation is needed. 

 Consider the output impedance Rext of the signal, the external capacitance Cext, the 

internal resistance of the multiplexer and the value of the sampling capacitor to 

estimate the minimum tracking time and maximum sample rate using Equations 8.7 

and 8.11–8.12. The input leakage current flows through Rext, so it also causes an error. 

An operational amplifier can be used if the impedance is high. 

 The voltage reference pin (P1.2) must be configured as analogue and must be skipped 

using the crossbar. If the internal voltage reference is used, it must be enabled and the 

internal reference buffer must be enabled. The internal bias generator must also be 

enabled. 

 If the conversion is started by writing to the AD0BUSY bit, polling the AD0INT bit can 

be used to wait for the end of conversion. The AD0INT bit must be cleared before 

starting the conversion. In multichannel applications, the next channel must be 

selected just after the end of conversion. 

 If the conversion is started by a timer overflow or by an external signal (CNVSTR), then 

the end of conversion event should be handled by the ADC interrupt service routine. In 

the routine, the AD0INT flag must be cleared and in multichannel applications, the next 

channel must be selected at the beginning of the routine to allow the longest possible 

settling time. 
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 The 12-bit ADC can be left- or right-justified. Multiple (4, 8 or 16) samples can be 

accumulated and then their sum can be read. In this mode, the data must be right-

justified, because addition would cause an overflow otherwise. If 16 samples are 

accumulated, the result will be a 16-bit word. Note that averaging may reduce the noise 

in certain cases but does not improve accuracy. Taking 16 samples can reduce the noise 

to one fourth. 

8.3.2  Troubleshooting 

Problem: 

 No A/D conversions can be detected. 

Possible reasons: 

 The ADC is not enabled. 

 Interrupt mode is planned but the ADC interrupt is not enabled or the global interrupt 

flag is disabled. 

 The start of conversion signal is missing or not configured properly. If timers are used, 

they might not be enabled. The external start of conversion signal pulse can be too 

narrow. 

Problem: 

 The conversion result is not valid. 

Possible reasons: 

 The port pin is not configured as an analogue input. 

 Due to improper multiplexer settings, the signal is not connected to the ADC input. 

 The voltage reference or the internal bias generator is not enabled. 

 Internal reference is used, but the internal reference buffer is not enabled. 

 The voltage reference is enabled just before starting a conversion. Note that the voltage 

reference stabilisation time can be several milliseconds, which must be allowed to pass 

before starting a conversion. 

 The voltage reference is overloaded, so it does not provide the proper value. 

 Polling mode is used and the data are read before the end of conversion. The AD0INT 

flag might not be logic low before starting a conversion. 

 Improper integer data handling occurred. For example, left-justified or accumulated 

data must be stored in an unsigned short. 

 The ADC SAR clock frequency is too high (>3 MHz) or too low. 

 The tracking time is too short. The signal output impedance might be too high, which 

necessitates a longer tracking time; see Equation 8.7. 

 The signal output impedance is high, so the input leakage current causes significant 

error. 

 The signal is out of the measurement range (0–Vref). 

8.4  DAC 

The rich set of analogue peripherals of the C8051F410 includes two independent 12-bit current 

output digital-to-analogue converters. The output current range (full-scale output current, 

Imax) can be set as 0.25 mA, 0.5 mA, 1 mA or 2 mA. 
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Current output DACs are typically faster, but need external circuitry if voltage output is needed. 

Even a simple resistor of value R suffices (see Figure 8.12), but the specified compliance range 

must be met, and the output voltage must be below Vdd-1.2 V. Note also that in such a 

configuration, the output impedance is R. For example, 1 V output range at 1 mA full-scale 

current requires R=1 kΩ. 

 

Figure 8.12. A resistor converts current to voltage for the C8051F410 current 

output DACs. The output voltage is Vout=RImaxN/212. 

The digital-to-analogue conversion can be initiated by simply writing to the DACs SRFs (IDA0L 

first then IDA0H), but for the most accurate timing – needed for example for waveform 

generation –, timer overflow or the transitions of an external signal can be used, as shown in 

Figure 8.13. 

 

Figure 8.13. Sources that can control the DAC output update. 

 

A simple example of using DAC 0 with output update upon writing to IDA0H:  

P0MDIN = 0xFE; // P0.0 analogue mode 

P0SKIP = 0x01; // skip P0.0 

IDA0CN = 0xF2; // enable DAC0, update by write to IDA0H 

               // 1 mA full scale, left-justified data 

IDA0L = 0;     // low byte of the DAC output register 

// writing to the high byte of the DAC output register updates the DAC output: 

IDA0H = 128;   // high byte of the DAC output register, half scale: 0.5mA 

The following code updates the DAC 0 output at a rate of 100 Hz and generates a ramp signal: 

unsigned short dac_data = 0; 
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P0MDIN = 0xFE;   // P0.0 analogue mode 

P0SKIP = 0x01;   // skip P0.0 

IDA0CN = 0xA2;   // enable DAC0, update: Timer 2 overflow 

                 // 1 mA full scale, left justified data 

TMR2RLL = 0x60;  // high byte of the reload register for 100-Hz overflow rate 

TMR2RLH = 0xFF;  // low byte of the reload register for 100-Hz overflow rate 

TMR2CN  = 0x04;  // enable Timer 2 

 

IE      = 0xA0;  // enable Timer 2 a global interrupts 

 

/************************************************************************* 

Timer 2 interrupt service routine 

**************************************************************************/ 

void Timer2_ISR(void) interrupt TIMER2_VECTOR 

{ 

 TF2H=0;               // clear interrupt pending flag 

 IDA0L=dac_data;       // set lower order byte 

 IDA0H=dac_data >> 8;  // set higher order byte 

 dac_data++;           // increment the value for linear ramp 

} 

8.4.1  Application guidelines 

 The port pin associated with the DAC output should be set as analogue and must be 

skipped using the crossbar. 

 Select the DAC output current range. 

 Select the DAC output update source: write to the DAC register, timer overflow, or 

external signal (CNVSTR, P0.6). If CNVSTR is used, then it must be configured as open-

drain and must be skipped. If the update source is timer overflow or an external signal, 

an associated interrupt service routine should set the next DAC value. 

 The DAC update can be precisely synchronised to ADC conversions. In this case, the 

ADC interrupt routine must update the DAC registers and the ADC start of conversion 

and the DAC update source must be the same (timer overflow or CNVSTR). 

 Enable the DAC and the internal bias generator. 

 If voltage output is needed, connect a resistor between the output and ground. The 

output compliance range (Vdd–1.2 V) should not be exceeded, so at full-scale current 

the voltage on the resistor must be within this range. 

 Select left or right justification. If only the 8 most significant bits are used, left-justified 

mode should be selected, since only the higher-order byte is used in this case. 

 If used, the lower-order byte (IDA0L or IDA1L) must be written first. The DAC output 

is updated if the higher order byte is written (IDA0H or IDA1H), unless the update 

method is configured differently. 

8.4.2  Troubleshooting 

Problem: 

 The DAC output is unchanged or invalid when writing to the DAC registers  

Possible reasons: 

 The DAC or the bias generator is not enabled. 

 Only the lower-order byte (IDA0L) is written. 

 The output update source is a timer, but it is not configured properly or it is not enabled. 
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 If an interrupt routine must update the DAC output, the interrupt might not be enabled. 

 The output is not configured as analogue or is not skipped. The port pin is used by 

another peripheral or port latch. 

 The output compliance range is violated. 

 The output update rate is too high, whereas the DAC output needs a certain settling 

time. 

8.5 Temperature sensor 

The C8051F410 microcontroller has an internal diode-based temperature sensor, whose 

output voltage can be measured by the ADC. The voltage depends almost linearly on the chip 

temperature: 

 ,bTaV   (8.15) 

where the value of a is 2.950 mV/⁰C0.073 mV/⁰C and b=900 mV17 mV. 

The linearity error – the maximum deviation from the ideal linear dependence – is 0.2 ⁰C; 

the overall accuracy is about 3 ⁰C. 

Note that depending on the operating power the chip temperature can be significantly higher 

than the ambient temperature. In a low-power application (below 5 mW), the chip temperature 

is close to the temperature of the printed circuit board (approximately within 1 ⁰C–2 ⁰C). 

The temperature sensor can be used to monitor the operating temperature of the chip and the 

containing printed circuit board. In some very low power applications it can be used to estimate 

the ambient temperature with an accuracy of about 3 ⁰C. Temperature changes can be 

monitored more accurately. 

8.6  Exercises 

 Measure the resistance of a resistor in the range of 1 kΩ to 99 kΩ using the comparator 

as shown in Figure 8.4. Use C=100 nF, R1=27 kΩ and R2=47 kΩ. Display the result in 

kΩ units on two 7-segment displays. Measure 1% precision resistors (1 kΩ, 3.3 kΩ, 

10 kΩ and 33 kΩ) and compare the results with the nominal values. 

 Measure the capacitance of a capacitor in the range of 1 nF to 99 nF using the 

comparator as shown in Figure 8.4. Use R=100 kΩ, R1=27 kΩ and R2=47 kΩ. Display 

the result in nF units on two 7-segment displays. Measure 1 nF, 3.3 nF, 10 nF and 

33 nF capacitors and compare the results with the nominal values. Also consider the 

precision of the nominal values. 

 Try to measure the internal voltage reference turn-on time using the ADC. 

 Read the position of the potentiometer with the ADC and display the value converted 

into 0 to 99 on two 7-segment displays. 

 Write a program that generates a sinusoidal waveform using the DAC. One period 

should contain 64 points; the output data rate defined by a timer overflow should be 

100 kHz; use a 24.5-MHz system clock. Check the result with an oscilloscope. 

 Implement a voltage-to-frequency converter by measuring the voltage at the output 

of the potentiometer and generate a logic signal whose frequency is a linear function 
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of this voltage. The frequency range should be 1 kHz to 10 kHz. Use the PCA frequency 

output mode. 

 Write code that can delay a signal by 100 µs to 10000 µs in 100 µs units. Convert the 

signal at a rate of 10 kHz and output the delayed signal on DAC0. Use a timer to 

synchronise the ADC sample rate and DAC update rate. The delay value should be set 

by the potentiometer. Check the result on an oscilloscope. 

 Measure the on-chip temperature using the internal temperature sensor. Measure the 

on-chip temperature as a function of the system clock frequency. 

 Find a method to estimate how much higher the on-chip temperature is than the 

temperature of the printed circuit board. 
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9 Sensor interfacing 

There are many different sensors that can be interfaced to mixed-signal microcontrollers. In 

most cases, some external analogue signal conditioning circuitry is needed [11]. Since the 

microcontroller is a single-supply device, level shifting is used to handle bipolar signals. 

External active signal conditioning is typically based on single-supply operational amplifiers 

that may need additional attention. 

In the following the most important solutions are presented briefly. 

9.1 Voltage output sensors 

If the voltage to be measured is in the range of the ADC (0–Vref), then it can be connected 

directly to one of the ADC inputs. If the voltage is unipolar but can exceed Vref, then a simple 

resistive voltage divider can be used to reduce the voltage to match the input range. Figure 9.1 

shows the above-mentioned connections. 

 

   

Figure 9.1. Unipolar voltage output sensors can be connected directly or via a 

voltage divider to the ADC input. On the left, the ADC input voltage VADC is equal 

to V, while on the right it is R2/(R1+R2)V. 

Small voltages or high output impedance sources may need an amplifier circuit, see Figure 9.2. 

 

Figure 9.2. Small unipolar voltage output sensors can be interfaced using a non-

inverting amplifier circuit. 
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The output voltage of this circuit can be given as 

 V
R

R
V 












1

2
ADC 1  (9.1) 

If only a unity gain buffer is required to provide a low impedance driver for the ADC, R1 can be 

removed and R2 can be a wire. 

 

Figure 9.3. Small or large bipolar voltages can be measured using an 

operational amplifier. 

If the voltage is small or bipolar, then an operational amplifier can be used to convert the signal 

int0 0–Vref. A general-purpose inverting circuit is shown in Figure 9.3. The output voltage of 

this circuit is fed to the ADC and is equal to 
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One can see that this formula allows small and large voltages, since the signal amplification is 

–R2/R1, so it can be less or greater than 1. At zero input signal, VADC should be close to Vref/2 

for the optimal usage of the input range. 

The instrumentation amplifier circuit containing three high-accuracy operational amplifiers is 

very useful for handling small differential sensor signals where high input impedance (no 

loading of the signal) is required [15]. The gain can be set by a single resistor Rg, and it has a 

level-shifting input called reference or ground. Note that the supply range of the amplifier 

limits the input signal range as well. Figure 9.4 shows the simplified schematic of the 

instrumentation amplifier. 
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Figure 9.4. Instrumentation amplifier (IA) circuit. Integrated IAs contain the 

parts drawn within the rectangle. Vout=G(V2-V1)+V0, where G=1+2Rf/Rg. 

The instrumentation amplifier is also available as a single integrated circuit including the low 

voltage AD623 amplifier, which is ideally suited to single-supply microcontroller applications. 

Figure 9.5 shows a typical input signal conditioning circuit using an instrumentation amplifier. 

Note that the operational amplifier is needed to ensure a low-impedance drive to define the 

middle output voltage (in our example, Vref/2) of the instrumentation amplifier. 

 

Figure 9.5. Small voltage differences can be measured by applying an 

instrumentation amplifier. The ADC input voltage is VADC=V+Vref/2. 

9.2 Current output sensors  

Current-to-voltage conversion can be done by even a single resistor (Figure 9.6) if the current 

is not too high (which would cause high power dissipation) or not too low (too high impedance 

because of the high-value resistor). The resistor R must be chosen to get a voltage equal to Vref 

when the maximum current flows. 
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Figure 9.6. Current-to-voltage conversion using a resistor. 

If the current is low, as in the case of a photodiode, a low input current operational amplifier 

based current-to-voltage converter circuit should be used; see Figure 9.7. The feedback resistor 

value determines the output voltage, IRf. 

 

Figure 9.7. Photodiode current-to-voltage conversion using an operational 

amplifier. 

Bipolar currents can be handled by simply shifting the zero-current output voltage to Vref/2, as 

shown in Figure 9.8. 
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Figure 9.8. Bipolar current-to-voltage conversion. Here the ADC input voltage 

VADC is equal to IRf+Vref/2. At zero current the voltage is equal to Vref/2. 

 

9.3 Resistive sensors 

Resistive sensors, such as thermistors and photoresistors, can output a voltage if they form a 

resistive voltage divider with a resistor of known value (Figure 9.9). The input of the divider is 

the reference voltage Vref. This circuit works in a ratiometric operation, since the ADC uses the 

same reference voltage as the voltage divider, so the result of the conversion does not depend 

on Vref. 

 

Figure 9.9. A voltage divider allows the measurement of Rs. VADC seen by the 

ADC is equal to Rs/(R+Rs)Vref.  

Potentiometric sensors can also be connected in a very similar manner, as shown in 

Figure 9.10. 
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Figure 9.10. Potentiometric sensors can be used as voltage dividers of Vref. The 

ADC input voltage is VADC= Vref. 

If the Vref loading were violated because of too small resistor values, the Vref voltage can be 

buffered by an operational amplifier; see Figure 9.11. 

 

Figure 9.11. An operational amplifier buffer removes reference loading. VADC is 

equal to Rs/(R+Rs)Vref.  

Pressure sensors, load cells and force sensors are typically based on a resistor bridge. The 

bridge can be driven by a voltage and a small differential voltage between two terminals must 

be measured by a high input impedance stage. The instrumentation amplifier is the ideal choice 

in this case, because the gain can be set by a single resistor and the output can be level-shifted 

by connecting a voltage – typically Vref/2 – to its reference input. Figure 9.12 shows a possible 

solution. 
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Figure 9.12. Bridge sensors can be connected to the analogue input in 

ratiometric configuration using an instrumentation amplifier. The ADC input 

voltage is VADC=(GR/R+1)Vref/2. 

9.3.1  Application guidelines 

 Always consider the following in voltage measurement: 

o Voltage range. Unipolar or bipolar signal handling may be required. 

o Output impedance of the source. If it is too high, then the tracking time can be 

too short. Inverting amplifiers have quite a low input impedance. 

9.3.2  Troubleshooting 

Problem: 

 Cannot communicate with the real-time clock peripheral. 

Possible reasons: 

 The interface is not opened properly. Only a reset can end the blocked state and restore 

normal operation. 

 

9.4  Exercises 

 Design a circuit that can convert the voltage range of -10 V–10 V to 0 V–2.5 V. Check 

the transfer function using a circuit simulator. 

 Design a circuit to measure the supply voltage. 

 Design a circuit to measure the supply current. 

 Connect a thermistor and a 10-kΩ resistor as a voltage divider of Vref to the ADC input. 

Convert the input continuously and display the temperature on the two 7-segment 

displays. The temperature in Celsius as a function of thermistor resistance is given by 

the formula T=1/(1/298 °C+ln(R/R25)/B)-298 °C, where R25 is the value of the 
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thermistor resistance at 25 ⁰C (nominally 10 kΩ) and B can be found in the datasheet 

of the thermistor (it is typically 4000 °C). 

 Replace the thermistor with a photoresistor and display the resistance in kΩ on the 

two 7-segment displays. 
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10 Real-time clock 

The real-time clock circuit is a counter that is driven by an oscillator based on a tuning fork 

crystal with a frequency of 32768 Hz (Figure 10.1). Crystals typically have an absolute accuracy 

of about 10 ppm-20 ppm. For example, a 20-ppm accuracy means an error of about 1 minute 

in a month. 

The real-time clock (called smaRTClock [6]) of the C8051F410 microcontroller uses a 47-bit 

binary counter that is mapped to 6 bytes (RTC0–RTC5). The least significant bit of this six-

byte value is not used. This means that the four most significant bytes (RTC2–RTC5) can be 

considered as a 32-bit counter driven by a 1-Hz source, so it is incremented in every second. 

Typically the value corresponds to seconds elapsed from 0:00 January 1, 1970 and can be 

converted to date format using the standard C library functions declared in time.h. 

 

Figure 10.1. Structure of the real-time clock. 

CAPTURE0–CAPTURE5 registers are used to read and write the 47-bit counter. If it is to be 

written first, the CAPTURE registers must be loaded, then a write operation must be 

performed. A read transaction copies the current value to the CAPTURE registers for byte-

wise reading. The ALARM registers can define a certain value that is compared to the counter 

and an interrupt can be generated if the values match. This can be used to wake the processor 

up at a certain time. 

Note that if no crystal is present, the counter can also be driven by an internal oscillator, which 

has a selectable frequency of 20 kHz or 40 kHz. Due to its low accuracy, it cannot be used to 

measure real time; however, it can be useful in very low power applications when selected as 

the system clock. 

Write or read operations of the smaRTClock registers can only be performed if the interface is 

opened by sending a special keyword to enable these operations. Three SFRs are available for 

operations: RTC0KEY, RTC0ADR and RTC0DAT. All internal registers can be accessed 

through the RTC0ADR address and the RTC0DAT data registers (see the datasheet for 

details). 
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A simple example code of basic communication functions is listed below. 

/************************************************************************* 

Unlock the smaRTClock interface 

**************************************************************************/ 

void Open_RTC() 

{ 

 RTC0KEY = 0xA5; // first this value must be written to the key register 

 RTC0KEY = 0xF1; // next this value must be written to the key register 

} 

 

/************************************************************************* 

Write to the smaRTClock registers 

**************************************************************************/ 

void Write_RTC(unsigned char address, unsigned char data) 

{  

 while (RTC0ADR & 0x80); // wait while the smaRTClock is busy 

 RTC0ADR = address;      // set the target address 

 RTC0DAT = data;         // write the data into the register 

} 

 

/************************************************************************* 

Read from the smaRTClock registers 

**************************************************************************/ 

unsigned char Read_RTC(unsigned char address) 

{  

 while (RTC0ADR & 0x80); // wait while the smaRTClock is busy 

 RTC0ADR = address;      // set the target address 

 RTC0ADR|=0x80;          // define a read operation 

 while (RTC0ADR & 0x80); // wait for the data 

 return RTC0DAT;         // return the data 

} 

The following code initialises and starts the smaRTClock in crystal oscillator mode: 

Open_RTC(); 

Write_RTC(0x07,0xE0);    // crystal mode, auto gain, double bias 

Write_RTC(0x06,RTC0CN_DEF);   // power on the oscillator 

for (i = 0; i < 3000; i++);   // wait a bit for stabilisation 

while ((Read_RTC(0x07) & 0x10)==0); // wait for oscillator OK 

Write_RTC(0x07,0xC0);    // crystal mode, auto gain, single bias 

Note that at the beginning, the bias current of the oscillator is doubled for enhanced reliability 

and robustness. After stabilisation, the bias current can be reduced to normal to save power 

but can also be left doubled if power consumption is not a concern. 

10.1.1  Application guidelines 

 Unlock the interface of the smaRTClock peripheral by writing 0xA5 and 0xF1, in this 

order, to RTC0KEY. If other codes are written or invalid read or write operations are 

initiated, the interface will be disabled until a system reset occurs. 

 Select crystal oscillator mode for accurate real-time operation (an external 32768-Hz 

crystal must be used).  

 Enable the smaRTClock crystal oscillator and wait for stabilisation by polling the 

corresponding bit. 

 Write the initial value to the counter. 

 Enable the timer by setting the timer run control bit. 
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 If an alarm is needed, write the corresponding counter value to the alarm registers and 

enable the alarm events. Provide the proper interrupt service code and enable the real 

time clock interrupt. 

 The actual value of the counter can be set or read at any time. 

 Conversion between the counter value and real time (date, hour, minute, second) can 

be done by the time and mktime functions defined in the standard C library (time.h). 

10.1.2  Troubleshooting 

Problem: 

 Cannot communicate with the real-time clock peripheral. 

Possible reasons: 

 The interface is not opened properly. Only a reset can end the blocked state and restore 

normal operation. 

Problem: 

 The alarm interrupt is not generated. 

Possible reasons: 

 The crystal oscillator is not running. This can be checked by reading the valid oscillation 

bit. 

 Counting is not enabled. 

 The counter value or the alarm value is invalid. 

 The alarm events are not enabled or the alarm interrupt is not enabled. 

 

10.2 Exercises 

 Using the alarm function of the smaRTClock, write code that generates an interrupt 

in every second. Display the seconds on the 7-segment display. 

 Write code that reads the real-time clock value and converts it to date and time using 

the standard C library functions. 
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11 Watchdog and power supply monitor 

In every real-world– commercial, industrial, automotive, etc. – application reliable operation 

is probably the most important. Microcontrollers are widely used in such embedded 

applications, and since they have rather complex structure, contain digital and analogue 

hardware components, run software when powered on, they can be sensitive to both hardware 

and software problems. Electromagnetic interference, spikes on the supply line, software hang-

ups due to core errors, unexpected values on peripherals, infinite loops and unhandled 

exceptions are all potential sources that can permanently break normal operation. Since it is 

impossible to prevent these from occurring, some methods have been developed to safely 

return to normal operation. 

11.1 The watchdog timer 

One solution to avoid permanent hang-ups is the use of the so-called watchdog timer, which 

can detect hang-ups and reset the processor to restart normal operation. Of course, the code 

must be developed keeping this possibility in mind. The watchdog peripheral has an internal 

timer, which measures time and can reset the processor if a timeout is occurred. The timer is 

always restarted if the software writes to its dedicated register, so timeout will not happen if 

the software notifies the watchdog timer periodically within the timeout period. If any hang-

up happens due to hardware or software failure, the processor will be reset within the defined 

timeout value. 

The C8051F410 processor uses the last PCA channel to implement the watchdog timer function 

[6]. It is automatically enabled upon reset; therefore, the code must be developed accordingly. 

During prototyping and practicing the watchdog timer can be disabled, but this must be done 

at the beginning of the code, because otherwise a reset will be generated. Note that the C 

compiler generates startup code, which is executed before calling the main program and which 

can take longer than the default timeout period set after reset. For example, since SDCC 

initialises the variables by default, if a large array is declared in the external RAM space, the 

startup code may not be finished before a watchdog reset is generated. 

In order to prevent this situation, the startup code can be redefined: 

/************************************************************************* 

Startup code redefinition 

**************************************************************************/ 

unsigned char _sdcc_external_startup () 

{ 

 PCA0MD &= ~0x40; // disable watchdog timer 

 PCA0MD = 0x00;   // disable watchdog timer 

 

 VDM0CN = 0xA0;  // enable VDD monitor 

 return 1;   // 1: do not initialise variables 

} 

 

11.2 Supply monitor 

The supply monitor generates a reset if the supply voltage falls below the safe level. Since 

proper operation of digital circuits can only be guaranteed if the supply is within a certain 

range, unexpected behaviour may happen if the voltage gets out of this range even for a short 
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period. If the supply monitor is enabled, normal operation is restored by generating a reset in 

such cases. 

11.2.1 Application guidelines 

 Every final version of code should use the watchdog timer and the power supply 

monitor to ensure reliable operation. 

 During testing or code development, the watchdog timer can be disabled. It must be 

done at the beginning of the code to prevent undesired resets. 

 The watchdog timeout can be programmed. Prefer intervals short enough to ensure 

quick recovery after a fault, yet long enough for the code to safely contact the watchdog 

timer within the timeout period in normal operation. 

 The supply monitor should be switched on at the beginning of the code. After a few 

microseconds allowed for stabilisation, it can be enabled. 

11.2.2 Troubleshooting 

Problem: 

 The code does not start or unexpected resets occur. 

Possible reasons: 

 The watchdog timer is not disabled and not handled by the code. 

 The watchdog timer is not restarted in time. This can be due to too short a timeout, 

improperly written code, time delay caused by interrupt routines or miscalculated 

timings. 

 C compilers generate code executed before the main function, which can delay the 

switching off of the watchdog timer in the main function. Most compilers allow the 

redefining of the startup code (_sdcc_external_startup using the SDCC compiler), 

which can help to prevent this. 

11.3 Exercises 

 Write code that uses the watchdog timer with 1 s timeout. Try to simulate an infinite 

loop and check the watchdog-generated reset. 
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12 Low-power and micropower applications 

In certain cases, the microcontroller operates from a low power-supply such as a battery, solar 

cell or similar source. In this case, the power consumption must be kept as low as possible to 

meet the supply specifications and to increase battery life and reliability at the same time. 

In most cases, the processor must perform operations only in a fraction of the time. Therefore, 

keeping the power consumption low means keeping the active operating current low and it is 

desirable to put the processor into an idle mode during the inactive state. Of course, some event 

must be used to terminate this idle mode and to resume normal operation. 

12.1 Low-power modes 

The C8051F410 processor has some low-power inactive states [6]. 

12.1.1 Idle mode 

The processor can be placed in idle mode by setting the PCON.0 high. In this mode, program 

execution is stopped and will be resumed if an enabled interrupt request occurs or a reset is 

generated. The oscillator and the peripherals are not stopped in idle mode. The supply current 

is reduced in idle mode: for example, the typical core supply current of 0.43 mA in normal 

mode at a 1-MHz system clock will be reduced to 0.21 mA in idle mode. 

12.1.2 Stop mode 

A more efficient power saving mode can be realised by the stop mode. In this mode, the internal 

oscillator, the core and all digital peripherals are stopped. The status of the analogue 

peripherals is unaffected; they can be powered down by software before entering stop mode. 

An internal or external reset is required to exit from stop mode. Therefore, program execution 

will be restarted. 

The power consumption can be very low in stop mode: the digital supply current can be as low 

as 0.150 A 

12.1.3  Suspend mode 

Suspend mode is very similar to stop mode, but can be terminated by additional events 

including port 0 or port 1 match to a specified bit pattern, the output of an enabled comparator 

going low or real-time clock (smaRTClock) alarm or fail. 

12.2 Clock speed tuning 

The supply current depends on the system clock frequency in a roughly linear manner. For 

example, below 15 MHz the supply current can be estimated as the actual system clock 

frequency multiplied by 390 A/MHz. 

This allows efficient power management even without entering idle, stop or suspend modes 

and without stopping program execution. The system clock can be changed at any time, so it 

can be kept low and it is only switched to a higher frequency when more processing power is 

needed. The average supply current depends on the ratio of the time spent in slower mode to 

that in faster mode. 
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The internal clock generation module of C8051F410 processor provides several different clock 

speeds. A 24.5-MHz internal oscillator serves as a base of the system clock generation; this 

value can be divided by 1, 2, 4, 8, 16, 32, 64 and 128. This means that the system clock can be 

as low as 191406 Hz for lowest power consumption and can be 24.5 Mhz for fastest execution. 

If the internal clock multiplier is used, even a system clock of 49 MHz can be generated. 

Since the frequency of the internal oscillator is 24.5 Mhz regardless of the division used to 

generate the system clock, its power consumption is constant, typically 200 A. In conclusion, 

the supply current cannot be less than this value. 

Note that the real-time clock (smaRTCclock) frequency can also be selected as system clock, 

which allows very low supply current down to about 20 A. The 24.5-MHz internal oscillator 

should be switched off to save its 200-A operating current. 

12.3 Peripheral power consumption 

In most low-power applications, some peripherals are used and of course they consume power. 

Some considerations follow concerning the power requirements of different components of the 

microcontroller. 

Port pins typically drive external devices, so they may require significant current which must 

be considered. For example, LEDs, pull-up resistors (like those used for SMBus) and external 

circuitry load the ports. Note that for lowest-power operation even the internal weak pull-up 

resistors should be disabled. 

The input clock of digital peripherals (such as timers, the programmable counter array, or 

communication peripherals) is derived from the system clock; therefore, their operating 

current is reduced if the system clock is reduced. These peripherals require significantly less 

power than the processor core. 

Analogue peripherals need a certain bias current for proper operation, so they contribute 

to the total supply current. Comparators can be configured in four different power modes. 

Lower power can be realised at the expense of slower response. In order to reduce power 

consumption, the ADC has a special burst mode. In this mode the ADC is powered only during 

conversions and powered down between conversions. Therefore lowering the sample rate 

lowers the power required as well. Current-output DACs definitely provide considerable 

current, so if they are used, they contribute to the total supply current significantly. 

12.4 Supply voltage 

The supply current is roughly proportional to the supply voltage of the core and of the 

peripherals. Since the total power dissipated by the system is equal to the supply current 

multiplied by the supply voltage, it is very useful to reduce the supply voltage in order to 

achieve low power consumption. For example, the typical supply current of the C8051F410 is 

430 A at a 2.5-V core supply voltage, which is reduced to 300 A at 2.0 V. This means a power 

consumption reduction from 1.1 mW to 0.6 mW. 

12.4.1 Application guidelines 

 The microcontroller power can be reduced using low-power modes when the core is 

halted. Analogue peripherals must be switched off by software. Consider the wake-up 

sources. 

 The supply voltage should be kept low for low-power operation. 
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 Lower system clock frequency corresponds to lower supply current. Consider the 

constant current of the internal 24.5-Mhz oscillator. 

 The system clock frequency can be changed during operation, but be careful: serial data 

transfer, timer and even ADC operation can be seriously affected. 

 Minimise the loading on the port pins. Always take the current required by external 

components into account. 

 Consider the supply current used by active digital and analogue peripherals. They 

should be active only during the period they are required. 

 Use burst mode if the ADC is used. Keep in mind that the ADC SAR clock is derived 

from a dedicated 24.5-Mhz oscillator. 

 Use low-power settings if comparators are used. Consider the reduced response time of 

the comparators. 

12.4.2 Troubleshooting 

Problem: 

 The supply current is significantly greater than the value given in the datasheet. 

Possible reasons: 

 The ports are loaded by external components. 

 The debug adapter is connected to the system. It is safest to remove it during supply 

current measurement. 

 Some of the active peripherals are not considered. 

Problem: 

 Invalid data are received during serial communication. 

Possible reasons: 

 The system clock frequency is changed during data transfer or the transfer speed does 

not match. 

Problem: 

 The ADC data seem to be invalid. 

Possible reasons: 

 The voltage reference or the ADC is powered up too close to the start of the conversion. 

The time is too short for accurate settling of the voltage reference, which can take 

several milliseconds. 

 If the ADC SAR clock is too low, the internal capacitors may lose charge during 

conversion. Keep the ADC SAR clock as high as possible or use burst mode to avoid this 

problem. 

12.5 Exercises 

 Write code that iterates the system clock frequency upon each pressing of a button 

from 24.5 Mhz/128 to 24.5 MHz in a cyclic manner. Measure the digital supply 

current as a function of the clock frequency. Consider any possible loads on the port 

pins (including the debug adapter). 
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 Write code that wakes up the microcontroller in every second from a suspend state 

using the smaRTClock alarm function. The code must switch an LED on for 100 ms 

then should go back to suspend mode. 

 Write code that wakes the microcontroller up from a suspend state if a button has 

been pressed. The code must switch an LED on for 100 ms then should go back to 

suspend mode. Use the port match event to detect button pressings and to terminate 

the suspend state. 
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13 USB, wired and wireless communications 

Most microcontrollers do not have communication interfaces that support direct connection 

to personal computers or host computers. The most popular wired interface is the USB port, 

which can even provide power supply for the connected peripheral. Devices can be wirelessly 

connected via a Bluetooth module especially developed for low-power small device 

applications. 

There are microcontrollers with built-in USB interfaces or wireless communication modules, 

but they only represent a fraction of the wide selection of microcontrollers with a rich set of 

analogue and digital peripherals.  

A more general solution is to use a USB-UART, Bluetooth or other wireless module connected 

to the UART or similar port available on all microcontrollers. Somewhat more space and at 

least two integrated circuits are required, but in this case, practically any microcontroller can 

be used, which guarantees exceptional flexibility. 

13.1  USB-UART interfaces  

One of the most popular and most reliable USB-UART converters is the FT232R [19]. The chip 

can be connected to the UART port and can handle the quite complicated USB protocol. Only 

a few external capacitors are needed as power supply decoupling capacitors. The FT232R chip 

supports full-speed USB communication (12 Mbit/s); however, baud rates are limited to a 

maximum of 3 Mbit/s. Sending a byte means sending a start bit, 8 data bits and 1-2 stop bits, 

so the achievable throughput is somewhat below 300 kbyte/s. The FT232R contains a 25-byte 

FIFO (first in-first out) buffer memory to avoid data loss at high data rates.  

Note that since downstream data must be directly received by the microcontroller from the 

FT232R chip, the transmit FIFO of the FT232R cannot be used. Therefore, a software FIFO 

must be implemented in the microcontroller code at high speed transfers. See the UART 

interrupt mode examples in Chapter 7.2.  

The host computer can communicate with the microcontroller via the native driver or via the 

virtual COM port driver, which is easy to use even with a simple terminal software and easy to 

program in C, C++, C#, Java, LabVIEW or Matlab.  

Note that the virtual COM port mode has limited configuration possibilities. For example, the 

so-called latency time cannot be set and its default value is 16 ms. This means that if the host 

wants to send only a few bytes (at least less than the buffer size to trigger an USB transmit 

transaction), then the latency time must elapse before sending the data. This can slow 

communication down, so it is recommended to set the latency time to its minimum, 1 ms, using 

the hardware configuration utility of the operating system. 
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Figure 13.1. Connecting a microcontroller to a USB port using the FT232R USB-

UART converter. 

Figure 13.1 shows how the microcontroller can be connected to a USB port using the FT232R 

USB-UART converter. The TX and RX are the UART port bits, while the RTS (ready-to-send) 

and CTS (clear-to-send) on the microcontroller are provided by general-purpose port bits. 

These lines are optional and can be used for handshaking – checking if data is available or if 

the receiver is ready to accept data. Note that the USB port can even power the circuit; the low 

dropout regulators (LDO REG) output the required supply voltage that is normally less than 

5 V. 

The complete example schematic and board layout can be seen in Figure 13.2 and Figure 13.3. 

 

Figure 13.2. Schematic of the C8051F410 microcontroller USB interface. 
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Figure 13.3. Component (red) and bottom (blue) side of the C8051F410 

microcontroller USB interface printed circuit board. 

All supply lines are decoupled with ceramic chip capacitors placed as close to the supply pins 

as possible. The bottom side realises the required solid ground plane, and the signal ground 

and USB grounds are connected at the microcontroller. This separates the sensitive analogue 

circuitry of the microcontroller from the noisy ground return currents of the digital part. D1 

and D2 are USB data line protection diodes, X1 is the debug port and JP1 is a connector for 

port P1. This port can accept both analogue and digital input or output signals depending on 

the configuration of the port P1. 

Note that there are faster (USB 2.0) USB-UART interfaces, including the FT2232H, which uses 

the same drivers on the computer side and therefore can be used to seamlessly upgrade 

communication speed. However, the microcontroller bit rate is limited, so only high clock 

frequency microcontrollers can benefit from this solution. 

USB-to-parallel interfaces can also be used to transfer a whole byte at a time. This provides the 

fastest communication at the expense of more complex circuitry and of the fact that much more 

pins of the microcontroller must be used. 

13.2 Wireless communication possibilities 

There are small wireless modules that can be also connected to the microcontroller. Bluetooth 

modules are widely available and have a standard SPP (serial port protocol) mode to be driven 

directly from a UART port of a device. After setting up the module, it will be fully transparent: 

a virtual COM port on the host computer can be used in the same way as for the FT232R USB-

UART converter or a regular COM port. In such cases, even smart phones can be used to easily 

communicate with the microcontroller-based hardware unit. 
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13.3 Exercises 

 Write code that measures the state of the potentiometer and sends the data in text 

format over the UART using a 9600-bit/s baud rate. Check the result with terminal 

software using the virtual COM port. 

 Write code that measures the state of the potentiometer and sends the data in text 

format over the BTM-112 Bluetooth module. Check the result with terminal software 

using the virtual COM port. 

 Write code that measures the state of the in-chip temperature and sends the data in 

text format over the BTM-112 Bluetooth module. Check the result with terminal 

software running on a smart phone. 
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14 Development kit 

14.1 The C8051F410 development kit  

The C8051F410 development kit is manufactured by Silicon Laboratories to support rapid 

development and testing [7]. It can be used as a general-purpose platform to develop many 

different microcontroller applications. The board is powered from a wall-plug adapter and 

integrates LEDs, push buttons, a serial host interface, a potentiometer, a watch crystal, a 

battery socket and even more. The complete description can be found in the user manual that 

can be downloaded from the manufacturer’s pages. 

The board has a two-row pin header connector that allows access of any port pin of the 

microcontroller and supports the connection of various external circuitries. An extension 

board with 6 additional LEDs, two 7-segment displays, a 3-pin general purpose analogue 

sensor port and an LM75 temperature sensor is shown in the photo in Figure 15.1. 

 

 

Figure 15.1. The C8051F410TB target board with the extension board. On the left 

side, a thermistor connected to the general-purpose analogue input can be seen  

The extension board is documented in the next chapter. 

14.2 Extension board 

The extension board is a powerful supplement to the C8051F410 development kit. It can be 

used to practice many features of the microcontroller, while it also serves as a reference design. 

The six LEDs are driven from pins of port P0 and P1. The anodes of the LEDs are connected 

to the positive supply, so both open-drain or push-pull mode can be used to light them. The 

current limiting resistors have a value of 1 kΩ, which ensures proper light intensity. The LEDS 
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are arranged on the board as two traffic lights and their colours are red, yellow and green. This 

supports practicing several related applications. Note that the LEDs form a six-point rectangle 

(or circle), so, for example, stepper motor control can also be simulated and visualised. 

Two 7-segment displays are connected to port P2 via a buffer to reduce the total port current 

of the microcontroller. Port bit P1.3 is used to select which 7-segment display is active. Both 

displays cannot be used at the same time; however, this can be used to demonstrate how a fast 

alternation of the displays can be applied to implement a simultaneous-looking display of two 

digits. The display therefore can be used to count from 0 to 99, implement a second counter or 

display a temperature in degrees, etc. 

The U$3 and U$4 pin headers are only used to connect the ground and the positive supply to 

the extension boards. 

An LM75 I2C temperature sensor is connected to port pins P0.0 and P0.1. This supports the 

measurement of external temperature and also allows the learning of the use of the SMBus/I2C 

interface.  

The 3-pin header labelled IN1 is a general-purpose analogue and sensor interface. The three 

pins are connected to the system ground, the 5 V supply and a high impedance input of a rail-

to-rail input and output operational amplifier. The output of this operational amplifier is 

connected to pin P1.7 of the microcontroller via a voltage divider and the voltage can be 

measured by the internal A/D converter. This allows the measurement of voltage-output 

sensors (for example, Hall effect magnetic field sensors), resistive sensors (such as light-

dependent resistors, thermistors, etc.). Current-output sensors can also be connected if an 

external current-to-voltage conversion resistor is connected in parallel with the sensor. The 

5 V supply can serve as a supply for active sensors or can be used as the input voltage of a 

voltage divider formed by a resistor of known value and a resistive sensor. See Chapter 9 for 

more information about connecting sensors to the microcontroller. 
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Figure 15.2. The extension board schematic. 
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Figure 15.3. Extension board top side layout. 
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