

Laboratory practicals with the

C8051Fxxx microcontroller family

Zoltán Gingl and Róbert Zoltán Mingesz

2014,2019 Szeged

Copyright: 2014-2019, Zoltán Gingl and Robert Mingesz, University of Szeged

Creative Commons NonCommercial-NoDerivs 3.0 (CC BY-NC-ND 3.0)

This work can be reproduced, circulated, published and performed for noncommercial

purposes without restriction by indicating the author's name, but it cannot be modified.

Readers of the original version (2014): Dr. György Györök and Dr. Péter Makra

Author manuscript version. The original version is published on www.tankonyvtar.hu

Made within the framework of the project Nr. TÁMOP -4.1.2.A/1-11/1-2011-0104 entitled

“Felsőfokú informatikai oktatás minőségének fejlesztése, modernizációja”.

CC

http://www.tankonyvtar.hu/

Summary

The purpose of this book is to help the teaching of the applications of microcontrollers in

various projects. Several books and manuals are available [1-19]; this book contributes to these

by covering the knowledge needed to use the powerful C8051Fxxx family of microcontrollers

from Silicon Laboratories in practice. Our aim was to synthesise the most useful information

found in manuals, tutorials, datasheets, user forums, application notes, electronic design notes

and example code in a single book. Most chapters feature brief application guidelines and

troubleshooting based on our teaching and development experience. This can be highly useful

for students and for developers as well.

We believe that the brief discussion of the architecture, peripherals, analogue and digital signal

interfacing helps to understand how these can be used to build various applications. We

provide tested example code and recommended exercises and discuss several application

examples, including single-supply analogue signal conditioning, sensor interfacing and

microcontroller-host computer communication. In the last chapter, we show the schematic

and layout of an extension board that supports the use of the C8051F410DK development kit

and can also be modified for use with other target boards.

Up-to-date, high quality references were chosen that are provided by industry leading

companies [1–19]. Almost all of the references are available on-line on the companies’ web

pages.

Keywords:

Microcontrollers, embedded programming, timers, counters, serial communication, analogue-

to-digital conversion, sensors.

TABLE OF CONTENTS

1 Introduction ..7

1.1 Real-world signal processing and control ...7

1.2 Microcontrollers .. 8

1.3 Microcontroller core and integrated peripherals .. 9

1.4 Microcontroller classification .. 14

2 Architecture and properties of the C8051Fxxx microcontroller family.............................. 15

2.1 8051 microcontrollers .. 15

2.2 The C8051Fxxx microcontroller family ... 15

2.3 The CIP-51 architecture .. 16

3 Assembler and C programming .. 29

3.1 SDCC C compiler.. 29

3.2 Interrupt programming in assembler .. 30

3.3 Interrupt handling in C ... 32

3.4 Interrupt programming guidelines... 34

3.5 Using an integrated development environment and the associated tools 35

3.6 Config Wizard .. 37

4 Digital input and output; crossbar ... 39

4.1 The I/O structure ... 39

4.2 Crossbar ... 41

4.3 Port I/O applications ... 42

4.4 Application guidelines .. 51

4.5 Troubleshooting ... 52

4.6 Exercises ... 52

5 Timers and counters.. 53

5.1 Timer 0 and Timer 1 .. 53

5.2 Timer 2, Timer 3 and Timer 4 ... 55

5.3 Timer applications ..57

5.4 Application guidelines .. 61

5.5 Troubleshooting ... 62

5.6 Exercises ... 63

6 Programmable counter array.. 64

6.1 Edge-triggered capture mode ... 64

6.2 Software timer and high-speed output mode .. 65

6.3 Frequency output mode .. 66

6.4 8-bit and 16-bit PWM modes .. 67

6.5 Application guidelines ... 69

6.6 Troubleshooting ... 70

6.7 Exercises ... 70

7 Serial communication peripherals ... 72

7.1 UART .. 72

7.2 SPI .. 77

7.3 SMBus ..81

7.4 C standard I/O redirection .. 85

7.5 Exercises ... 86

8 Analogue peripherals .. 87

8.1 Comparators ... 87

8.2 Voltage reference ... 90

8.3 ADC ... 92

8.4 DAC ... 98

8.5 Temperature sensor .. 101

8.6 Exercises .. 101

9 Sensor interfacing.. 103

9.1 Voltage output sensors .. 103

9.2 Current output sensors .. 105

9.3 Resistive sensors ...107

9.4 Exercises ... 109

10 Real-time clock ..111

10.2 Exercises .. 113

11 Watchdog and power supply monitor ... 114

11.1 The watchdog timer .. 114

11.2 Supply monitor ... 114

11.3 Exercises .. 115

12 Low-power and micropower applications .. 116

12.1 Low-power modes ... 116

12.2 Clock speed tuning .. 116

12.3 Peripheral power consumption.. 117

12.4 Supply voltage ... 117

12.5 Exercises .. 118

13 USB, wired and wireless communications .. 120

13.1 USB-UART interfaces .. 120

13.2 Wireless communication possibilities ...122

13.3 Exercises ..123

14 Development kit ...124

14.1 The C8051F410 development kit ...124

14.2 Extension board ..124

15 Acknowledgements ... 128

16 References ...129

Introduction

1 Introduction

1.1 Real-world signal processing and control

It is a typical aim to construct machines to make life more comfortable and more economical.

From simple mechanical machines to advanced electronic devices such as smart phones the

range is really wide. The most efficient devices are based on electronics, sophisticated signal

processing and modern software.

In order to allow processing, real signals must be converted into another format that can be

processed and the result should be used for intervention, as shown in Figure 1.1.

Figure 1.1. General real-world interaction.

The same principle is used in machines in general (Figure 1.2).

Figure 1.2. Machine – real world interaction.

The most efficient devices use analogue and digital electronics and run software to process

information. Many of today’s devices are small, battery-operated and incredibly efficient.

Again, a good example is the smart phone that integrates telephony, camera, wireless

communication, computer, sensors, GPS and many more in a handful of electronics.

The detailed block diagram of such an electronic device is shown in Figure 1.3. Sensors convert

several physical signals (displacement, force, pressure, acceleration, temperature, light

intensity, etc.) to signals that can be handled by electronics (voltage, current, resistance,

capacitance, inductance). The output of sensors is converted to voltage in the proper range (a

few volts) that can be easily used in processing. The analogue-to-digital converter translates

this voltage to integer numbers for digital processing. A similar principle is applied in the

reverse transformations.

Real
system

Sensing

Acting

Processing

Signal
conversion

Signal
conversion

Machine
processing

External
signals

Impact

Introduction

Figure 1.3. Electronic device – real world interaction.

Several analogue and digital integrated circuits have been developed to support the

manufacture of electronic devices. One of the most compact and most efficient components is

the microcontroller.

1.2 Microcontrollers

The microcontroller unit (MCU) is a small but powerful digital building block, a single-chip

microcomputer. It contains everything required for operation; very few external components

are needed – sometimes only supply decoupling capacitors. Of course, the device must be

powered, typically from a single supply voltage that ranges from 1.8 V to 5 V. Sometimes even

a coin cell battery suffices.

The microcontroller has several peripherals to sense real-world signals and initiate real-world

events, and has a processor core to run software. It is a very flexible, powerful and compact

electronic component. Since most of the processing is done by the software, the same hardware

can be used for several applications; the performance can be upgraded easily by replacing the

software only.

There is a very wide range of microcontrollers on the market from sizes of 2 mm × 2 mm and

from a power consumption of 30 W to a speed of several hundred MHz.

Most modern microcontrollers incorporate comparators, analogue-to-digital and digital-to-

analogue converters and temperature sensors – therefore, they are often called mixed-signal

(both analogue and digital) microcontrollers.

Figure 1.4 illustrates some typical components of a modern mixed-signal microcontroller; the

details will be given in the next chapter.

A/D
converter

analog electrical
signals

External
signals

Sensor
Signal

conditioning

Signal
conditioning

ActuatorImpact

Processor
and

software

D/A
converter

digital electrical signals
(binaryvalues)

Introduction

Figure 1.4. Microcontroller components.

1.3 Microcontroller core and integrated peripherals

The microcontroller core is based on a processor with its typical components including an

arithmetic logic unit (ALU) and several registers. The architecture may follow the CISC (like

the 8051 family) or, more probably, the RISC principles (for example, the PIC, AVR and ARM

microcontrollers) in today’s popular microcontrollers.

Most of the devices use separate memory for the data and for the program; that is, they have

Harvard architecture. This fits well the need for non-volatile program memory and at the same

time it prevents code corruption and provides even faster execution in some cases. The word

length of the two kinds of memory can also be different. Microcontrollers may use Neumann

or Harvard architecture, or the user can even configure the memory usage (for example, in the

case of the ARM Cortex-M3 32-bit microcontroller family).

All modern microcontrollers have volatile (SRAM) memory and non-volatile, reprogrammable

flash memory. The flash memory contains the code, so no external integrated circuits are

needed. The flash memory can be reprogrammed by special programming devices using a few

(from 2 to 6-8) pins of the microcontroller (in-circuit programming, JTAG) or can even be

overwritten by the microcontroller itself in some cases. Additional separate flash or EEPROM

may also be integrated to support non-volatile data storage (configuration data, calibration

data, statistical data, etc.). The flash memory can be rewritten about 100000 times, and the

MICROCONTROLLER CORE

ANALOGUE PERIPHERALS

A/D
CONVERTER

D/A
CONVERTER

VOLTAGE
REFERENCE

TEMPERATURE
SENSOR

M
U

XPGA

VOLTAGE
REGULATOR

DIGITAL PERIPHERALS

TIMER
COUNTER

COUNTER
ARRAY

USB/WIRELESS

UART

SMBUS/I2C

SPI BUS

CAN/LIN BUS

CRC
CALCULATION

MULTIPLY/
ACCUMULATE

PORT INPUT
AND OUTPUT

PROCESSOR SUPPORT PERIPHERLS

POWER ON
RESET

SUPPLY
MONITOR

WATCHDOG
TIMER

OSCILLATOR
AND PLL

REAL TIME
CLOCK

PROCESSOR
CORE

INTERRUPT
HANDLER

MEMORY
RAM/FLASH

DEBUG
INTERFACE

DMA

CAPACITANCE
TO DIGITAL

Introduction

typical data retention time is longer than 20 years. The flash memory can be protected, i.e., the

code can be prevented from being read by the user.

If the on-chip memory is not enough for a certain application, the developer can choose

microcontrollers with an external memory interface that support the connection of static RAM

or other memories of various sizes. Note also that this interface may support the use of

‘memory mapped’ peripherals including A/D converters, D/A converters, FIFO memories, etc.

1.3.1 Processor support

In the following the most typical processor support peripherals will be described briefly.

Power on reset (POR) generator. After switching the power on, the supply voltage may rise

a bit slowly due to the fact that the supply decoupling and filtering capacitors must be charged

and the supply current is limited. At the same time, the digital circuitry needs a certain

minimum supply voltage for proper operation, so the start-up of the microcontroller must be

delayed until the supply voltage reaches the safe operating level. Having detected the crossing

of this level, the POR generates an additional short delay (in the range from below 1 ms to about

100 ms) and finally releases the reset line.

Power supply monitor (Brown-out detector). In some cases, the supply voltage may go

below the safe operating level even during operation (for example, when sudden heavy current

loading occurs). This may result in erroneous code execution, therefore the supply monitor

circuit will generate a reset in this case. Note that this feature can be disabled by the

programmer, although the use of the supply monitor is strongly recommended.

Low-dropout (LDO) regulator. Some microcontrollers have separate voltage levels for

their core and digital input and output ports. Integrated voltage regulators can provide stable

and sometimes even programmable supply voltage from the input supply voltage. Low-dropout

regulators need only a slightly (roughly about 100 mV) higher input supply voltage than their

output voltage.

Watchdog timer (WDT). Even properly powered processors can fall into infinite loops or

get disturbed by electromagnetic or conducted interference (for example, in the case of

lightning or power line transients), which may cause serious problems in several applications

(motor control, heating control, healthcare devices, etc.). The watchdog timer refresh register

needs to be written within a certain amount of time (that can be typically programmed from

tens of milliseconds to several seconds); otherwise, a reset will be generated. If the code writes

to the register, the timer will be restarted and no reset will be generated. If the processor code

execution fails, this will not occur and a reset will be initiated. The best practice is to always

use the watchdog timer except in code development phase or in simple test projects. The

watchdog timer is enabled automatically upon reset in quality microcontrollers.

Oscillator, PLL. All processors need a clock signal to schedule instruction execution. Modern

microcontrollers have on-chip oscillators but also support the use of external quartz crystals

or external clock signals. Optional phase-locked loop (PLL) clock multipliers often combined

with clock dividers allow the generation of a wide range of higher processor clock frequencies.

Typically, on-chip oscillators have an accuracy of 1%-20%, while the precision of crystal

oscillators can fall below 0.01%. The developer can choose the solution that suits the particular

application best.

Debug interface. This interface is used by the integrated development environment to

download code to the flash memory. Memory upload is also supported and the developer can

Introduction

program the security bits to protect the code from being uploaded. The debug port allows single

stepping, supports breakpoints and can track the content of variables, memory and peripheral

registers. The debug interface makes code development and testing easy and it is an essential

tool for all modern microcontrollers. The most commonly used interface standard is called

JTAG (Joint Test Action Group, IEEE 1149.1 Standard Test Access Port and Boundary-Scan

Architecture).

1.3.2 Digital peripherals

Digital peripherals include the digital input/output pin drivers and internal digital circuits

related to timing, communication and computation acceleration.

General-purpose input/output (GPIO), port input/output (Port I/O). The processor

reads from and writes to memory and all on-chip peripherals using the bidirectional data bus.

Some processors may also incorporate a direct memory access (DMA) controller, which

transfers data between memory and a peripheral without processor intervention. The data is

valid only for a short duration in order to free the bus for other transactions, so the general

purpose output requires latches that can keep the data until the code writes new data to it. The

output of these latches is connected to the pins of the chip and can drive LEDs and provide

logic output signals for external digital circuit inputs. These signals are mostly arranged in 8-

bit groups to form a byte. The pins can also be configured as digital inputs that can be read any

time by the microcontroller. This way buttons, switches and digital signals can be connected

as well with the help of internal or external pull-up resistors.

Timer/Counter modules. Microcontrollers are designed to control electronic equipment

for household, automotive, industrial, test and measurement applications; therefore, timing,

event counting, periodic event generation and time duration measurement are important. All

microcontrollers contain 8-, 16- or 32-bit counters that can be configured as timers (when an

oscillator drives the counter) or as counters, when the rising or the falling edge of an external

signal increments the counter. Timers also provide timing for serial communication

peripherals, A/D converters and D/A converters.

Programmable Counter Array (PCA). The PCA contains a simple free-running counter

that is driven by an oscillator. There are several (from 3 to 6) independent compare/capture

registers that can be used to latch the counter value upon an event (a change in a digital input

signal). These registers can also hold data to be compared with the counter value and to

generate an event when a match occurs. The PCA can be used to measure pulse width, period

or frequency, to generate pulse width modulated (PWM) signals and special logic signal

patterns, periodic interrupts and even more.

Real-Time clock (RTC). In order to measure the real time or synchronise events to it, a

dedicated precise oscillator and an associated 32 to 48-bit counter is provided in some

microcontrollers. The oscillator typically uses 32768-Hz tuning fork crystals and a very low

power oscillator. Practically, a clock is integrated into the microcontroller that can be powered

from a button battery and can run even if the processor is not powered. Besides measuring real

time, this peripheral can serve to wake the microcontroller up at a certain time – in other

words, to provide alarm function.

Computing support (MAC, CRC, AES). Some microcontrollers contain computation and

digital signal processing acceleration hardware. For example, 8-bit microcontrollers can have

a multiply and accumulate (MAC) unit that can multiply and add 16-bit data in a few clock

cycles. This can be used efficiently in digital filtering and to compute fast Fourier transforms

Introduction

(FFT). Cyclic redundancy check (CRC) is frequently used to check data integrity in

communications and the Advanced Encryption Standard (AES) algorithm is also supported by

some microcontrollers.

1.3.3 Communication

Universal Asynchronous Receiver/Transmitter (UART). This serial (one bit at a time)

communication interface uses one wire to send and another wire to receive bits of a byte. The

sender and receiver must have a closely matched time base that determines the duration of

transmitting a bit, since no timing synchronisation is provided. Every transaction is initiated

by sending a start bit, followed by the data bits. The receiver detects the start bit and can then

decode the data bits by sampling the signal at evenly spaced time instants. The UART interface

is used for low wire count inter-processor communications, host computer communication via

USB-UART interfaces, infrared communications and device-to-device communications. In

most cases, it is a two-device bus; the use of more devices introduces hardware and software

overheads.

Serial Peripheral Interface (SPI). The SPI interface is typically used for high-speed

communication with off-chip peripherals including analogue-to-digital converters, digital-to-

analogue converters, digital output sensors and other processors. Two wires are used to carry

data bits in two directions and one wire for a clock signal that synchronises the timing between

the communicating devices. A rising or a falling edge of this signal indicates the beginning of

the transmission of each bit. A fourth signal may also be used to provide a frame for the

communication. If this signal is inactive, the other signals are ignored, which can be used to

connect multiple devices on the same bus and select one for which communication is enabled.

Inter-Integrated Circuit (IIC or I2C) and System Management Bus (SMBus). This

medium-speed interface is specially developed for communication between a host

microcontroller and several peripheral chips (memories, data converters, sensors or other

processors) on the same printed circuit board or within equipment over only two wires. One

wire carries data in both directions, while the other is used to provide a frame (start and stop

conditions) for the transaction and to synchronise the transmission of the bits through clock

pulses.

Controller Area Network (CAN), Local Interconnect Network (LIN). These serial

interfaces are only available on some microcontrollers that target automotive or other

industrial applications. Most of the protocol is implemented in hardware.

Universal Serial Bus (USB). The USB is the most popular and innovative interface for

connecting peripherals to personal computers or tablets. Some microcontrollers have built-in

slave (and rarely host) USB ports. This allows direct connection to the USB port; however, the

programmer should know the most important parts of the USB protocol and a driver is

typically required on the host computer.

Wireless communication peripherals. Wireless communication is becoming a more and

more popular interface between small devices, since it supports very flexible location and

networking options and no wires are required. There are microcontrollers with integrated

wireless transmitters and receivers (transceivers) with several frequency options and a number

of wireless protocols can be implemented by software. Bluetooth, ZigBee and the open-source

TinyOS system are among the most widely used platforms.

Introduction

1.3.4 Analogue peripherals

Several microcontrollers have analogue parts to handle analogue signals even without external

analogue circuitry. This makes microcontrollers even more compact: a single microcontroller

and only a few external components can implement a complete solution for a real-world

application that requires the monitoring of signals and the controlling of processes.

Microcontrollers that have a significant analogue part and can therefore handle both digital

and analogue signals are often called mixed-signal microcontrollers or analogue

microcontrollers.

Comparator. Comparators have two analogue voltage inputs and a digital output. Their

output is logical high if the voltage connected to their positive input is higher than the voltage

at their negative input. They may also have hysteresis to reduce potential noise-induced

switching.

Analogue-to-Digital Converter (ADC). Analogue voltages can be translated into the

digital domain using ADCs. The output is an integer number with a various number of bits. A

resolution of 10 bits is the most typical, but precision microcontrollers can have 12-, 16- or even

24-bit ADCs. Note that the accuracy is normally less than the resolution; therefore, the

datasheet should always be consulted to obtain reliable information.

Digital-to-Analogue Converter (DAC). DACs output analogue signals proportional to the

integer number at their input. The resolution range includes 8, 10, 12 or 16 bits. The output

signal can be voltage or current.

Voltage reference (VREF). All data converters (ADCs, DACs) need a reference voltage that

serves as an etalon of conversion. The input range of the ADCs and the output range of voltage

output DACs are both determined by Vref; in most cases it is between 0 and Vref. The internal

reference voltage can be switched off to support the use of more precise external reference

voltage circuits.

Capacitance-to-Digital Converter (CDC). One of the most popular modern user

interfaces is based on touch sensing that effectively replaces mechanical buttons, which have

limited reliability and lifetime. The change in a capacitance is measured, which change

depends on the proximity of the finger of the user from the sensing pad. The capacitance is

digitised and the data can be used for evaluation.

Analogue Multiplexer (MUX). Monitoring multiple analogue signals is often needed in

real-world applications. This can be supported by a network of switches, called an analogue

multiplexer, that connects one of the signals to the input of the ADC at a time. After the

conversion of a signal, the next signal can be selected. Since conversion only takes a short time,

this means a quasi-simultaneous conversion if the signals change only slowly. However, the

different signals are measured at slightly different time instants, which should be considered

anyway.

Programmable Gain Amplifier (PGA). Some microcontrollers have preamplifiers before

their integrated ADCs to support voltage range extension. The preamplifiers can have software-

programmable gains of 0.5, 1, 2, 4, 8, 16, 32, 64, 128. Single-ended and differential input PGAs

are both available.

Temperature sensor. Most mixed-signal microcontrollers include diode-based

temperature sensors that can be connected to the input of the internal ADC using the analogue

multiplexer. The on-chip sensor outputs a voltage that has linear dependence on the chip

Introduction

temperature. The accuracy of the sensor is roughly about 3 °C. It can be used to protect the

device from overheating or to estimate the ambient temperature if the power dissipation of the

microcontroller is low enough so that we can neglect self-heating.

1.4 Microcontroller classification

Depending on the different features and according to target applications microcontrollers can

be broken down into the following categories:

General-purpose microcontrollers have common digital peripherals including timers,

GPIO or UART. Their typical clock frequency is around 10 MHz.

Low power microcontrollers can operate at lower clock frequencies, from 1 MHz down to

tuning fork crystal frequency of 32768 Hz or even below. At 1 MHz the supply current is well

below 1 mA, and supply sensitivity is less than 200 A/MHz. During power down state the

supply current can fall below 1 A.

Precision mixed-signal microcontrollers incorporate 12-bit or higher resolution ADCs

and DACs. Sigma-delta ADCs can even have a resolution of 24-bits and a PGA can provide

software programmable gains in the range of 1 to 128.

High-speed microcontrollers execute most of their instructions within a single clock cycle

and can operate at frequencies from about 25 MHz to several hundred MHz.

According to the bus width there are 8-bit, 16-bit and 32-bit microcontroller families. 8-

bit microcontrollers are cheaper, much simpler to use, can consume less power, while 32-bit

microcontrollers have more processing power.

Industrial and automotive microcontrollers operate at a full industrial temperature

range of -40 °C to 85 °C. The internal peripherals have stricter specifications to provide

additional reliability under various conditions, and accuracy of the internal oscillator is better

than 1% over the full operating temperature range. These microcontrollers typically have

industrial or automotive communication peripherals like CAN buses or LIN buses.

Secure microcontrollers are used in security-sensitive applications including electronic

banking and payment, application protection, communication and more. These

microcontrollers offer protection of code and data, prevent reverse engineering, tampering,

data monitoring and physical attacks. Hardware cryptographic modules, random number

generators, fast data and code encryption are implemented to support secure applications.

Architecture and properties of the C8051Fxxx microcontroller family

2 Architecture and properties of the C8051Fxxx microcontroller

family

C8051Fxxx microcontrollers developed by Silicon Laboratories [1, 2] are among the most

powerful modern derivatives of the popular MCS-8051 MCU [2] introduced by Intel. A short

summary of these devices follows.

2.1 8051 microcontrollers

The 8051 or MCS-51 family of 8-bit Harvard architecture microcontrollers were developed by

Intel in the eighties for embedded applications. Their easily upgradable architecture proved

successful, became a standard for many manufacturers and several derivatives are still popular

on the market due to their ease of use and carefully designed peripheral handling.

The 8051 family can be easily programmed. There are many free and professional development

tools, so the 8051 microcontrollers can be used by practiced experts, lecturers, students and

hobbyists at the same time. Many source code examples are available to solve various problems

and the manufacturers provide very useful application notes, knowledge base and user forums.

Manufacturers include Silicon Laboratories, Maxim/Dallas, Analog Devices, Atmel and NXP

(formerly Philips).

Very wide ranges of speed, code and data memory size, analogue and digital peripherals, power

requirement are provided by the C8051Fxxx family developed by Silicon Laboratories. The

1 MIPS peak performance of the original 8051 microcontroller has been upgraded up to

100 MIPS peak speed and the integrated flash memory, debug interface and very rich set of

analogue and digital peripherals make the C8051Fxxx family a good choice for various

applications.

The chips can have sizes of 2 mm × 2 mm (10 pins) to 16 mm × 16 mm (100 pins).

2.2 The C8051Fxxx microcontroller family

The maximum clock frequency of the C8051Fxxx microcontrollers is in the range of 25 MHz to

100 MHz. Slower clock speeds are allowed, practically down to DC, so no minimum is specified.

The frequency of the internal oscillator is programmable, so the user can choose low power

operation at low frequencies, while higher processing speeds can be achieved at the expense of

higher power consumption. For example, the C8051F410 processor can be operated at

50 MHz, when the core supply current is about 15 mA, while at 32 kHz the device draws less

than 20 A from the supply rail, allowing long lasting operation from a battery.

The size of on-chip flash memory available varies from 2 kbyte to 128 kbyte, while the internal

RAM can store 256 to 8448 bytes of data. The flash memory contains the code and may also

be written by the code to support non-volatile data storage.

The C8051Fxxx microcontrollers can have up to six 16-bit timers and a programmable counter

array with 6 independent channels. Some devices include a real-time clock with battery backup

power option.

Communication peripherals include UARTs, I2C/SMBus, SPI, USB, CAN, LIN serial interfaces

and the parallel external memory interface that also supports the connection of fast external

ADCs, DACs and more.

From 6 to 64 GPIO pins are available with configurable output driving options (open-drain

with or without internal pull-up and push-pull mode).

Architecture and properties of the C8051Fxxx microcontroller family

The C8051Fxxx family provides high-performance analogue peripherals. ADC resolutions

from 10 to 12 bits with sample rates from 100 kHz to 200 kHz are common, while the

C8051F06x devices incorporate two independent 1-MHz 16-bit ADCs, and the C8051F35x

microcontroller has an 8-channel 24-bit ADC with programmable-gain amplifier to resolve

sub-V signals. Some devices have a 32-channel multiplexer before their ADCs, and DACs with

resolutions of 8 to 12 bits are also available. The list of analogue peripherals may also include

up to 3 comparators with programmable response time and hysteresis.

The company provides several development tools including a free integrated development

environment that supports the use of the popular open-source Small Device C Compiler

(SDCC). A configuration wizard application helps much in configuring the peripherals properly

by generating even the source code (assembly or C).

Hardware development platforms are also available. There are simple and full-featured

development kits for almost all C8051Fxxx processors.

2.3 The CIP-51 architecture

The Silicon Laboratories C8051Fxxx microcontrollers have the so-called CIP-51 architecture

[6]. The simplified block diagram is shown in Figure 2.1.

Figure 2.1. A simplified CIP-51 architecture.

The architecture is closely matched with the original 8051 architecture developed by Intel; code

compatibility is provided. The main improvements include much faster instruction execution,

integrated flash memory and larger integrated RAM.

In the following the main features of the architecture will be discussed.

2.3.1 Registers

The following table summarises the 8-bit registers, with short descriptions and the reset values

[2]. The registers can be used in several instructions. The accumulator (A or ACC) holds the

result of arithmetic and logic operations and the program status word (PSW), and contains

RAM ADDRESS

INSTRUCTION
REGISTER

ALU

PSW ACC
TMP1

TMP2

I/O PORTS

FLASH/PGM MEMORY

DATA POINTER

PROGRAM COUNTER

PC INCREMENTER
PROGRAM
ADDRESS
REGISTER

BUFFER

INTERRUPT
CONTROLLER

SFR INTERFACE

MEMORY
INTERFACE

PERIPHERALS

STACK POINTER

RAM

INTERNAL BUS

Architecture and properties of the C8051Fxxx microcontroller family

several flags modified by operations. Additional registers support indirect addressing and stack

handling. Instructions typically execute faster when the operands are registers.

Register Description Reset value

A, ACC accumulator, ALU result 0

B
general-purpose register and register for multiplication and

division
0

R0.–R7
general-purpose registers, R0 and R1 are also used in indirect

addressing
0

PSW

Bit 7: CY
carry bit (set by addition or subtraction, ADDC,

SUBB)
0

Bit 6: AC
auxiliary carry bit (at 3rd bit, used in 4-bit

arithmetics)
0

Bit 5: F0 user flag 0

Bit 4: RS1 R0–R7

at

00: 0x00

R0–R7 at

01: 0x08

R0–R7 at

10: 0x10

R0–R7 at

11: 0x18

0

Bit 3: RS0 0

Bit 2: OV
overflow (set by instructions MUL, DIV, ADD,

SUBB)
0

Bit 1: F1 user flag 0

Bit 0:

PAR
parity bit: 1 if sum of bits in A is 1 0

DPH, DPL
DPTR, data pointer, used in 16-bit indirect code or RAM

addressing
0

SP
stack pointer, modified by subroutine and interrupt routine calls

or push/pop instructions
7

2.3.2 Special function registers

The special function registers (SFRs) are used to access the peripherals and some registers. For

example, ACC is the same as A (accumulator); therefore, it can be accessed as an SFR or as a

register. This allows the accumulator to be used in some instructions when registers cannot be

used (like push and pop, see later)

SFRs can be accessed by direct addressing instructions, where the address falls in the range of

0x80–0xFF. Therefore, SFRs can be thought of as memory-mapped registers; the program can

read or write their content as if they were in the RAM.

The following table shows the standard 8051 SFR registers.

Architecture and properties of the C8051Fxxx microcontroller family

Address 0 1 2 3 4 5 6 7

0xF8

0xF0 B

0xE8

0xE0 ACC

0xD8

0xD0 PSW

0xC8

0xC0

0xB8 IP

0xB0 P3

0xA8 IE

0xA0 P2

0x98 SCON SBUF

0x90 P1

0x88 TCON TMOD TL0 TL1 TH0 TH1

0x80 P0 SP DPL DPH

Note that SFRs in column 0 are bit addressable.
The SFRs listed in the table are the following (some of them will be discussed in the next

chapters):

 P0, P1, P2 and P3 are the port input/output SFRs that are associated with the pins of

the microcontroller. For example, the byte written to P0 determines the logic signal on

the 8 pins corresponding to P0. The programmer must be careful: for example, writing

1 to P0 sets the least significant bit but will clear all the other 7 bits. Since the P0 register

is bit addressable, a single bit can be written or read without affecting the other bits.

For example, setting P0.0 sets the least significant bit only; all the other bits remain

unchanged. Bit addressing is also useful for accessing a single bit of the status and other

registers where the individual bits have special meanings.

 ACC and B provide SFR access to the accumulator and to the B register.

 PSW is the program status word. Its individual bits are accessible using bit addressing.

For example, PSW.7 is the carry bit.

 SP is the stack pointer.

 DPL and DPH are the low- and high-order bytes of the data pointer DPTR.

 IE and IP are the interrupt enable and priority registers. Their individual bits are

accessible using bit addressing.

 TCON, TMOD, TL0, TH0, TL1 and TH1 are used to access and control the Timer 0 and

Timer 1 peripherals.

Architecture and properties of the C8051Fxxx microcontroller family

SCON and SBUF are associated with the serial port communication peripheral.

2.3.3 Memory structure

8051 processors have Harvard architecture [2]; they have separate memory for code and data.

The code memory can store constant data, so it can be used as a read-only data memory. Two

types of RAM are available: internal and external. The internal RAM size is 256 bytes, while

the external RAM is addressed by a 16-bit pointer, so the maximum size is 64 kbyte.

Figure 2.2 shows the internal RAM structure. The first 128 bytes (from 0x00-0x7F) can be

accessed by direct or indirect addressing. The general-purpose registers occupy 8 bytes at the

location defined by the RS0 and RS1 bits of the PSW register. The 16-byte space at address

0x20-0x2F is bit addressable, so 128 individual bit variables can be used here.

Figure 2.2. Internal memory structure of CIP-51 microcontrollers.

The SFR registers are mapped to the upper 128 bytes of the address space. SFRs are accessed

by direct addressing; otherwise, the upper 128 bytes of the internal RAM can be used. Note

that since stack handling is based on indirect addressing by the stack pointer, the upper 128

bytes of RAM can also be used as stack space. Upon reset, the stack pointer has the value of 7

and increases from there. However, it is best to set the initial value of the stack pointer (SP) to

the first free location of data memory, just above the variables. In this case, all free memory is

available as stack.

The external RAM (XRAM) was originally provided by SRAM chips, but modern C8051Fxxx

processors integrate a certain amount (up to 8192 bytes) of this kind of RAM. XRAM memory

can only be accessed by 16-bit indirect addressing using the DPTR pointer (DPH and DPL

registers).

XRAM at 0x00-0xFF can also be accessed by 8-bit indirect addressing using either the R0 or

the R1 register.

Since off-chip memory can be slower than the on-chip memory, the control timing (data setup

and hold time, write/read pulse width, etc.) can be set by dedicated SFR registers.

0x80-0xFF
(indirect)

0x00-0x7F
(direct,

indirect)

SFR
0x80-0xFF

(direct)

0x30-0x7F

0x20-0x2F

0x18-0x1F

0x10-0x17

0x08-0x0F

0x00-0x07RS1,RS0=00

RS1,RS0=01

RS1,RS0=10

RS1,RS0=11

BIT
ADDRESSABLE

0x00-0xFF 0x00-0x7F

Architecture and properties of the C8051Fxxx microcontroller family

Figure 2.3 shows the XRAM arrangement in C8051Fxxx processors. The processor can be

configured to access the on-chip memory only, the off-chip memory only or on-chip only if it

is available and off-chip otherwise. The 8-bit addressable space can also be moved to another

256-byte page. Note that not all C8051Fxxx processors support off-chip memory.

Figure 2.3. External memory structure of CIP-51 microcontrollers.

2.3.4 Addressing modes

Data can be accessed in different ways depending on its location (register, memory or code)

and on the so-called addressing mode. The following table summarises the four possible

addressing modes and shows examples.

Addressing

mode

MNEMONIC

example

Description

register MOV A, B A = B, copy the content of B to A

immediate

constant

MOV A, #10 A = 10 (value), copy the value 10 to A

direct MOV A, 10

MOV A, P0

A = byte in internal RAM at address 10

A = bits at port P0 (SFR access)

indirect MOV A, @R0

MOVX A,@DPTR

A = byte in internal RAM at address pointed to by R0

A = byte in external RAM at address pointed to by DPTR

2.3.5 Instructions

A brief summary of the available instructions are given in the following [2]. Instructions are

classified into groups and tables summarise their function and the flags affected by them.

ON-CHIP
0x0100-

(16-bit indirect)

0x0000-0x00FF
(8-bit indirect)

OFF-CHIP
0x0100-0xFFFF
(16-bit indirect)

0x0000-0x00FF
(8-bit indirect)

Architecture and properties of the C8051Fxxx microcontroller family

2.3.5.1 Arithmetic operations

MNEMONIC OPERATION

(C-style syntax)

ADDRESSING FLAGS

DIR IND REG IMM CY AC OV P

ADD A, byte A=A+byte

ADDC A, byte A=A+byte+C

SUBB A, byte A=A–byte–C

INC A A=A+1

INC byte byte=byte+1

INC DPTR DPTR=DPTR+1 only DPTR

DEC A A=A–1 only A

DEC byte byte=byte–1

MUL AB A=(B*A) % 256

B=(B*A) / 256

only A and B 0

DIV AB A=integer part of A/B

B=remainder of A/B

only A and B 0

DA A Decimal Adjust only A

2.3.5.2 Logic operations

MNEMONIC OPERATION

(C-style syntax)

ADDRESSING FLAG

DIR IND REG IMM P

ANL A,byte A=A & byte

ANL byte,A byte=byte & A

ANL byte,#const byte=byte & const

ORL A,byte A=A | byte

ORL byte,A byte=byte | A

ORL byte,#const byte=byte | const

XRL A,byte A=A ^ byte

XRL byte,A byte=byte ^ A

XRL byte,#const byte=byte ^ const

Architecture and properties of the C8051Fxxx microcontroller family

2.3.5.3 Accumulator manipulation

MNEMONIC OPERATION

(C-style syntax)

ADDRESSING FLAGS

CY AC OV P

CRL A A = 0 only A

CPL A A = ~A only A

RL A Rotate A left by 1 bit

A = A << 1

only A

RLC A Rotate A left through Carry

A = (A << 1) + C

C = bit 7 of the original value of A

only A

RR A Rotate A right by 1 bit

A = A >> 1

only A

RRC A Rotate A right through Carry

A = (A >> 1) + (C << 7)

C = bit 7 of the original value of A

only A

SWAP A Swap nibbles of A only A

2.3.5.4 Bit-variable operations

MNEMONIC OPERATION (C-style syntax)

ANL C,bit C = C && bit

ANL C,/bit C = C && !bit

ORL C,bit C = C || bit

ORL C,/bit C = C || !bit

MOV C,bit C = bit

MOV bit,C bit = C

CLR C C = 0

CLR bit bit = 0

SETB C C = 1

SETB bit bit = 1

CPL C C = !C

CPL bit bit = !bit

Architecture and properties of the C8051Fxxx microcontroller family

2.3.5.5 Data move operations

MNEMONIC OPERATION

(C-style syntax)

ADDRESSING

DIR IND REG IMM

MOV A,byte A = byte

MOV byte,A byte = A

MOV byte1, byte2 byte1 = byte2

MOV DPTR,#const16 DPTR = 16-bit immediate constant

PUSH byte SP = SP+1

RAM[SP]= byte

POP byte byte = RAM[SP]

SP = SP-1

XCH A,byte exchange the content of A and byte

XCHD A,@Ri exchange low nibbles of A and

RAM[Ri]

2.3.5.6 External and code memory access

MNEMONIC OPERATION (C-style syntax)

MOVX A,@Ri A = XRAM[Ri]

MOVX @Ri,A XRAM[Ri]= A

MOVX A,@DPTR A = XRAM[DPTR]

MOVX @DPTR,A XRAM[DPTR] = A

MOVC A,@A+DPTR A = CODE[A+DPTR]

MOVC A,@A+PC A = CODE[A+PC]

Architecture and properties of the C8051Fxxx microcontroller family

2.3.5.7 Jump and subroutine call

MNEMONIC OPERATION (C-style syntax)

JMP address Jump to address

PC = address

JMP @A+DPTR Jump to A+DPTR

PC = A+DPTR

ACALL address Call subroutine at 11-bit <address>

PC = PC+2

SP = SP+1

RAM[SP] = PC lower order byte

SP = SP+1

RAM[SP] = PC higher order byte

PC = address

LCALL address Call subroutine at 16-bit address

PC = PC+3

SP = SP+1

RAM[SP]= PC lower order byte

SP = SP+1

RAM[SP] = PC higher order byte

PC = address

2.3.5.8 Return from subroutines and interrupts

MNEMONIC OPERATION (C-style syntax)

RET Return from subroutine

PC = RAM[SP]*256 + RAM[SP-1]

SP = SP-2

RETI Return from interrupt

PC = RAM[SP]*256 + RAM[SP-1]

SP = SP-2

restore the interrupt logic to accept further interrupts

NOP No operation

Architecture and properties of the C8051Fxxx microcontroller family

2.3.5.9 Conditional jumps

Note that if a conditional jump occurs, the program counter is updated as PC=PC+address,

where the address is an 8-bit two’s complement number in the range of -128 to 127.

MNEMONIC OPERATION ADDRESSING

DIR IND REG IMM

JZ address Jump if A = 0 only A

JNZ address Jump if A !=0 only A

DJNZ byte, address Decrement and jump if not zero

CJNE A,byte, address Jump if A != byte

CJNE byte,#const, address Jump if byte != const

JC address Jump if C = 1

JNC address Jump if C = 0

JB bit, address Jump if bit = 1

JNB bit, address Jump if bit = 0

JBC bit, address Jump if bit = 1; CLR bit

2.3.6 Instruction timing and coding

The CIP-51 architecture executes most of the operations in 1 or 2 system clock cycles.

Depending on the specific device, the system clock can have maximum frequencies from

25 MHZ to 100 MHz; therefore, the fastest instruction execution time can be as low as 10 ns.

The following table shows the distribution of the cycle time for the available instructions. Note

that processors operating at clock frequencies above 25 MHz may use pipelining (prefetching

instructions into a fast buffer) due to flash code memory access time limitations. This means

that the processor may stall for a few clock cycles in some cases (for example, when a jump or

a branching occurs).

cycles 1 2 2 or 4 3 3 or 5 4 5 4 or 6 6 8

instructions 26 50 5 10 7 5 2 1 2 1

The 2 or 4, 3 or 5 and 4 or 6 cycles correspond to conditional branch instructions that have two

different execution times depending on the evaluation result of the condition. If the jump

occurs, i.e. the condition is met, then the execution needs two more clock cycles for the jump.

For example, JZ takes 4 clock cycles, if the accumulator is zero, and two less otherwise.

The CISC architecture of the 8051 processors allows instructions to be coded using 1, 2 or 3

bytes. The first byte is associated with the type of the instruction, while the remaining one or

two identify the operands. A few examples are shown in the next table.

instruction 1. byte 2. byte 3. byte cycles

ADD A, Rn 0010 1nnn 1

Architecture and properties of the C8051Fxxx microcontroller family

ADD A, #10 0010 0100 0000 1010 2

ANL 15,#10 0101 0011 0000 1111 0000 1010 3

DIV AB 1000 0100 8

JZ address 0110 0000 relative address 2 or 4

2.3.7 Interrupt handler

Event handling is one of the most important aspects of embedded programming. Events can

be generated by peripherals such as timers, communication ports, and analogue-to-digital

converters and also by changes of external signals. In the 8051 environment, events can

generate interrupts, which can be serviced by subprograms. If an event occurs, a flag is set

(which can even be polled by software) and an associated interrupt routine is called if enabled.

The interrupt mechanism is visualised in Figure 2.4. When the event occurs, the system detects

this within the system clock cycle time t (the reciprocal of the system clock frequency). Upon

completion of the currently running instruction (which can take from 1 to 8 cycles; see the

previous chapter), an LCALL instruction is executed and the program jumps to the interrupt

service routine. After processing, a RETI instruction is executed to return to the main program

and restore the interrupt logic to accept further interrupts. One can easily see that the time

elapsed from the event to the execution of the first instruction of the interrupt handler requires

a minimum latency time and has some uncertainty as well.

Figure 2.4. Interrupt mechanism. The interrupt latency time varies from 7 to 19

system clock periods.

It is very important to keep this in mind, since in a real-time application it can cause problems.

For example, if a periodic interrupt is used to generate a square wave, this causes some

fluctuation of the switching times, which should be considered, especially when switching

times are short. For example, if a 100-kHz square wave is to be generated by a timer interrupt

routine, the routine must be called 200000 times per second to change the signal state at every

5 s. At a system clock frequency of 25 MHz, the clock period is 40 ns, so the latency time can

Instruction
#1

Instruction
#2

Instruction
#3

IRQ

LC
A

LL
 (5

t)

In
te

rr
u

p
t

h
an

d
le

r

R
ET

I (
6

t)

t t t t

latency: 7t -19t

main program paused

D
et

ec
t

(
t)

Architecture and properties of the C8051Fxxx microcontroller family

vary from 740 ns to 1940 ns, resulting in an uncertainty of (19-7)40 ns=480 ns. This can

cause a maximum error of 9.6% in the 5-s switching time.

The main program can be interrupted at any time, even during a task requiring multiple

instructions. This means that all temporary variables and register content modified by the

interrupt service routine must be saved at the beginning of the interrupt handling routine and

must be restored upon return to the main program. Also note that the peripheral state or the

input/output can also be changed during interrupt handling, which also needs careful

attention.

If an interrupt service routine is running, another request can only be serviced if it has higher

priority. Only two priority levels are provided, so no further interrupts can be serviced. The

priority of the interrupts is defined by the bits of the IP, EIP1 and EIP2 registers.

Correspondingly, there are only two priority levels: normal and high. If more interrupts are

detected simultaneously, the higher priority interrupt will be serviced first. Since the interrupt

flag set by the event can be cleared only when the associated interrupt routine is called, no

interrupts are lost if multiple requests are detected or the request occurs during the servicing

of another one. Of course, if a request is generated two or more times without servicing, only

the last request can be serviced.

Interrupt sources are associated with a number that also defines priority (lower number means

higher priority). The execution address of the interrupt routines is fixed and only 8 bytes are

available up to the next address. Therefore, longer routines are located elsewhere and only a

jump to that space is needed here.

A few interrupt flags are automatically cleared by the hardware when the service routine is

called; all others must be cleared by the software – otherwise, the request will remain active

and will be serviced continuously.

Interrupts can be individually enabled and disabled using the bits of the IE, EIE1 and EIE2

registers. IE.7 (which can also be accessed as the SFR bit EA) is a global enable bit. Note that

if an interrupt is enabled, it must have an interrupt handler code (interrupt service routine);

otherwise, the processor can go into an uncertain state.

The interrupt sources available on C8051F410 processors are listed in the following table [6].

Source
Execution

Address

N
u

m
b

e
r

E
n

a
b

le
 b

it

P
ri

o
ri

ty
 b

it
 Flag

name
Cleared by

hardware

Reset 0x0000 - - yes

/INT0 external 0x0003 0 IE.0 IP.0 IE0 yes

Timer 0 overflow 0x000B 1 IE.1 IP.1 TF0 yes

/INT1 external 0x0013 2 IE.2 IP.2 IE1 yes

Timer 1 overflow 0x001B 3 IE.3 IP.3 TF1 no

UART 0x0023 4 IE.4 IP.4 RI, TI no

Timer 2 overflow 0x002B 5 IE.5 IP.5 TF2H, TF2L no

Architecture and properties of the C8051Fxxx microcontroller family

SPI0 0x0033 6 IE.6 IP.6 SPIF, WCOL,MODF,

RXOVRN

no

SMB0 0x003B 7 EIE1.0 EIP1.0 SI no

smaRTClock 0x0043 8 EIE1.1 EIP1.1 ALRM, OSCFAIL no

ADC0 Window

Comparator

0x004B 9 EIE1.2 EIP1.2
AD0WINT no

ADC0 End of

Conversion

0x0053 10 EIE1.3 EIP1.3 AD0INT no

Programmable

Counter Array

0x005B 11 EIE1.4 EIP1.4 CF, CCFn (up to six

flags)

no

Comparator 0 0x0063 12 EIE1.5 EIP1.5 CP0FIF, CP0RIF no

Comparator 1 0x006B 13 EIE1.6 EIP1.6 CP1FIF, CP1RIF no

Timer 3 overflow 0x0073 14 EIE1.7 EIP1.7 TF3H, TF3L no

Voltage regulator

dropout

0x007B 15 EIE2.0 EIP2.0 - no

Port match 0x0083 16 EIE2.1 EIP2.1 - no

Assembler and C programming

3 Assembler and C programming

Programming 8051 microcontrollers requires special attention due to limited processing

power, small memory space and the direct access of peripherals. No operating system is used

in most cases; therefore, the programmer must take care of everything that the microcontroller

does. The programmer must have extensive knowledge about the hardware, including memory

types, instructions, SFRs, the interrupt handler and digital and analogue peripherals.

Simple programs can be written in assembler, but C is recommended for general-purpose code

development. Although code optimisations are done by the C compiler, some fragments of code

can be further enhanced by mixing assembler and C. C compilers allow inserting assembly code

in C and C and assembly code can work on the same variables. C programmers can write

efficient embedded code only if they know assembler as well.

3.1 SDCC C compiler

There are many 8051 C Compilers on the market. The most popular professional compiler is

the KEIL C51 [3] and there exists an open-source alternative called Small Device C Compiler

(SDCC) [4]. The free availability, good quality and the detailed documentation of SDCC make

it an ideal tool to use in education. Here only the most important additions to C are mentioned

that are needed to use the features of the 8051 processor.

Variables can be placed in different memory types; for this purpose, the compiler supports the

declaration of storage classes:

__data unsigned char x; // internal RAM

__xdata unsigned char x; // external RAM

__idata unsigned char x; // internal indirectly addressable RAM

__pdata unsigned char x; // 8-bit addressed external RAM

__code unsigned char x=3; // constant in code memory

__bit b; // bit addressable RAM

__sfr __at 0x80 P0; // SFR byte

__sbit __at 0xD7 CARRY; // SFR bit

__xdata __at (0x4000) unsigned char x[16]; // external RAM, absolute address

__code __at (0x7f00) char Msg[] = "Message"; // code memory, absolute address

__bit __at (0x80) GPIO_0; // bit, absolute address

Inserting assembly into C can be done using the __asm and __endasm directives:

unsigned char x;

__asm // beginning of assembly code fragment

 clr a /* C style comment */

 mov R0,#0 // P0, C++ style comment

 mov R1,#0x80 // C style hexadecimal constant

 mov a,R2 // copy the content of R2 register to accumulator

 mov _x,a // accessing x declared in C

 jz L1 // use of a label

 mov R0,#0 // clear register R0

L1:

 mov R1,#1 // load 1 into register R1

__endasm; // end of assembly code fragment

The variable types are listed in the following table.

Assembler and C programming

type width

(bits)

default signed range unsigned range

__bit 1 unsigned - 0,1

char 8 signed -128–127 0–255

short 16 signed -32768–32767 0–65535

int 16 signed -32768–32767 0–65535

long 32 signed -2147483648

+2147483647

0–4294967296

float

IEEE754

32 signed 1.175494351 ∙ 10-38,

3.402823466 ∙ 10+38

pointer 8-24 generic

Most of the variable types are the same as in standard C, but due to the limited resources, there

are some exceptions. For example, the SDCC compiler allows defining bit variables using the

__bit keyword. The variable can be placed in the bit addressable memory space, optimising

memory usage. Floating-point arithmetic is supported; however, only single precision 4-byte

wide float type variables can be used. This is fine in most embedded applications due to its 6-

7 digits of precision. Double precision is not available, because it would take a long execution

time and significantly longer code.

Generic pointers are rather special, since the 8051 microcontroller uses several different

memory types. The 3-byte wide generic pointer defines the address in two bytes and the

memory type (internal RAM, external RAM or code memory) on the third byte. Of course, the

programmer can declare a pointer that points explicitly to an internal memory location. This

pointer is stored in a single byte since only 256 different locations are possible.

Microcontroller programming often requires the manipulation of bits. Here are two simple

examples:

x = x & ~(1 << 3); // clearing a bit

x = x | (1 << 3); // setting a bit

Working with integer numbers that are not 8, 16 or 32 bits long is also common. Left or right

shifting may be required, but care must be taken concerning signed and unsigned numbers,

since the behaviour of the shift operator is different for signed and unsigned numbers. In most

cases, unsigned integers are used for the data of the peripherals (such as counter value or ADC

value). The programmer should always declare the variable as unsigned if it contains an

unsigned number. However, the use of negative constants can help in some cases, especially

when calculating the value used in timer programming (see Chapter 5):

unsigned short x; // define an unsigned 16-bit integer variable

x = -100; // this is equivalent to 65536-100, i.e. 65436

Note that 65536 cannot be represented by an unsigned short variable and long arithmetic

would take more time and longer code.

3.2 Interrupt programming in assembler

A simple assembler interrupt service routine example code is listed below. At the beginning,

the registers in use are pushed onto the stack and restored at the end of the routine. The

Assembler and C programming

interrupt pending flag (in this example RI) is cleared. Note the use of assembler-style

comments.

push ACC ; ACC (SFR access of A) to the stack

push PSW ; status register to the stack

clr RI ; clear interrupt flag

mov A,SBUF ; A is changed here

add A, #1 ; A and PSW are changed here

mov P0,A ; copy the content of the accumulator to port P0

pop PSW ; PSW restored here

 ; reverse order!

pop ACC ; ACC (A) is restored here

reti ; return to the main program

If the R registers are used, they must be saved and then restored as well. However, the 8-byte

register bank can be moved to four memory locations; therefore, the interrupt routine can use

one bank while the main code uses another bank.

push PSW ; status register to the stack

mov PSW,#8 ; use register bank #1

; use R registers here

pop PSW ; PSW and the register bank selection is restored here

The following complete assembler code illustrates the use of a timer interrupt to make an LED

blink. The system clock after reset for the C8051F410 processor is 191406 Hz, and its 16-bit

Timer 2 runs with 1/12 of this rate by default: 191406/12 Hz 15950 Hz. Since the interrupt

occurs when the 16-bit timer overflows, 15950 steps are needed to reach 216=65536 in order to

wait 1 second before overflow. Therefore, the initial value of the timer should be set to 65536-

15950 = 49586 = 0xC1B2, and this value will be reloaded upon overflow automatically. This

way, a periodic interrupt will be generated every second. Note that the detailed description of

the peripherals can be found in the following chapters.

$include (C8051F410.INC) ; load the definitions used for the C8051F410 MCU

LED EQU P0.2 ; the LED is connected to bit 2 of port 0.

CSEG at 0000h

 jmp Main ; reset, jump to the label ‘Main’

ORG 002Bh ; Timer 2 interrupt location

 anl TMR2CN,#07Fh ; clear interrupt flag

 cpl LED ; complement LED

 reti ; return from interrupt

Main:

 anl PCA0MD, #0BFh ; switch watchdog off

 mov PCA0MD, #000h ; switch watchdog off

 mov XBR1, #040h ; enable the crossbar to allow input and output

 mov TMR2RLL, #0B2h ; set the Timer 2 reload register (low and high bytes)

 mov TMR2RLH, #0C1h ; to provide 1-Hz interrupt rate

 mov TMR2L, #0B2h ; Timer 2 counter initial value

 mov TMR2H, #0C1h ; is the same as the reload value

 mov TMR2CN, #004h ; Start Timer 2 now

 mov IE, #0A0h ; enable global interrupts and Timer 2 interrupt

 jmp $; repeat forever, interrupt routine will blink the LED

END

Assembler and C programming

3.3 Interrupt handling in C

The SDCC C compiler for the 8051 family of processors supports interrupt programming. If a

function is intended to be an interrupt service routine, it must be declared accordingly. The

programmer should use the __interrupt keyword and include the number of the interrupt to

identify which interrupt will be handled. For example:

void Timer2_ISR(void) __interrupt 5

or preferably using predefined constants

void Timer2_ISR(void) __interrupt INT_TIMER2

This code defines an interrupt service routine (no return value or input arguments can be

defined) for the Timer 2 interrupt that is numbered as 5. The location of the R0—R7 register

bank can also be defined:

void Timer2_ISR(void) __interrupt INT_TIMER2 __using 1

where the number following __using keyword defines which one of the four possible register

banks are used (the default is 0). This can help the compiler to generate faster code since

saving/restoring the registers is not necessarily needed.

An interrupt service routine can use local variables, which are initialised in any execution of

the routine. A simple example is the use of temporary variables. However, in some cases a

variable must retain its value after exiting from the interrupt service routine. For example, if

the code must count how many interrupts are generated, a counter value must be incremented

each time the interrupt routine is called. This variable can be declared as a global variable just

at the beginning of the code, but if it is used in the interrupt routine only, it is best to hide the

variable from other parts of the code. In this case, the variable should be declared in the

interrupt service routine using the static keyword. The following example code toggles the state

of an LED upon every hundredth Timer 2 overflow interrupt request. The static variable named

‘counter’ counts how many requests are detected, and if this number reaches 100, the LED is

toggled. Since the counter value is only used in the interrupt routine, it can be declared within

the scope of the routine. Note that the initialisation of the variable is done only when the

program starts.

/***

Timer 2 interrupt service routine

**/

void Timer2_ISR(void) __interrupt INT_TIMER2

{

 static unsigned int counter = 0; // will be initialised only once!

 TMR2CN&=~0x80; // or TF2H=0, clear interrupt pending flag

 counter++; // increment the value of the counter variable

 if (counter == 100) // the routine has been called 100 times

 {

 counter = 0; // reset counter

 LED = !LED; // complement LED

 }

}

If a variable is used both in an interrupt routine and in other parts of the program then it must

be declared as volatile:

// define the global variable that is used both in the interrupt routine

// and in the main program

volatile unsigned char counter;

Assembler and C programming

/***

Timer 2 interrupt service routine

**/

void Timer2_ISR(void) __interrupt INT_TIMER2

{

 TMR2CN&=~0x80; // or TF2H=0, clear interrupt pending flag

 counter++; // increment the value of the counter variable

}

The volatile keyword tells the compiler that the variable can be changed at any time, so it

cannot be assumed to remain unchanged in a sequence of a few lines of computations. It is a

typical error to get unexpected results due to missing volatile declarations.

There are several considerations to be kept in mind if both interrupts and regular code work

on the same data. The main program may work on data in several assembler instructions that

are hidden from the programmer. For example, checking the value of a 16-bit number needs

several assembler instructions: the higher- and lower-order bytes must be separately checked

– it is not an atomic operation. If an interrupt routine changes the value of this integer during

this process, an unexpected error can occur. Therefore, non-atomic operations must be

protected. Even if the variable is an atomic type (bit or byte), it may be used multiple times in

an instruction like in y=x*x.

One solution is the use of critical blocks as shown below:

volatile unsigned short x; // variable declaration

.

.

/***

Interrupt service routine

**/

void Timer2_ISR(void) __interrupt INT_TIMER2

{

 TF2H=0; // clear interrupt pending flag

 x++; // increment the value of x

}

.

.

.

__critical // define the critical block

{

 if (x>1024) Do_Something(); // here x cannot be changed by

}

At the beginning of the critical block, the compiler disables interrupts (saves then clears EA)

and at the end re-enables them if necessary (restores the value of EA); therefore, no interrupt

can be executed within the critical block. Note that this may cause extra interrupt latency and

even missing interrupts if the critical block needs too much time to complete.

A better solution is to copy the value to be used into a temporary variable

unsigned short temporary;

__critical

{

 temporary = x; // fast execution

}

if (temporary >1024) Do_Something();

In this case the interrupts are disabled for a short time.

Assembler and C programming

During the execution of the __critical block all interrupts are disabled. It is also possible to

disable only the interrupt that can modify the variable:

unsigned short temporary;

unsigned char saved_IE = IE;

IE &= ~0x20;

temporary = x; // fast execution

IE = saved_IE;

if (temporary >1024) Do_Something();

It is also possible to protect a variable from being modified by the interrupt routine without

disabling the interrupt by introducing a user flag as illustrated in the following example.

In the main code:

volatile __bit protect_x; // flag variable

volatile unsigned short x; // this variable can be changed in the

 // interrupt service routine

protect_x=1; // switch protection on

if (x>10) Do_Something(); // here x cannot be changed

protect_x=0; // switch protection off

In the interrupt service routine:

if (!protect_x) // allow changes only if protect_x is 0

{

 x=(ADC0H << 8) | ADC0L; // do the change of x

}

In some cases, it can be useful to update the variable only if it is required by the main program.

In the main code:

volatile __bit update_x; // flag variable

volatile unsigned short x; // this variable can be changed in the

 // interrupt service routine

update_x=1; // initiate update

while (!update_x);

if (x>10) Do_Something(); // here x cannot be changed

In the interrupt service routine:

if (update_x) // apply changes only if update_x is 1

{

 x=(ADC0H << 8) | ADC0L; // do the change of x

 update_x = 0; // notify about the update

}

Note that some events generate the same interrupt. For example, interrupt 6 corresponds both

to serial port receive and transmit. Therefore, the interrupt service routine must check if the

RI or the TI interrupt flag is set and execute the code accordingly.

3.4 Interrupt programming guidelines

Interrupt programming is rather difficult, as there are many potential pitfalls. Response time,

latency, processing time, variable and memory content, priority, peripheral status,

simultaneous requests and a lot more are all to be considered carefully. Debugging is not easy

due to the complexity and the differences between real-time versus single stepping operating

modes. Here are some guidelines to follow to reduce the probability of unexpected behaviour.

Assembler and C programming

 If the interrupt service routine and the rest of the code work on the same data,

synchronisation must be carefully designed.

 Atomic and non-atomic operations should be identified. Temporary results of non-

atomic operations on data must be protected from being modified by an interrupt

service routine. If the programmer is not absolutely sure if a variable is used only once

in an atomic operation, the variable must be protected from change by the interrupt

service routine.

 Before enabling the interrupt, the corresponding peripheral must be configured and

the variables used must be initialised.

 An enabled interrupt must have an interrupt service routine.

 The stack must have enough space for saving and restoring variables and for

subprogram calls. It is best to set the initial value of the stack pointer (SP) to the first

free location of data memory, just above the variables. In this case, all free memory is

available as stack. C compilers typically do this.

 Interrupt routines should take as short a time as possible, and only the most important

processing that cannot be done by the main program should be performed here.

 Too frequent interrupt calls can slow the processor down; too frequent multiple

concurrent interrupt requests can cause a failure to service certain requests.

 Multiple interrupts can generate extra interrupt latency time – another reason to keep

interrupt service routine execution time as short as possible.

 Interrupt pending flags must be cleared in the interrupt service routine.

 Interrupt priorities must be taken into account. Priority of critical interrupts requiring

fast response must be set to high.

 Consider using different register banks for interrupts.

 Several interrupt flags can be associated with the same interrupt routine; therefore, the

routine must take care all of them.

 Do not mix event handling by polling the interrupt pending flag with event handling by

an interrupt service routine. Choose between the two possibilities.

 Avoid the use of functions (except inline functions) in interrupt service routines. They

can be slow and can be non-reentrant. Only reentrant functions can be called while one

instance is already running. On the other hand, reentrant functions are slower and need

more resources. For example, floating-point arithmetic and 16-bit and 32-bit integer

multiplication, division and modulus operations use non-reentrant support functions.

See the SDCC manual how to overcome this limitation.

3.5 Using an integrated development environment and the associated tools

Silicon Laboratories provides a free integrated development environment (IDE) and several

other software tools to support code development [1].

Many different compilers can be integrated with the IDE, including the open-source and free

SDCC C compiler. In the Tool Chain Integration menu item the compiler can be selected.

Projects can be created and header and C source files or libraries can be added to the project

as usual in IDEs.

The IDE handles the USB debug adapter that connects the PC to the target microcontroller.

The adapter allows the downloading of the compiled code and also provides debug functions.

After compilation, the code can be downloaded.

Assembler and C programming

Breakpoints can be defined, so after starting the code, real-time execution will automatically

stop when a breakpoint is found. This means that the real system can be monitored and no

simulation is performed. During debugging both the assembly and C code can be viewed.

Another very useful feature is the watch window, which can show the actual content of several

variables. Besides this, there are many debug windows available to view and even change the

contents of the registers, memories and peripherals of the 8051.

Single stepping, full speed execution, run-to-cursor execution are all possible. An example

screenshot of the IDE can be seen in Figure 3.1. Solid red circles indicate breakpoints, while

the blue bar shows the current source line being executed. Keyword highlighting is also

provided.

On the right the peripheral watch windows – programmable counter array (PCA) window; the

8051 register (including the program counter, PC and accumulator, ACC) window; the

disassembly windows and the variable watch window (which shows the INT0counter and the

PCAcounter) – can be seen. Red colour indicates recently changed values.

Figure 3.1. Debugging in the Silicon Laboratories IDE.

Note that peripherals are stopped if the program is paused in the debugger, and after a single-

step operation the code is halted again. This means that all peripherals are stopped at this

point. This must be kept in mind, because full-speed execution might differ significantly.

Examples are given below.

 Assume that the voltage reference is switched on in a program line and in the next line

an analogue-to-digital conversion is initiated. Since the voltage reference needs a

Assembler and C programming

settling time of a few milliseconds, at full-speed execution the A/D conversion value

will be invalid (switching the reference on needs only a few clock cycles), while in single

stepping mode there is enough time for the voltage reference to settle.

 Sending a byte over a serial port is initiated by writing the SBUF register, for example:

SBUF=0xAA;. Since the individual bits of SBUF are transferred at a certain rate (at

each overflow of a timer), several clock cycles are needed to complete the transfer.

Therefore, if the user places a breakpoint after SBUF loading (that is a two-cycle

instruction) or performs single stepping, the data will not be transferred, because the

timers will be halted.

3.6 Config Wizard

The C8051Fxxx processors have a very rich set of peripherals that are configured with many

SFRs — typically each has independent configuration bits. Therefore, it would be very hard to

read the datasheet and set the individual bits of these SFRs accordingly, and the probability of

making an error would be rather high. The Config Wizard 2 free graphical user interface

development tool helps to configure the processor and its peripherals very efficiently. After

choosing the processor, it is possible to configure any of its peripherals by dialogue boxes and

the corresponding source code will be generated in C or assembly format. This code can be

copied into the user code. Figures 3.2 and 3.3 show two examples: the Port input/output and

the Timer configuration dialogue boxes.

Figure 3.2. Port input/output configuration dialogue box.

Assembler and C programming

Figure 3.3. Timer configuration dialogue box.

Digital input and output; crossbar

4 Digital input and output; crossbar

Microcontrollers provide ports for general-purpose digital input and output signals [6]. The

ports are organised in 8-bit groups (named P0, P1, etc.), but bits can also be accessed

individually (for example, P1.3 in assembler or P1_3 in SDCC to access the third bit of port

P1). All port bits are associated with the pins of the package of the chip and can be configured

as input or as output, and have several operating modes. Some port pins can also be configured

in analogue mode.

4.1 The I/O structure

The port structure can be seen in Figure 4.1.

Figure 4.1. I/O port structure.

Writing to a port (for example, MOV P0, #1 in assembler or P0=1 in SDCC) means writing the

data into a D-latch that is connected to a port pad via the port driver. During reading from a

port, the port pad is connected to the internal data bus. Note that read-modify-write

instructions (for example, INC P1, ANL P1,#1 in assembler and P1++, P1&=1 in C) do not

read the state of the external signal itself, but rather use the output of the D-latch instead to

guarantee consistent operation.

The simplified schematic of the port driver is shown in Figure 4.2. A complementary transistor

pair can pull the line down to GND or up to Vdd (power supply of the driver stage) and a third

transistor can switch on a weak pull-up. The port input uses a Schmitt trigger to guarantee

valid logic levels for slowly changing or noisy signals. In order to use the analogue mode, all

transistors must be switched off and the input Schmitt trigger must also be disabled.

WRITE

SET

CLEAR

D

C

Q
PORT OUT

PORT IN

D
A

TA
 B

U
S

READ

READ-MODIFY-WRITE

ANALOGUE I/O

PORT
DRIVERDIGITAL

PERIPHERAL

ANALOGUE
PERIPHERAL

Digital input and output; crossbar

Figure 4.2. Simplified schematic of the I/O port driver. Bold indicates internal

I/O signals.

4.1.1 Port input

The port can be configured as digital input by switching off the output drivers. Therefore, it is

important to write logic 1 to the corresponding port bit, otherwise the transistor connected to

the ground will short-circuit the port pin to the ground. Push-pull mode must be disabled. The

weak pull-up (Rp, roughly 100 kΩ, actually a weak P-channel FET) can be enabled or disabled

globally for all port pins. When disabled, the leakage current is typically 10 nA at room

temperature and is guaranteed to be less than 1 A. This must be considered in analogue mode,

whereas digital signals will not typically be affected by this small current that is matched with

the specifications of other CMOS devices. The input capacitance is close to 5 pF and the diodes

protect the internal circuitry against electrostatic discharge (ESD). The simplified equivalent

schematic is shown in Figure 4.3.

Figure 4.3. Port input configurations. On the left, the digital input with weak

pull-up is shown. On the right, the digital input with no pull-up and the

analogue input can be seen. The typical IL leakage current is about 10 nA but

can be as high as 1 A.

Note that the diodes protect the inputs from electrostatic discharge (ESD) and from over- or

undervoltage, but the current cannot exceed the specifications given in the absolute

PORT DRIVER

OUT ENABLE
OR

AND

OR

R
p

PORT OUT

PUSH-PULL MODE

Vdd

Vdd
ANALOGUE MODE

ANALOGUE IN

PORT IN

WEAK PULL-UP

Vdd

R
p

Vdd

Vdd Vdd

IL

Digital input and output; crossbar

maximum ratings section in the datasheet. Since the supply voltage is less than 5 V, some

ports provide 5 V tolerant inputs. In this case, the diode connected to Vdd is missing.

4.1.2 Port output

The ports can operate either as open-drain or as push-pull outputs.

In open-drain mode, the weak pull-up can be switched on (reset default) or off. Logic 1 state

can only be set by the large value (roughly 100 kΩ) pull-up resistor; therefore, the port cannot

be loaded and signal transition from 0 to 1 will be rather slow, since the external capacitances

can only be charged through the resistor. For example, a loading of 50 pF will reduce the rise

time (90% of the final value) to about 10 s. External pull-up resistors (down to about 1 kΩ)

can make the switching faster and can source more current to the load at the expense of a larger

quiescent current when 0 is written to the port bit. Some peripherals (such as I2C) require open

drain mode.

In push-pull mode the output drive strength is symmetric, and the port can sink and source

large currents and guarantee fast switching from 0-to-1 and from 1-to-0. Therefore, it is

strongly recommended to use push-pull mode for the output in most applications, especially

for communication peripherals, in order to avoid data corruption.

Figure 4.4. Open-drain and push-pull output modes.

4.2 Crossbar

After reset, the ports are not connected to the core and all peripherals are idle. Port pins can

be associated with the port latches or with the enabled peripherals, which can output or input

signals (see Figure 4.5). The priority crossbar provides a flexible way to connect the internal

peripherals and port latches to the port pins. If it is enabled, the port pins are accessible. If a

peripheral is used, its signals are associated with port pins. Peripherals are numbered and the

port pins are associated in this order with the enabled peripherals. For example, if peripheral

#1 is enabled with two signals and peripheral #5 is enabled with three signals, peripheral #1

will be connected to the first two pins (P0.0 and P0.1), while peripheral #5 will be associated

with the next three pins (P0.2, P0.3 and P0.4). The state of these pins cannot be modified by

writing to the port latches but their state can be monitored by reading the corresponding port

bit. The push-pull or open-drain settings can still be set by firmware.

R
p

Vdd

PORT OUT

Vdd

PORT OUT

Digital input and output; crossbar

Figure 4.5. The crossbar assigns peripherals and port latches to port pins.

Crossbar settings and peripheral configuration are typically done just after reset. However, it

is possible to reconfigure the system during execution. In this case, the crossbar must be

disabled first, then can the changes be made before re-enabling the crossbar. Note that during

this process the port pins may exhibit transitions, which must be tolerated by the system.

4.3 Port I/O applications

In this chapter port input and output application examples will be shown. The port I/O allows

realising various user interfaces and communication with external circuits.

4.3.1 Reading buttons and switches

One of the simplest and most common digital input types is the state of a button or a switch.

Figure 4.6 shows simple ways of connecting buttons to the port pins. The most popular

connection uses a pull-up resistor and a grounded button. If the button is pressed, the

corresponding logic value is 0. A capacitor is sometimes used to eliminate bouncing and to

reduce noise. Positive logic can be realised by swapping the resistor and the button: in this case

logic 1 is obtained when the button is pressed.

CROSSBARPERIPHERAL #1

PERIPHERAL #2

PERIPHERAL #3

P0

P1

PORT
CELL

P0.0

P0.7

PORT
CELL

P1.0

P1.7

Digital input and output; crossbar

Figure 4.6. Connecting a button or switch to the port pins. The value of R is

typically 10 kΩ. The 1 kΩ resistor can protect the port is it is accidentally

configured as output (including the case if 0 is written to the port). They can be

omitted if misconfiguration is surely avoided.

The 1 kΩ series resistors protect the port if it is configured to source of sink current. This

happens if it is configured in push-pull mode or if 0 is written to the port latch. The resistors

can be omitted in a final version of a circuit when the programmer is sure about proper

configuration. In a general purpose development board the code is often changed for different

tasks, therefore the resistors are required.

Figure 4.7 shows that if the internal weak pull-ups (Rp) are switched on, the external pull-up

resistor can be eliminated. Although the external capacitor may cause voltage at the input to

change slowly, the internal Schmitt trigger ensures reliable operation.

R

C

VI/O

R

VI/O

1k 1k

R

C

VI/O

R

VI/O

C8051Fxxx

C

R
p

u

VI/O

C8051Fxxx

R
p

u

VI/O

1k 1k

Digital input and output; crossbar

Figure 4.7. Using internal pull-up resistors for handling buttons and switches

The following, very simple source code shows an example of reading the state of a button

connected to the third bit of port P0:

#define BUTTON_ON (!P0_3) // define an alias to access

 // the port bit of the button

/***

The main function

**/

void main(void)

{

 while (1) // infinite loop; the microcontroller never stops

 {

 if (BUTTON_ON) // if the button is pressed

 {

 while (BUTTON_ON); // wait while button is released

 Do_Short_Process(); // some process to be completed

 }

 }

}

There are many problems associated with the code above. For example, potential bouncing is

not handled and during process execution button pressings are lost.

An improved code uses a timer interrupt to detect button pressing only if the button is pressed

for a period of at least 100 ms:

#define BUTTON_ON (!P0_3) // define an alias to access

 // the port bit of the button

#define BUTTON_ON_TICK 10 // number of ticks to be counted

 // defines the minimum time for button detection

volatile bit button_pressed; // variable to indicate if the button

 // has been pressed

/***

Timer interrupt service routine

**/

void Timer_ISR __interrupt TMRVECTOR // 10-ms period

{

 // static variables retain their values upon exiting the function

 static bit button_state=0; // this bit stores the state of the button

 static bit detected=0; // set if button pressing is detected

C8051Fxxx

C
R

p
u

VI/O

C8051Fxxx

R
p

u

VI/O

Digital input and output; crossbar

 static unsigned char counter=0; // counter for ticks

 if (button_pressed) // button pressing not yet handled

 return; // nothing to do

 if (BUTTON_ON) // button is in a pressed state

 {

 if (button_state) // it has already been pressed

 {

 counter++; // increment time interval counter

 if (counter == BUTTON_ON_TICK) // if enough time has elapsed

 detected=1; // pressing detected

 }

 button_state=1; // save button state

 }

 else // it is in a released state

 {

 button_state=0; // save button state for the next function call

 counter=0; // reset time interval counter

 if (detected)

 {

 button_pressed=1; // notify main program

 detected=0; // reset; end of detection; enable next detection

 }

 }

}

// in the main function:

 …

 if (button_pressed) // button pressing has been detected

 {

 Do_Something(); // execute a process

 button_pressed=0; // clear flag to enable further detections

 }

4.3.2 Reading a keyboard

A more advanced user input interface is the keyboard. Keys are arranged in columns and rows.

Columns and rows have associated wires, which are connected to each other if a key is pressed.

Figure 4.8 shows how to interface the keyboard to the microcontroller. The wires of the rows

are connected to port pins configured as inputs (Pn.3 to Pn.6), while the columns are driven

by port pins configured as outputs (Pn.0 to Pn.2). Note that the optional pull-up resistors may

be used on the inputs (Pn.3 to Pn.6).

Figure 4.8. Connecting a keyboard to the microcontroller port.

M
C

U 1 2 3

4 5 6

7 8 9

* 0 #

Pn.0

Pn.1

Pn.2

Pn.3

Pn.4

Pn.5

Pn.6

Digital input and output; crossbar

The microcontroller typically scans all keys to determine which key is pressed. To do so, one of

the column wires must be pulled down (by clearing one of the Pn.0, Pn.1 or Pn.2 outputs while

the others are at logic 1) and check which row wire is at logic low. This procedure must be

performed on all columns to determine which keys are pressed. In most cases, the algorithm

can be stopped if a key if found to be pressed and no further keys need to be checked.

4.3.3 Driving LEDs

LEDs are the simplest indicators that can inform the user about logic values. They can be

connected in negative or positive logic, i.e., they can be lit by writing either logic low or logic

high to the corresponding port bit. Figure 4.9 shows all connections. Open-drain output mode

can only be used if the anode is connected to the supply, while push-pull mode can be used in

both connections.

Figure 4.9. An LED can be connected between a port pin and the supply or

ground via a series resistor that sets the current. The push-pull configuration is

needed to drive an LED whose cathode is grounded. Note that the push-pull

mode can be used in both cases.

The current setting resistor should be selected to provide enough light intensity, but keep in

mind that output current of the port is limited and if many LEDs are driven, the total current

sourced or sunk can be too large. Values from 330 Ω to 1 kΩ are typical. External drivers or

transistors can be used to overcome this limitation.

4.3.4 Driving 7-segment displays

The 7-segment display contains 7 LEDs to display a decimal digit and one LED to represent an

optional decimal point if multiple displays are used. The anodes or cathodes of the LEDs are

connected to support positive or negative logic. Figure 4.10 shows the common-anode version

associated with the negative-logic mode, which allows the port output to be configured either

in open drain or in push-pull mode.

C8051Fxxx

R

Vdd

R
p

Vdd

PORT OUT

C8051Fxxx Vdd

PORT OUT

R

Vdd

C8051Fxxx

R

Vdd

PORT OUT

Digital input and output; crossbar

Figure 4.10. An 8-bit port can drive a 7-segment display.

The following table shows the port bits and the port byte to be written to display a specific digit.

Digit G F E D C B A PORT

0 0 1 1 1 1 1 1 0x3F

1 0 0 0 0 1 1 0 0x06

2 1 0 1 1 0 1 1 0x5B

3 1 0 0 1 1 1 1 0x4F

4 1 1 0 0 1 1 0 0x66

5 1 1 0 1 1 0 1 0x6D

6 1 1 1 1 1 0 1 0x7D

7 0 0 0 0 1 1 1 0x07

8 1 1 1 1 1 1 1 0x7F

9 1 1 0 1 1 1 1 0x6F

Note that multiple 7-segment displays can be connected to the same port provided that only

one is enabled at a time. For example, the extension board (see the Appendix) has two 7-

segment displays connected to Port 2 and one bit (P1.3) selects the display whose common

cathode will be connected to Vdd. Therefore, only one display can be active at a time, but if

they are toggled quickly enough, the user will see both displays working with different

numbers. Of course, the brightness will be halved in this case.

4.3.5 Driving alphanumeric LCD displays

A much more powerful popular user interface is the alphanumeric liquid crystal display (LCD).

The microcontroller can communicate with its integrated processor over a special 8-bit parallel

interface that can also be configured as a 4-bit interface. A detailed description can be found

in the datasheet of the HD44780 or a compatible processor [16].

The LCD display can communicate with the processor over its parallel interface. The 8-bit

bidirectional bus can be connected to one port. This port can be configured in open-drain

mode, but in this case external pull-up resistors may be needed (3 kΩ-10 kΩ) to ensure the

short rise time of the signals. Alternatively, the port can be configured in push-pull mode and

should be changed to open drain only for read operations. The 3 control lines are driven by the

port bits of the microcontroller; push-pull mode is strongly recommended. The R/W line

selects between read (R/W=1) and write (R/W=0) operations. RS selects which one of the two

R

Vdd

R R R R R R R

A B C D E F G DP

Pn.0 Pn.1 Pn.2 Pn.3 Pn.4 Pn.5 Pn.6 Pn.7

F B

A

E C

G

D DP

G F Vdd A B

E D Vdd C DP

Digital input and output; crossbar

register sets are written or read. If RS is logic high, then the display RAM is accessed and

characters can be written to the display; otherwise instructions to the LCD display can be sent

(for example clearing the display). A pulse on E reads or writes the data. Vdd (5 V in most

cases) and GND are the supply lines. The voltage input V0 is used to set the contrast of the

display. If the LCD display has internal backlighting LEDs, pins 15 and 16 can be used to power

these. The anode and cathode can be connected in both ways; the datasheet must be consulted

to determine the proper connection. Figure 4.11 shows the connector pinout of the LCD display.

Figure 4.11. Pinout of the standard LCD display connector.

Instruction data comment

B7 B6 B5 B4 B3 B2 B1 B0

Clear

display

0 0 0 0 0 0 0 1 Clears the whole display

Return

home

0 0 0 0 0 0 1 - Reset cursor and entry mode

Entry

mode set

0 0 0 0 0 1 ID S Entry mode:

ID=1:cursor right

S=1:entire display shift

Display

on/off

0 0 0 0 1 D C B D=1 display on,

C=1 cursor on, B=1 cursor blinks

Cursor or

display

shift

0 0 0 1 SC RL - - SC=1:display, 0:cursor

RL=1:right, 0: left shift

Function

set

0 0 1 DL N F - - DL=1:8-bit, 0:4-bites mode

N=1:2 sor, 0:1 sor

F=1:5x10, 0:5x8 pixels

Set

CGRAM

address

0 1 Address of writing to the character

generator RAM, defining

characters

G
N

D
V

D
D

V
o

R
S

R
/W

E D
B

0
D

B
1

D
B

2
D

B
3

D
B

4
D

B
5

D
B

6
D

B
7

B
LA

/C
B

LC
/A

1 16

Digital input and output; crossbar

Set

DDRAM

address

1 0 Address of writing to a specific

location of the display, cursor

positioning

When writing to or reading from the display, certain timing conditions must be met (see Figure

4.12). The display is a rather slow external peripheral, and the microcontroller code must be

written with this taken into account.

Figure 4.12. Time diagram of write and read operations (for details see the

HD44780 datasheet [16]).

The following example code introduces a few functions to initialise the display and to write to

the display.

#define LCD_RS P0_5 // RS is the register select input

#define LCD_RW P0_6 // specifies read or write

#define LCD_E P0_7 // enable line serves as write or read pulse

#define LCD_PORT P1 // the data bits are connected to port P1

unsigned char line_address[4]; // this array holds the address of the

 // first character in a row

/***

LCD initialisation function

Input parameters are the number of rows and columns

**/

void LCD_Init(unsigned char rows, unsigned char columns)

{

 unsigned char i;

 line_address[0]=0; // initial address of the first row

 line_address[1]=0x40; // initial address of the second row

 line_address[2]= columns; // initial address of the third row

 line_address[3]=0x40+ columns; // initial address of the fourth row

 LCD_RW=0; // assume write operations as default

 LCD_E=0; // the E line should be inactive

 LCD_RS=0; // register select must be 0 to send commands

 Delay_ms(50); // special initialisation sequence after 50 ms of delay

 LCD_DATA=0x30; // 8-bit mode is selected

 LCD_PulseE(); // generate pulse on the E line

 Delay_ms(5); // wait for approximately 5 ms

RS

R/W

E

DATA
IN

Tas
>40ns

Tpw
>230ns

Tdsw
>40ns

Tah
>10ns

Th
>10ns

TcycE >500ns

WRITE TIMING

RS

R/W

E

DATA
OUT

Tas
>40ns

Tpw
>230ns

Tddr
>160ns

Tah
>10ns

Th
>5ns

TcycE >500ns

READ TIMING

VALIDVALID

Digital input and output; crossbar

 LCD_PulseE(); // generate pulse on the E line

 Delay_ms(1); // wait for approximately 1 ms

 LCD_PulseE(); // generate pulse on the E line

 LCD_Write(0x38); // set 8-bit mode, 2 lines

 LCD_Write(0x08); // set display off

 LCD_Write(0x01); // execute display clear function

 LCD_Write(0x06); // set entry mode: increment cursor

 LCD_Write(0x0C); // switch display on; no cursor; no blinking selected

}

/***

Pulses the E line to initiate a write to or read from the LCD

**/

void LCD_PulseE(void)

{

 __asm // wait for about 1 µs

 mov R7,#7 // system clock frequency in MHz divided by 4

 L1: djnz R7,L1 // loop to wait for the specified time

 __endasm;

 LCD_E=1; // set E

 __asm // wait for about 1 µs

 mov R7,#7 // system clock frequency in MHz divided by 4

 L2: djnz R7,L2 // loop to wait for the specified time

 __endasm;

 LCD_E=0; // clear E

}

/***

Writes a byte to the LCD

**/

void LCD_Write(unsigned char a)

{

 LCD_DATA=a; // set the data bus according to the value of a

 LCD_PulseE(); // generate pulse on the E line

 Delay_ms(2); // wait 2 ms here or, alternatively, check busy flag

}

/***

Clears the entire LCD display

**/

void LCD_Clear(void)

{

 LCD_RS=0; // register select must be 0 to send commands

 LCD_Write(1); // write command to LCD

 LCD_RS=1; // register select default value is 1 (display RAM)

}

/***

Moves the cursor to the specified location

**/

void LCD_MoveTo(unsigned char line, unsigned char pos)

{

 LCD_RS=0; // register select must be 0 to send commands

 LCD_Write(0x80 | (line_address[line]+pos)); // select position of char

 LCD_RS=1; // register select default value is 1 (display RAM)

}

/***

Redirects the standard C output to the LCD

Digital input and output; crossbar

**/

void putchar(char c) // redefined standard output function

{

 LCD_Write(c); // send the character to the LCD

}

LCD_MoveTo(0,10); // first line, 10th position

printf("Hello"); // write to the display

4.3.6 Driving relays and motors

Microcontrollers must sometimes control higher power devices such as motors, stepper

motors, valves or high power LEDs. Since the output can source and sink only a few

milliamperes, external drivers are required for heavy loads. A simple solution is to use bipolar

or MOS transistors connected to port pins configured as push-pull, as shown in Figure 4.13.

Inductive loads – coils or motors – can cause very high voltage spikes during turn-off;

therefore, a protection diode is used across the two terminals of such a load.

Figure 4.13. Higher power loads can be driven by external transistors.

4.4 Application guidelines

 The crossbar must be enabled to connect the port bits and peripherals to the pins.

Analog and open drain mode can be used without enabling the crossbar, but it is not

recommended.

 Pins used as digital inputs should be configured as open-drain and logic high must be

written to the corresponding port bits.

 After reset, the port latches are set to 1.

 Pins used as digital outputs should be configured as push-pull.

 The sink current (open-drain or push-pull mode) or source current (push-pull mode

only) must not exceed the datasheet specifications (about 3 mA-4 mA). The total

current of all output pins should be limited to meet the specifications.

 An LED can be connected to an output via a series current limiting resistor (330 Ω–

1 kΩ). If using open drain output, the cathode must be connected to the supply voltage.

 Buttons can be connected between the input and GND. An optional pull-up resistor of

about 10 kΩ can be used. Parallel capacitors may help to reduce switching noise.

MCU MCU

R

V+ V+

BC817
500mA

IRLML2502
4A

R
BC817
500mA

V+

IRLML2502
4A

V+

1
0

k
1

0
k

Digital input and output; crossbar

4.5 Troubleshooting

Problem:

 Cannot read from or write to the port pin; unexpected output or input values

experienced.

Possible reasons:

 The crossbar is disabled. Enable the crossbar.

 Writing 1 to a port bit does not mean that reading it returns 1, since the voltage can be

pulled low by an external circuit.

 Push-pull is not set for an output. Open-drain output cannot source current.

 Be sure that for input the port pin is configured as open-drain and 1 is written to the

port bit.

 External short-circuit on the pin can be present. Check the voltage with a voltmeter.

 Improper logic voltage level may be present on the pin.

 The output drive current limit may be violated; too high a load may be present on the

pin.

 A peripheral is associated with the port pin by the crossbar. In this case the pin state

can only be driven by the peripheral.

 Short glitches (temporary pulses) on a signal can corrupt reading.

4.6 Exercises

 Write a program that reads the state of a button and toggles the state of an LED on

each pressing. Successive button pressings within 200 ms should not be detected.

Continuously pressing a button should be detected as a single pressing.

 Connect four LEDs and a button to the microcontroller and write code that illuminates

only one LED and switches to the next LED if the button is pressed. The first LED

should follow the last one.

 Write code that displays incremented numbers from 0 to 9 in a cyclic manner upon

each pressing of a button.

 Write a program that detects the first button pressing for a longer time and halves the

detection time for additional detections if the button is continuously pressed.

 Change the code to reduce detection period if the button is continuously pressed.

 Write code to read which key is pressed on a 3 × 4 keyboard matrix. Flash an LED as

many times as the number corresponding to the key pressed.

 Write code to display the number of button pressings on an LCD display.

 Connect a unipolar stepper motor to four pins of the microcontroller. Write a program

that energises only one coil at a time and switches to the next coil ten times per second.

 Modify the program to switch between rotating clockwise and anticlockwise

directions when another button is pressed.

Timers and counters

5 Timers and counters

The basis of the timers integrated into microcontrollers is a binary counter. It realises a timer

function if it is driven by an oscillator. It can be used to count events corresponding to falling

or rising edges of an external logic signal.

5.1 Timer 0 and Timer 1

C8051Fxxx processors contain enhanced versions of the standard 16-bit 8051 timers Timer 0

and Timer 1 [6]. Their clock input can be configured as shown in Figure 5.1. SYSCLK is the

system clock; EXT OSC represents an external oscillator. In timer mode, the TCLK signal

driving the timer clock input is derived from these sources, while in counter mode the T0 input

is used. The TR0 SFR bit enables the timer and the /INT0 input can be used to gate the timer

depending on the state of the IN0PL and GATE0 SFR bits. The timer/counter values can be

accessed via the SFRs TH0 and TL0 as well as TH1 and TL1, representing the higher and lower

order bytes of Timer 0 and Timer 1, respectively. If the timer overflows, a flag is set (TF0 for

Timer 0 and TF1 for Timer 1) and an interrupt can be generated if enabled.

Figure 5.1. Timer input clock configuring circuit. Labels in bold indicate external

signals and configuration bits are in italic.

Timer 0 and 1 have four modes of operation. In mode 0, they are operated as 13-bit timers;

only the lower 5 bits of the lower order byte of the timers are used (see Figure 5.2).

Figure 5.2. Timer 0 in mode 0 (13-bit timer) and in mode 1 (16-bit timer). Each

falling edge on TCLK0 increments the timer.

In mode 2, only the lower 8 bits are used for counting and the higher order byte is used as a

starting value upon overflow. This is called auto reload mode and is useful for generating

programmable periodic events. The block diagram of this mode is illustrated in Figure 5.3.

SYSCLK/12

SYSCLK/4

SYSCLK/48

EXT OSC/8

SYSCLK

T0

/INT0

IN0PL

GATE0

XOR

OR
AND

AND
TR0

CLK0

TCLK0

TL0, 5 LSBs TH0TCLK0 TF0

TL0 TH0TCLK0 TF0

MODE 0

MODE 1

Timers and counters

Figure 5.3. Timer 0 in auto reload mode. Upon overflow, the initial value is

loaded to TL0 from TH0.

The time that passes from the initial state (when the counter value TL0 is equal to TH0) to the

overflow is

 0TCLK)0256(tTHT , (5.1)

where tTCLK0 is the period of the input clock of the timer.

The frequency of the periodic overflows can be given by

0TH256

1
0TCLK

 ff , (5.2)

where fTCLK0 is the frequency of the input clock of the timer

If the initial value of the counter (TL0) is less than the reload value, an overflow must occur

before generating the overflows with the desired rate. The mechanism of the auto reload mode

is illustrated in Figure 5.4.

Figure 5.4. Timer 0 operation in auto reload mode.

Mode 3 is rarely used; here, the two 8-bit parts of Timer 0 are used as two 8-bit timers as shown

in Figure 5.5. Timer 1 is inactive in this mode.

TL0

TH0

TCLK0 TF0

0
1

255
252
253
254
255
252
253
254
255
252
253

0
t

TL0 TF0

0

0
1
1
1
1
1
1
0
0
1
1

CLR TF0

Timers and counters

Figure 5.5. In mode 3, two 8-bit timers can be used. Labels in bold indicate

external signals and configuration bits are in italic.

5.2 Timer 2, Timer 3 and Timer 4

C8051Fxxx processors have 2, 3 or 4 additional 16-bit timers with various features [6].

The timers of the C8051F410 can be operated as 16-bit auto reload timers or as dual 8-bit auto

reload timers.

Figure 5.6. Timers 2, 3 and 4 in 16-bit auto reload mode. The label in italic is

used for the timer enable bit.

Figure 5.6. shows the block diagram of the auto reload operation, while the operation itself is

illustrated in Figure 5.7.

Figure 5.7. Timer operation in 16-bit auto reload mode.

SYSCLK/12

SYSCLK/4

SYSCLK/48

EXT OSC/8

SYSCLK

T0

/INT0

IN0PL

GATE0

XOR

OR
AND

AND
TR0

TH0 TF1

TL0 TF0

CLK0

TCLK0

SYSCLK/12

EXT OSC/8

SYSCLK

AND

TRn

TMRnL

TMRnRLL

TFnHTMRnH

TMRnRLH

TCLKn

TMR2RL
TMR2RL+1

65534

0
t

Nt

TMR2 TF2H (interrupt)

0

0
0
1
1

0
0
1
1

65535
TMR2RL

TMR2RL+1

65534
65535

TMR2RL
TMR2RL+1

Software clears
TF2H

TMR2
=TMR2H*256
+TMR2L
TMR2RL
=TMR2RLH*256
+TMR2RLL

Nt

Hardware sets TF2H
generates interrupt

TMR2RL

Timers and counters

Using Timer 2 the frequency of the periodic overflows is given by

TMR2RLLTMR2RLH25665536

1

TMR2RL65536

1
2TCLK2TCLK

 fff ; (5.3)

therefore, if the desired frequency is known, the value of the reload registers can be calculated:

256modTMR2RLTMR2RLL

,
256

TMR2RL
TMR2RLH

,65536TMR2RL 2TCLK

f

f

 (5.4)

The following example code illustrates the calculation of the reload value. The desired period

is given in s units; the timer input clock must be entered in Hz units.

/***

steps = period/dt

dt=1/timer clock

steps = timer clock*period

reload value = 65536-steps

**/

unsigned long period; // in µs

unsigned long tmr_clk; // timer clock in Hz

unsigned short tmr_reload; // reload value

tmr_clk = 24500000; // timer clock frequency is 24.5 MHz

period = 100; // 100 µs

tmr_reload = -period*tmr_clk/1000000L; // means 65536-period*tmrclk/1000000L

Note that it is also possible to configure the timer as two 8-bit auto reload timers; see

Figure 5.8.

Figure 5.8. Timers 2, 3 and 4 in C8051F410 can be configured as two 8-bit auto

reload timers. The label in italic is used for the timer enable bit.

An enhanced timer is available in some C8051Fxxx processors, including, for example, the

C8051F120 100-MHz microcontrollers. As illustrated in Figure 5.9, this timer can count up or

down, and can be clocked by an external signal Tn. The external signal TnEX can be used to

latch the counter value into the reload registers, which allows the accurate detection of the time

instant of an event or a series of events.

SYSCLK/12

EXT OSC/8

SYSCLK

AND

TRn

TMRnH

TMRnRLH

TFnH

SYSCLK
TMRnL

TMRnRLL

TFnL

Timers and counters

Figure 5.9. Timers 2, 3 and 4 in C8051F120 can count up or down, toggle an

output signal and capture the timer value. Labels in bold indicate external

signals and italic is used for configuration bits.

5.3 Timer applications

Timers can be used in many applications. They are employed to generate periodic interrupts,

to provide programmable clock frequency for serial communication ports and also to generate

events at certain time instants and to measure the time elapsed between events.

Some examples are given below.

5.3.1 Delay generation

Timers can be used to generate a desired amount of time delay. The time required to reach the

overflow state from the initial value of Timer 0 (TH0, TL0) can be given by the following

formula:

 0TCLK0TL2560TH65536 tT , (5.5)

where tTCLK0 is the period of the input clock of the timer. The code example below implements

a function that waits for a period equal to stepstSYSCLK.

/***

Waits for a specified number of Timer 0 steps

**/

void Delay(unsigned short steps)

{

 TMOD=(TMOD & 0xF0) | 0x01; // 16-bit timer mode

 CKCON=CKCON | 0x04; // Timer 0 clock is SYSCLK

 TH0=-steps >> 8; // 65536-steps, higher-order byte

 TL0=-steps; // 65536-steps, lower-order byte

 TF0=0; // clear timer overflow flag

 TR0=1; // run Timer 0

 while (!TF0); // wait for Timer 0 to overflow

 TR0=0; // stop Timer 0

}

5.3.2 Generating periodic interrupts

Periodic interrupt generation is a common application. Timer auto reload mode is one option.

The following C8051F410 code is the C version of the code given in Chapter 3.2:

TMRnL

TMRnRLL

TFnTMRnH

TMRnRLH

0xFF 0xFF

SYSCLK/12

SYSCLK/4

SYSCLK

EXT OSC/8

Tn

TnEX

EXENn
AND

AND

TRn

OR

EXFn

Tn

D Q

C Q

Timers and counters

/***

Timer 2 interrupt service routine

**/

void Timer2_ISR(void) __interrupt INT_TIMER2

{

 TF2H=0; // clear interrupt pending flag

 LED = !LED; // complement LED; flashing rate is half

 // of the Timer 2 overlow rate

}

/***

The main function

**/

void main(void)

{

 PCA0MD &= 0x40h; // switch watchdog off

 PCA0MD = 0x00h; // switch watchdog off

 XBR1 = 0x40h; // enable the crossbar to allow input and output

 TMR2RLL = 0xB2h; // set the Timer 2 reload register (low and high bytes)

 TMR2RLH = 0xC1h; // to provide 1-Hz interrupt rate

 TMR2L = 0xB2h; // Timer 2 counter initial value

 TMR2H = 0xC1h; // is the same as the reload value

 TMR2CN = 0x04; // start Timer 2 now

 IE = 0xA0; // enable global interrupts and Timer 2 interrupt

 while (1); // infinite loop

}

Timer 0 and Timer 1 provide 8-bit auto reload mode; therefore, only higher frequencies can be

generated. In the example below, the program sets the initial value upon overflow. Note that

due to the latency time it is not as accurate as the hardware auto reload mode.

TMOD=(TMOD & 0xF0) | 0x01; // 16-bit timer

TR0=1; // run timer

IE=0x82; // enable global & timer0 interrupts

/***

Timer 0 interrupt service routine

**/

void Timer0_ISR(void) __interrupt INT_TIMER0

{

 TR0=0; // stop timer

 TH0=-steps >> 8; // initial value is 65536-steps (higher-order byte)

 TL0=-steps; // 65536-steps (lower-order byte)

 TR0=1; // restart timer

 … // perform the required operation

}

5.3.3 Software extended counter

The 16-bit counter can easily be extended by software. For example, if a 24-bit counter is

needed, an 8-bit variable can be added to represent the most significant 8-bits while the

hardware timer provides the least significant 16-bits. Upon overflow of the timer the variable

is incremented as shown in Figure 5.10.

Timers and counters

Figure 5.10. 24-bit timer operation emulated by software.

/***

Timer interrupt handler routine

**/

void Timer_ISR(void) __interrupt TIMER_VECTOR

{

 static unsigned char counter=0; // static variable retains value

 counter = (counter+1) % counter_max; // increment and implement overflow

 if (!counter) Process(); // if counter returns to zero

 // (overflows)

}

5.3.4 Pulse width measurement

Timers can be used to measure event timing. Figure 5.11 shows the time diagram of a possible

pulse width measurement. The /INT0 external signal is used to gate the timer: the timer counts

while this signal is high. In order to set up properly, the code waits first for /INT0 to go low,

then enables the timer. After this, the code should wait for the next falling edge of /INT0, which

identifies the end of the pulse. Note that the /INT0 state or a falling edge can set the IE0 flag,

which can be polled or used to generate an interrupt. /INT0 must be enabled using the

crossbar.

Figure 5.11. Time diagram of the pulse width measurement of the /INT0 signal.

65534 0
0
1
1

0
0
1
1

65535
0
1

65534
65535

0
1

COUNTER (SW)TFTMR (HW)

0

1

INT+SW
DELAY

Counting

/INT0

K-1TH0,TL0 K00 1 K-2

T0 CLK

Kt

TR0

waitingwhile high waiting for falling edge

Timers and counters

TR0=0; // stop timer

TH0=TL0=0 // clear timer

TMOD=0x09; // T0: 16-bit gated timer mode

IT0=0; // set level-triggered /INT0 mode (IE0 is high if /INT0 is low)

IE0=0; // clear INT0 flag

while (!IE0); // wait for input to go down

IT0=1; // set edge-triggered /INT0 mode to detect falling edge

IE0=0; // clear INT0 flag

TR0=1; // enable timer

while (!IE0); // wait for end of pulse

TR0=0; // stop timer

The result of the measurement is in the registers TH0 and TL0.

Note that since part of the detection is done by software, the accuracy can be affected by

accidental interrupts, which halt the main code for a while.

5.3.5 Frequency measurement

The time diagram of a possible frequency measurement algorithm can be seen in Figure 5.12.

The timer is enabled for a given amount of time (for example 1 s) and the counter counts the

external signal falling edges. Therefore, the frequency is the counter value divided by the

running time.

Figure 5.12. Time diagram of the frequency measurement.

In the following example, Timer 1 is used to set TR0 high for a given amount of time, while

Timer 0 counts the pulses.

TCON=0; // stop Timer 0 and Timer 1

TMOD=0x15; // Timer 0: 16-bit counter; Timer 1: timer

TH0=0; // initialise counter of Timer 0 (high byte)

TL0=0; // initialise counter of Timer 0 (low byte)

TH1=-steps >> 8; // 65536-steps (high byte)

TL1=-steps; // 65536-steps (low byte)

TF1=0; // clear Timer 1 overflow flag

TCON=0x50; // run both timers (both TR0 and TR1 are set)

while (!TF1); // wait for Timer 1 overflow (Timer 0 counts during this time)

TCON=0; // stop both timers

The result of the measurement is in the registers TH0 and TL0.

Note that since part of the detection is done by software, the accuracy can be affected by

accidental interrupts, which halt the main code for a while.

5.3.6 Period measurement

Period measurement means that the time of one or more periods is measured. If the period is

short, it is better to measure the time of multiple periods. One timer can be used to count the

Counting

T0

TR0

0 21 3 4 5 6TH0, TL0

Timers and counters

periods; its initial value must be set to 65536 minus the number of periods to be counted. The

other timer is driven by a clock source and runs while the first counter is counting. Therefore,

the time of one period is the clock period of the second timer multiplied by the clock period

and divided by the number of pulses counted.

Figure 5.13. Time diagram of the period measurement.

TCON=0; // stop timers

TMOD=0x15; // T0: 16-bit counter; T1: timer dTCLK1 period

TH1=0; // timer1 initial value (high byte)

TL1=0; // timer1 initial value (low byte)

TH0=-N>> 8; // 65536-N

TL0=-N; // N events to TF0=1

TF0=0; // clear timer 0 flag

TCON=0x50; // run both timers

while (!TF0); // wait for N events

TCON=0; // stop both timers

The result of the measurement is in the registers TH1 and TL1. The period is:

N

t
T TCLK11TL2561TH
 , (5.6)

Note that since part of the detection is done by software, the accuracy can be affected by

accidental interrupts, which halt the main code for a while.

5.4 Application guidelines

 The timer input clock must be configured first. Choose a frequency value that allows

the desired rate to be accurately set. If the clock frequency is too high, the overflow rate

cannot be set low enough or longer time intervals cannot be measured. If it is too low,

the accuracy of the timing can be low.

 Verify the settings by calculating the timing using the timer SFR values.

 Set the desired operating mode.

 After proper setup, enable the timer.

Counting

T0

TR0, TR1

65535TH0, TL0 065534L+1LL

K-1TH1, TL1 K00 1 K-2

T1 CLK

2 K-3

TF0

N periods (L=65536-N)

Kt

Timers and counters

 Enable the timer interrupt if needed. Do not forget to clear the interrupt pending flag

in the service routine.

 The timer interrupt must not be enabled if no service routine is defined. This is the case

when the timer is used to generate a periodic signal for other communication or other

peripherals (UART, PCA, etc.)

 Keep in mind that using the timer for multiple purposes simultaneously needs special

attention and is a potential source of problems.

 Do not read 16-bit timer values during operation, since the high and low bytes cannot

be read simultaneously and thus they may not correspond to the same timer value.

5.5 Troubleshooting

Problem:

 The timer is not running or unexpected timing occurs.

Possible reasons:

 The timer is not enabled.

 The timer is not configured in the proper mode.

 The input clock is not configured properly.

 Timer 0 and Timer 1 may be in gated mode and the gate signal may be inactive.

 The SFR values are miscalculated or not properly written.

Problem:

 No timer interrupt occurs or the interrupt rate is not as expected.

Possible reasons:

 The timer is not enabled.

 The associated interrupt is not enabled.

 The interrupt flag is not cleared, so the interrupt is generated continuously. Most of the

processor power is taken in this case.

 Execution of other interrupt service routines can cause a delay of the timer interrupt.

 The service routine may take longer than the time between two overflows; the overflow

rate is too high.

 The timer is used for multiple purposes simultaneously and the settings are different.

Problem:

 Unexpected frequency, period or pulse width of an external signal is experienced.

Possible reasons:

 The crossbar is not configured properly to connect the external signal to the timer.

 The timer settings (like input clock or mode) are improperly set or miscalculated.

 The resolution of the time measurement is too low; for example, short periods are

measured by only a few timer increments.

 The external signal is noisy; oscillations occur at transitions.

 The software-dependent part of the measurement code is delayed by an unexpected

interrupt.

Timers and counters

5.6 Exercises

 Write a function that waits for a specified number of milliseconds given by the

argument of the function. Use Timer 0 to implement the function.

 Write a program that flashes an LED at 1 Hz. Use a button to set the flashing rate: on

each pressing of the button, the rate should be doubled, but at 16 Hz the pressing of

the button should reset the rate to 1 Hz.

 Write a program that emulates a pulse width modulated signal. An LED should be

flashed at a rate of 100 Hz and the on time should be set by button pressings from 1 ms

to 9 ms in a cyclic manner.

 Write a program that generates an output signal of 100 Hz using Timer 2. Measure

the period of this signal using the other timers.

 Connect a 555 timer circuit based 100 Hz oscillator output to the microcontroller.

Measure the frequency of this signal using timers.

 Measure the pulse width of button pressings using timers.

Programmable counter array

6 Programmable counter array

The programmable counter array (PCA) contains a simple 16-bit free-running counter, which

is driven by a periodic clock signal [6, 17]. There are several (from 3 to 6) independent

compare/capture registers, which can be used to latch the counter value upon an event (change

in a digital input signal). These registers can also hold data to be compared with the counter

value and to generate an event when a match occurs. The corresponding flag (CCFn) is set

upon these events, while the CF flag is set when the main counter overflows. All of these events

can generate interrupts; however, the same interrupt routine is called, so the flags must be

checked to identify the source of the interrupt. The structure of the PCA is shown in Figure 6.1.

Figure 6.1. The main counter (PCA0L and PCA0H) can be driven from different

clock sources. There are up to six compare/capture registers (PCA0CPLn and

PCA0CPHn). The label in bold indicates an external signal.

Depending on the operating mode, several useful functions can be implemented.

In the following, only one of the six compare/capture registers is shown, and the names of the

corresponding SFRs are appended with an n that identifies one of the six possible registers.

Note that all compare/capture registers can be associated with an external input/output signal

named CEXn (n = 0, 1, …) via the crossbar. The function of this signal is determined by the

operation mode.

6.1 Edge-triggered capture mode

The edge-triggered capture mode uses an external signal CEXn to latch the value of the

counter into one of the capture registers (PCA0CPLn or PCA0CPHn). This can happen on

rising or falling transitions, or on both. The CCFn flag is set and an interrupt can be

generated, if enabled. Figure 6.2 shows the block diagram of the edge-triggered capture

mode.

PCA0L PCA0H

SFR BUS

SNAPSHOT
REGISTER

SYSCLK/12

SYSCLK/4

TIMER0

EXT CLK IN

SYSCLK

EXT OSC/8

RTC OSC/8

CF

PCA0L READ

PCA0CPL0 PCA0CPH0 CCF0

PCA0CPL1 PCA0CPH1 CCF1

Programmable counter array

Figure 6.2. Edge-triggered capture mode. The label in bold indicates an external

signal.

Figure 6.3. Time diagram of the edge-triggered capture mode.

6.2 Software timer and high-speed output mode

The PCA0CPLn and PCA0CPLh registers can be compared to the actual value of the main

counter, setting the CCFn flag and generating an interrupt if a match occurs. The software

timer and the high-speed output mode are practically the same, except that in the output mode

the CEXn output is toggled upon each match event. Figure 6.4 shows the block diagram of

these modes. Note that a write to PCA0CPLn disables the comparator, while writing

PCA0CPHn enables it. This ensures that both the low and the high byte of the

capture/compare register are valid when the comparator is enabled. The programmer must

take it into account, so PCA0CPLn must be written first and then should the value of

PCA0CPHn be set. Changing only PCA0CPLn stops the operation.

Figure 6.4. Software timer and high-speed output mode. The label in bold

indicates an external signal.

PCA0L PCA0H

CCFnCEXn

PCA clock

PCA0CPLn PCA0CPHn

K+10 2 KK-11

(L-K)t

PCA CLK

PCA0

CEXn

L+1LL-1

CAPTURE
REGISTER=K

CAPTURE
REGISTER=L

INTERRUPT INTERRUPT

PCA0L PCA0H

CCFn

PCA clock

PCA0CPLn PCA0CPHn

16-bit COMPARATOR

0

1

RESET

OR

Write to
PCA0CPHn

Write to
PCA0CPLn

CEXn

D Q

C Q

Programmable counter array

Figure 6.5. Time diagram of the software timer and of the high-speed output

mode.

6.3 Frequency output mode

Frequency output mode (Figure 6.6) can be used to output a periodic square wave. Only the 8

least significant bits of the counter are compared to PCA0CPLn and upon a match the output

is toggled and the PCA0CPLn is incremented by the value stored in PCA0CPHn. Of course,

PCA0CPLn will overflow at a certain time but it does not affect the operation.

Figure 6.6. Frequency output mode.

CPHnPCA

f
f PCA

02
 (6.1)

Figure 6.7 shows a sample time diagram when the output frequency is fPCA/6.

K+10 2 KK-11

(L-K)t

PCA CLK

PCA0

CEXn

L+1LL-1

COMPARE REGISTER=K COMPARE REGISTER=L

Software updates compare register

PCA0L

PCA0CPLn 8-bit adder

8-bit
comparator

CEXn

D Q

C Q

PCA0CPHn

PCA clock

Enable

Programmable counter array

Figure 6.7. Time diagram of the frequency output mode when the frequency is

1/6 of the PCA input frequency.

6.4 8-bit and 16-bit PWM modes

One of the most useful modes is the generation of pulse width modulated (PWM) signals. Since

a single digital signal can only have two different values, its applications in control are strictly

limited. Using PWM signals, this limitation can be significantly reduced.

A PWM signal is a periodic pulse train whose pulse width can be varied. If the frequency of this

signal is high enough, it can be used as a fine control of slow systems. Typical applications

include motor control, temperature control and light control, where the driven system cannot

follow fast changes and thus only the average of the signal will be effective. This average is

proportional to the duty cycle of the PWM signal.

The PCA module supports 8- and 16-bit PWM modes. In the 8-bit mode, only the 8 least

significant bits of the counter are used. When the value is equal to PCA0CPLn, the output

signal is set, and at the overflow of PCA0L, it will be reset; see Figure 6.8. This way, the signal

is low for PCA0CPLn steps and high for 256-PCA0CPLn steps. This can be changed by writing

a new value to PCA0CPHn, which will take effect only upon the overflow of PCA0L, ensuring

reliable changes. The frequency of the PWM signal is fPCA/256.

Figure 6.8. 8-bit PWM mode. The label in bold indicates an external signal.

40 1 32255 765

PCACLK

PCA0L 8

PCA0CPLn 3 30

9 10

3 6 6 6 9 9 9 12 12

CEXn

PCA0CPHn=3

PCA0L

PCA0CPLn

8-bit
comparator

CEXnS Q

R

PCA clock

Enable

PCA0CPHn

OVERFLOW

Programmable counter array

Figure 6.9. Time diagram of the 8-bit PWM mode.

The 16-bit PWM operation is similar, but here all 16 bits of the counter as well as compare

registers are used; see Figure 6.10 and Figure 6.11.

Figure 6.10. 16-bit PWM mode. The label in bold indicates an external signal.

Figure 6.11. Time diagram of the 16-bit PWM mode.

6.4.1 PWM DAC

The PWM signal can also be used to generate analogue voltages if the signal is filtered with a

low-pass filter. This way, a digital-to-analogue converter can be emulated. A simple first-order

filtering is shown in Figure 6.12. The ripple of the signal depends on the filter and on the

frequency of the PWN signal. If the ripple allowed at the PWM frequency is given, the filter

corner frequency 1/(2RC) can be determined.

K+10 1 KK-1

Kt

255 0255254

(256-K)t

256t

PCA CLK

PCA0L

CEXn

1

PCA0L

PCA0CPLn

16-bit comparator CEXnS Q

R

PCA clock

Enable

PCA0CPHn

OVERFLOWPCA0H

K
+10 1 KK
-1

Kt

6
5

5
3

5

0

6
5

5
3

5

6
5

5
3

4

(65536-K)t

65536t

PCA CLK

PCA0

CEXn

1

Programmable counter array

Figure 6.12. The PWM signal can be low-pass filtered to approximate a DC

voltage with a low-ripple signal.

A simple estimation can be made assuming a 50% duty cycle, which is the worst case. If V is

small, the capacitor charging current is nearly constant; therefore, V can be approximated by

the following formula

2

22

IO

T

RC

V

C

T
I

V

 (6.2)

RC

T

V

V

4IO

; (6.3)

therefore, choosing

V

VT
RC

 IO

4
 (6.4)

will keep the ripple under the desired limit.

Note that the precision of the output signal is limited by the precision of the VIO supply voltage.

The supply voltage tolerance is not strict; 10% is typical. If higher accuracy is required, external

circuitry should be used.

6.5 Application guidelines

 The input clock must be configured first. Choose a frequency value that allows the

desired timing to be accurately set. If the clock frequency is too high, longer timing can

be impossible. If it is too low, the accuracy of the timing can be low.

 Verify the settings by calculating the timing using the PCA SFR values.

 Configure the compare/capture modules in the required mode.

 After proper setup, enable the PCA counter and the modules used.

 Enable the PCA interrupt if needed. Do not forget to clear the interrupt pending flag in

the service routine. Note that all modules generate the same interrupt; therefore, all

possible requests must be handled within a single service routine and the

corresponding pending flag must be cleared.

 Keep in mind that if the watchdog timer module is used, the PCA input clock cannot be

changed while the watchdog timer is enabled.

 The 16-bit PCA counter value can be safely read by reading the lower-order byte

(PCA0L) first.

 Always write the lower-order byte of the compare/capture registers (PCA0CPLn) first.

Even if the higher-order byte is not changed, it must be written to re-enable the PCA

comparator, which is disabled by writing to the lower-order byte. If only the higher-

order byte needs updating, writing to the lower-order byte is not required.

V VIO

VIO

CEXn

C

R

Programmable counter array

6.6 Troubleshooting

Problem:

 The PCA is not running or unexpected timing occurs.

Possible reasons:

 The PCA is not enabled.

 The PCA modules are not configured in the proper mode.

 The input clock is not configured properly.

 The input clock source is missing – for example, the external signal is missing or Timer

0 overflows do not occur.

 The SRF values are miscalculated or not properly written.

 The higher-order byte of the capture/compare register is not written, so the PCA

comparator can permanently remain in a disabled state.

Problem:

 No PCA interrupt occurs or the interrupt rate is not as expected.

Possible reasons:

 The PCA or the modules are not enabled.

 The associated interrupt is not enabled.

 The interrupt flag is not cleared; therefore, the interrupt is generated continuously.

 Execution of other interrupt service routines can cause delay of the timer interrupt.

 The service routine may take longer than the time between two PCA interrupt requests;

the interrupt request rate is too high.

Problem:

 Unexpected frequency, period or pulse width of an external signal is experienced.

Possible reasons:

 The crossbar is not configured properly to connect the external signal to the PCA.

 The PCA settings (such as input clock or mode) are improperly set or miscalculated.

 The resolution of the time measurement is too low; for example, short periods are

measured by only a few timer increments.

 The external signal is noisy, and oscillations occur at transitions.

 The PCA interrupt requests are generated faster than the interrupt service routine can

handle them.

6.7 Exercises

 Write code that can measure the width of a button pressing pulse using the edge-

triggered capture mode. Solve the problem both with polling and with interrupt

techniques

 Write code that generates a signal that is toggled with the following timing: 1 ms,

2 ms, 4 ms and 8 ms, and repeats this sequence infinitely. Use the high-speed output

mode to implement the code. Check the result on an oscilloscope.

Programmable counter array

 Write a program that drives an LED with a PWM signal at a rate of 1000 Hz, with

the pulse width set by button pressings from 10% to 90% by steps of 10% in a cyclic

manner.

 Generate a 1-kHz PWM signal and pass it through a simple RC filter that reduces the

ripple to 1%. Check the result with an oscilloscope.

Serial communication peripherals

7 Serial communication peripherals

Today’s electronic equipment is optimised for small size, low cost and reliability. Board space

must be kept small and the wiring of the printed circuit board must be simple. Integrated

circuits can be smaller if their pin count is small. Reliability is also improved with a lower

number of contacts and a simpler design.

Since microcontrollers often communicate with other components, the above-mentioned

requirements can be supported by serial interfaces that use only a few pins and wires to connect

the devices. Microcontrollers provide several kinds of serial ports where the idea is to exchange

bytes as bit streams, with one bit transferred at a time.

7.1 UART

One of the most popular serial interfaces is the so-called universal asynchronous

receiver/transmitter (UART), developed with the aim of communicating with distant devices,

using circuits that are typically on a separated printed circuit board [6]. Depending on the

distance, a longer cable may be used to connect the devices, in which case a driver/receiver –

aka transceiver – circuit is needed (for example, RS232 and RS485 transceivers). The data are

sent over a single wire in one direction. The communicating devices have a transmit output

(TX) and a receiver input (RX) pin. These must be cross-connected, i.e. the TX pin of one device

should be connected to the RX pin of the other and vice versa. The interface is symmetrical:

any side can send data asynchronously. If the TX pin can be disabled, even a single wire can be

used for bidirectional data transfer. Sometimes one-directional data transfer is sufficient.

Figure 7.1 summarises the connection possibilities.

Figure 7.1. Typical UART interconnections.

C

TX

RX

Device

TX

RX

FULL DUPLEX

C

TX

RX

Device

TX

RX

SIMPLEX

C

TX

RX

Device

TX

RX

HALF DUPLEX

C

TX

RX

Device

TX

RX

SIMPLEX

Serial communication peripherals

Figure 7.2. RS-232 transceivers allow the use of longer cables between the

communicating devices.

The idle state of the signal is logic high; the transmission is started by setting the signal low for

a given amount of time t. After sending this ‘start bit’, the data bits will be sent and each bit

will be placed on the wire for time t. The transfer is terminated by a so-called stop bit, which

is logic high for a duration of at least t. The transmitter and receiver must have the same

timing; they detect the start bit and then sample the signal to determine the value of the bits.

Sometimes a ninth bit is sent, which can be a parity bit or can be used in multiprocessor

communication to mark the byte as a control or address word rather than data. Figure 7.3

shows the time diagram of the data transfer.

Figure 7.3. Time diagram of the data transfer.

The 1/t bit rate (called the baud rate) is generated by timer overflows in two different ways

depending on which processor is used:

 baud rate = timer overflow rate / 16, (for example, C8051F120 UART 0)

or

 baud rate = Timer 1 overflow rate / 2 (for example, C8051F410 or C8051F120 UART 1).

Using Timer 1 in auto reload mode, the timer reload value can be determined in the following

way:

 TH1=256-TCLK0/(16baud rate) (for example, C8051F120 UART 0),

or

C

TX

RX

RS232 TRANSCEIVER
MAX202, MAX3232

R OUT

T IN

Vdd

VOLTAGE
CONVERTER

V+

V-

T OUT

R IN

RS232 SIGNALS

B0 B1 B2 B3 B4 B5 B6 B7
START

BIT
STOP
BIT

t t tt t t t t t t

bit sampling

Serial communication peripherals

 TH1=256-TCLK0/(2baud rate) (for example, C8051F410 or C8051F120 UART1).

If one of Timers 2–4 is used, the 16-bit reload value is

 TMRRL=65536- TCLK/(16baud rate).

The timers must be configured in auto reload mode and must be enabled. The associated timer

interrupts are not enabled.

Note that the transmitter and receiver baud rate cannot be exactly the same since they are

derived from different oscillators. Figure 7.4 shows a time diagram example of a 3% mismatch.

Figure 7.4. Time diagram of data transfer with 3% baud rate tolerance. The red

bits are not sampled properly.

Depending on the signal transition time, the allowed tolerance is different. A higher baud rate

or a longer transition time needs more strict matching [18]. It is strongly recommended to

configure outputs as push-pull to keep transition times as short as possible.

Figure 7.5. Depending on the rise and fall time of the signals, the valid state can

be longer, which allows a less strict tolerance of the baud rate.

The following C8051F410 code examples illustrate simple polling-mode UART

communication.

/***

UART initialisation function

**/

void UART_Init()

{

 SCON0 = 0x10; // 8-bit, variable baud mode

 TI=1; // assume empty output buffer!

}

/***

UART input function, polling mode

**/

unsigned char UART_In(void)

{

B0 B1 B2 B3 B4 B5 B6 B7
START

BIT

1,03t

STOP
BIT

0,75t 0,75t0,25t

t t

t/8

BIT BIT

BITBIT

Serial communication peripherals

 while (!RI); // wait for a byte

 RI=0; // clear UART receive flag

 return SBUF; // return the byte

}

/***

UART output function, polling mode

**/

void UART_Out(char a)

{

 while (!TI); // wait for end of previous transmission

 TI=0; // clear UART transmit flag

 SBUF=a; // transmit a byte, do not wait for end

 // this will also trigger the transmission process

}

The next example shows the use of ring buffers to transmit and receive in interrupt mode.

#define BUFFERSIZE 8

// declare ring buffers for input and output queue

volatile unsigned char tx_buffer[BUFFERSIZE];

volatile unsigned char rx_buffer[BUFFERSIZE];

// TX buffer read and RX buffer write pointers

// used in the interrupt routine

volatile unsigned char tx_read_ptr=0, rx_write_ptr=0;

// TX buffer write and RX buffer read pointers

unsigned char tx_write_ptr=0, rx_read_ptr=0;

// Number of data available in the ring buffers

volatile unsigned char tx_number_of_data=0;

volatile unsigned char rx_number_of_data=0;

/***

UART interrupt routine

**/

void UARTInterrupt(void) __interrupt UART_VECTOR

{

 if (RI) // if byte has been received

 {

 RI=0; // clear UART receive flag

 if (rx_number_of_data < BUFFERSIZE) // does it fit in the buffer

 {

 rx_buffer[rx_write_ptr]=SBUF; // save the byte into the buffer

 rx_write_ptr = (rx_write_ptr+1) % BUFFERSIZE; // ring buffer

indexing

 rx_number_of_data++; // increment number of received bytes

 }

 }

 if (TI) // if byte has been transmitted

 {

 TI=0; // clear UART transmit flag

 if (tx_number_of_data) // if there are still bytes to be sent

 {

 // this will also trigger the transmission process

 SBUF=tx_buffer[tx_read_ptr]; // send the byte

 tx_read_ptr = (tx_read_ptr+1) % BUFFERSIZE; // ring buffer indexing

 tx_number_of_data--; // decrement the number of bytes in the queue

 }

Serial communication peripherals

 }

}

/***

UART input function, interrupt mode

**/

unsigned char UART_In(unsigned char *c)

{

 if (rx_number_of_data) // if bytes are available

 {

 rx_number_of_data--; // decrement the number of available bytes

 *c=rx_buffer[rx_read_ptr]; // read a byte from the buffer and return it

 rx_read_ptr = (rx_read_ptr+1) % BUFFERSIZE; // ring buffer indexing

 return 0; // return 0 if successful

 }

 return 1; // no byte could be read from the buffer

}

/***

UART output function, interrupt mode

**/

unsigned char UART_Out(unsigned char c)

{

 if (tx_number_of_data < BUFFERSIZE) // is there space in the transmit queue

 {

 tx_number_of_data++; // increment number of bytes in the transmit queue

 tx_buffer[tx_write_ptr]=c; // put the byte in the transmit queue

 tx_write_ptr = (tx_write_ptr+1) % BUFFERSIZE; // ring buffer indexing

 return 0; // return 0 if successful

 }

 return 1; // no byte could be placed into the transmit queue

}

7.1.1 Application guidelines

 UART must be enabled on the crossbar and the TX output must be configured as push-

pull.

 The baud rate should be set by configuring the associated timer overflow rate. The

maximum baud rate is SYSCLK/16; however, for transmission, the baud rate can be

SYSCLK/2 if the baud rate is equal to the timer overflow rate divided by 2.

 The timer must be enabled but the timer interrupt must not.

 The UART reception must be enabled.

 Either polling or interrupt mode can be used but the two modes should not be used

simultaneously.

 If interrupt mode is used, the UART interrupt must be enabled. The interrupt pending

flag must be cleared in the service routine. Note that both transmit and receive

interrupts invoke the same service routine, so both events should be handled.

 The UART has a single-byte input buffer; therefore, the input data will be overwritten

by the next incoming byte of data if the buffer has not been read by the processor in

time.

 In order to avoid data loss, some kind of handshaking can be implemented. For

example, a received byte can be sent back to confirm reception.

Serial communication peripherals

7.1.2 Troubleshooting

Problem:

 The UART does not seem to send or receive data.

Possible reasons:

 The UART is not enabled on the crossbar or the crossbar is not enabled.

 The UART reception is not enabled.

 The UART baud rate timer is not enabled.

 The baud rate time is not configured properly.

 Broken or short-circuited wires or links between the communicating devices.

Problem:

 The data sent or received do not seem to be valid.

Possible reasons:

 The baud rates of the communicating devices do not match (due to improper settings

or the limited accuracy of the internal oscillator, etc.).

 The baud rate is too high (higher than SYSCLK/16).

 The baud rate timer is used for another purpose and has been overwritten accidentally.

 The TX output signal is not configured as push-pull.

Problem:

 Some bytes are missing during data transfer.

Possible reasons:

 The receive buffer is not read in time by the processor before new data are received.

 The data transfer is too fast.

7.2 SPI

Serial peripheral interface (SPI) is normally used to connect integrated circuits – sensors,

ADCs, DACs, other microcontrollers, etc. – on the same board in a master-slave fashion [6].

SPI uses one wire for outgoing data (master out – slave in, MOSI) and another for incoming

data (master in – slave out, MISO). A third wire (serial clock, SCK) driven by the master

synchronises the transfer by providing a clock signal that changes when a bit of the data is

available. Typically, the data are shifted out on one edge and can be read on the following

opposite transition; the polarity can be chosen. An optional active low fourth signal (often

called negated slave select, NSS) can be used to select the slave device, which ignores all

communication signals if this line is inactive. This is useful to provide a safe frame (accidental

pulses on the SCK line can corrupt data transmission) or to use multiple slave devices on the

same bus.

Serial communication peripherals

Figure 7.6. SPI master and slave connections.

The time diagram of a 3-wire transaction can be seen in Figure 7.7, while Figure 7.8 illustrates

the use of the NSS signal. Note that there is no separate read operation; during a read the MOSI

wire is driven. The slave device typically ignores this byte, but the datasheet must be consulted

to ensure proper operation.

The SPI clock rate can be expressed as:

 1SPI0CKR2

SYSCLK
SCK

f , (7.1)

where SPI0CKR is an SFR that can be given by the following formula:

 1
2

SYSCLK
SPI0CKR

SCK

f

. (7.2)

Master

SCK

MISO

MOSI

Slave

SCK

MISO

MOSI

Master

SCK

MISO

MOSI

Slave

SCK

MISO

MOSI

NSS

GPIO

Slave

SCK

MISO

MOSI

NSS

NSS

Serial communication peripherals

Figure 7.7. Time diagram of an SPI transaction. The clock polarity and phase

can be programmed.

Figure 7.8. Time diagram of a 4-wire SPI transaction.

The following is a polling-mode SPI example code.

/***

SPI output function, polling mode

**/

void SPIOut(unsigned char c)

{

 SELECT = 0; // activate the select signal (negative logic)

 SPIF = 0; // clear the end of transmission flag

 SPI0DAT = c; // place the byte into the transmit register

 // this will also trigger the transmission process

 while (!SPIF); // wait until the end of transmission

 SELECT = 1; // deactivate the select signal (negative logic)

}

/***

SPI input function, polling mode

POL=1

PHA=0

POL=0
SCK

B7 B6 B5 B4 B3 B2 B1 B0MOSI

B7 B6 B5 B4 B3 B2 B1 B0MISO

B7 B6 B5 B4 B3 B2 B1 B0MOSI

B7 B6 B5 B4 B3 B2 B1 B0MISO

PHA=1

POL=1

PHA=0

POL=0
SCK

B7 B6 B5 B4 B3 B2 B1 B0MOSI

B7 B6 B5 B4 B3 B2 B1 B0MISO

NSS

Serial communication peripherals

**/

unsigned char SPIIn(void)

{

 SELECT = 0; // activate the select signal (negative logic)

 SPIF = 0; // clear the end of transmission flag

 SPI0DAT = 0; // dummy write starts SPI clocking and therefore reception

 while (!SPIF); // wait until the end of reception (8 bits)

 SELECT = 1; // deactivate the select signal (negative logic)

 return SPI0DAT; // return the received byte

}

7.2.1 Application guidelines

 The SPI must be enabled on the crossbar and the outputs (MOSI and SCK in master

mode, MISO in slave mode, and the select signal if applicable) must be configured as

push-pull.

 The SCK clock rate should be set by setting the dedicated system clock divider value

SPI0CKR. The maximum clock rate in master mode is the SYSCLK/2 or 12.5 MHz,

whichever is lower; in slave mode, it must be less than SYSCLK/10.

 All parameters of the SPI port – clock phase, polarity, 3- or 4-wire mode and master or

slave mode – must be set according to the communication requirements.

 Use either polling or interrupt mode, but not the two modes simultaneously.

 If interrupt mode is used, the SPI interrupt must be enabled. The interrupt pending

flag must be cleared in the service routine. Note that several SPI events are handled by

the same service routine, so care should be taken to handle interrupts from all possible

sources in the routine.

 The SPI has a single-byte input buffer; therefore, the input data will be overwritten in

slave mode by the next byte of incoming data if the buffer has not been read by the

processor in time.

7.2.2 Troubleshooting

Problem:

 The SPI does not seem to send or receive data.

Possible reasons:

 The SPI is not enabled on the crossbar or the crossbar is not enabled.

 The SPI is not configured properly.

 The select signal is used but inactive.

 Broken or short circuited wires or links between the communicating devices.

Problem:

 The data received or sent do not seem to be valid.

Possible reasons:

 The setup (clock phase, polarity, etc.) of the communicating devices does not match

 The clock rate is too high (higher than 12.5 MHZ or SYSCLK/10 in slave mode).

 The output signals are not configured as push-pull.

 The interface is not initialised properly; an accidental transaction has not finished.

Serial communication peripherals

7.3 SMBus

System management bus (SMBus) is a two-wire master-slave interface to connect multiple

masters (microcontrollers) and multiple slaves (digital output sensors, ADCs, DACs, flash

memory, etc.) on the same bus [6]. It is practically compatible with the I2C (Inter-integrated

circuit) bus; a few minor differences include timeout handling, clock speed and line driving

specifications. The communicating chips are typically found on the same printed circuit board

or at least in the same equipment. The bus is not designed to use long wires (more than a few

tens of centimetres).

One wire carries the data in both directions (serial data, SDA) and another (serial clock, SCL)

is supplied by a master and synchronises the communication devices by clock pulses indicating

valid bits on the bus.

Figure 7.9. Connecting devices to the two-wire SMBus.

The SMBus has open-drain output drivers and needs external pull-up resistors for proper

operation. Higher value resistors (about 10 kΩ or greater) lower the power consumption, while

smaller resistances (down to about 2 kΩ) provide higher speed. The open-drain structure only

allows both the master and the slave to set the signal logic low (pull-down); the resistors ensure

logic high when none of the devices pull the signal down.

Figure 7.10. Block diagram of the SMBus peripheral of the microcontroller.

Master 1

Vdd=5V

Master 2

Vdd=3V

Slave 1

Vdd=5V

Slave 2

Vdd=3V

SDA

SCL

R R

Vdd=5V

FILTER

SHIFT REGISTER

7 6 5 4 3 2 1 0

SDA CONTROL

ACK

CLOCK CONTROL

C
R

O
SS

B
A

R

SCL

SDA

FILTER

Serial communication peripherals

The bit rate can be set by Timer 0 and Timer 1 overflows and Timer 2 high or low byte overflows

according to the following formula:

3

RateOverflowTimer
SCL f . (7.3)

The time diagram of a typical transaction can be seen in Figure 7.11. In the inactive state both

SDA and SCL are high. Data exchange is initiated by a start condition, which is the master

pulling the SDA low. Then the master sends 7 address bits to select a device and a direction bit.

This bit is logic high if the master reads from the slave and is logic low otherwise. After this,

the slave must pull the SDA line low to acknowledge (ACK) the request; otherwise, the

transaction will fail. Depending on the direction, the master or the slave then puts data on the

SDA line, while the master controls the timing by driving the SCL line. Each byte must be

acknowledged. After the last byte has been sent, either the master or the slave can send a not-

acknowledge (NACK, release the SDA wire) to stop the data transfer. The transfer is ended by

a stop condition: the master keeps SDA low while releasing the SCL to go high then releases

the SDA line to let the external resistor to pull the line high.

Figure 7.11. Time diagram of an SMBus transaction.

The communication is more complicated than in the case of UART or SPI. Two examples in

Figure 7.12 and 7.13 show read and write time diagrams and interrupt flag behaviour. It is

recommended to handle the transfer in an interrupt routine; however, polling the interrupt bit

(SI) can be easier to implement and understand in simple transfers.

8-bit data
7-bit address

and direction bit ST
O

P

N
A

C
K

A
C

K

ST
A

R
T

R/WA6 A0 D7 D0

SC
L

SD
A

Serial communication peripherals

Figure 7.12. SMBus write operation.

Figure 7.13. SMBus read operation.

A simple polling mode example code can be seen below.

/***

SMBus/I2C output function, polling mode

**/

void SMBus_Out(unsigned char address, unsigned char c)

{

 STO = 0; // stop condition bit must be zero

 STA = 1; // start transfer

 SI = 0; // continue

 while (!SI); // wait for start to complete

 STA = 0; // manually clear STA

 SMB0DAT = address << 1; // A6..A0 + write

SLAVE

MASTER

S ADDR W ADATA ADATA PA

S ADDR W ADATA ADATA PA

IRQ IRQ IRQ IRQ

IRQ IRQ IRQ

SLAVE

MASTER

S ADDR R

ADATA NDATA

PA

S ADDR R

ADATA NDATA

PA

IRQ IRQ IRQ IRQ

IRQ IRQ IRQ

Serial communication peripherals

 SI = 0; // continue

 while (!SI); // wait for completion

 if (!ACK) // if not acknowledged, stop

 {

 STO = 1; // stop condition bit

 SI = 0; // generate stop condition

 return;

 }

 SMB0DAT = c; // put data into shift register

 SI = 0; // continue

 while (!SI); // wait for completion

 STO = 1; // stop condition bit

 SI = 0; // generate stop condition

}

/***

SMBus/I2C input function, polling mode

**/

unsigned char SMBus_In(unsigned char address)

{

 STO = 0; // stop condition bit must be zero

 STA = 1; // start transfer

 while (!SI); // wait for start to complete

 STA = 0; // manually clear STA

 SMB0DAT = (address << 1) | 1; // A6..A0 + read

 SI = 0; // continue

 while (!SI); // wait for completion

 if (!ACK) // if not acknowledged, stop

 {

 STO = 1; // stop condition bit

 SI = 0; // generate stop condition

 return;

 }

 ACK = 0; // NACK, last byte

 SI = 0; // continue

 while (!SI); // wait for completion

 STO = 1; // stop condition bit

 SI = 0; // generate stop condition

 return SMB0DAT;

}

7.3.1 Application guidelines

 The SMBus must be enabled on the crossbar and the associated two pins must be

configured as open-drain.

 The SMBus data rate should be set by configuring the associated timer overflow rate.

The maximum clock rate is SYSCLK/20. In most cases, rates close to the standard

100 kbit/s are used

 Master or slave mode can be selected.

 The associated timer must be enabled but the timer interrupt must not.

 Use either polling or interrupt mode, but not the two modes simultaneously.

 If interrupt mode is used, the SMBus interrupt must be enabled. The interrupt pending

flag must be cleared in the service routine. Note that several SMBus events are handled

by the same service routine, so care should be taken to handle interrupts from all

possible sources in the routine.

Serial communication peripherals

 External pull-up resistors must be used. The typical range is from 2 kΩ to 10 kΩ. Lower

values enable higher speed; higher values lower the power consumption.

7.3.2 Troubleshooting

Problem:

 The SMBus does not send and receive data or the data sent or received do not seem to

be valid.

Possible reasons:

 The SMBus is not enabled on the crossbar or the crossbar is not enabled.

 The SMBus is not configured properly.

 The SMBus data rate timer is not enabled.

 The data rate is not configured properly.

 The device address is invalid or no device is present on the bus.

 Broken or short-circuited wires or links between the communicating devices.

 The device communication protocol is not followed properly.

 The data rate (clock frequency) is too high and the clock pulse width is too narrow.

 The devices are too far from each other, and if they are connected with a cable, it may

be too long.

7.4 C standard I/O redirection

The standard C input/output functions in the SDCC environment use the putchar and getchar

basic functions [4]. Therefore, it is possible to redirect the input and output to use a serial port.

The printf, scanf and other functions will use the port. A code example of using the UART port

can be seen below.

/***

Redirected standard C output function

**/

void putchar(char c)

{

 UART_Out(c); // UART, SPI, SMBus, etc.

}

/***

Redirected standard C input function

**/

char getchar(void)

{

 return UART_In(c); // UART, SPI, SMBus, etc.

}

…

printf("x=%d",x); // example write operation

Serial communication peripherals

7.5 Exercises

 Write code that sends back every received byte over the UART. The baud rate should

be 9600 bit/s; use a personal computer connected to the UART via a USB-UART

converter to the microcontroller board.

 Upgrade the UART example code to use the RTS and CTS handshake lines.

 Connect the MCP4141 digital potentiometer via the SPI port to the microcontroller.

Write code to set the potentiometer value. Check the result with a digital multimeter.

 Connect the SST25VF020B 2-Mbit flash memory via the SPI port to the

microcontroller. Write code to fill the first 256 locations with the location index and

read back the data. Measure the SPI signals with an oscilloscope.

 Read the temperature value using an LM75 sensor via the SMBus interface. Display

the value on the two 7-segment displays in degrees. Measure the SMBus signals with

an oscilloscope.

Analogue peripherals

8 Analogue peripherals

Modern microcontrollers have several built-in analogue peripherals – comparators, ADCs,

DACs and voltage references – to support very compact real-world signal processing. Some

sensors can be connected even without additional analogue circuitry.

In this section, the analogue peripherals of the C8051F410 microcontroller will be detailed [6].

8.1 Comparators

Comparators are the simplest digitising components. They have a single logic output that is

logic high if the voltage on the positive input is greater than the voltage connected to the

negative input. Some hysteresis turns the comparator into a Schmitt trigger, making it less

sensitive to the noise on slowly changing signals, which can cause oscillations on the output

when the signal is close to the switching threshold.

Figure 8.1. Comparator and Schmitt trigger (comparator with hysteresis)

waveforms.

Note that comparators have some delay that varies from device to device and may also depend

on the settings.

Figure 8.2. Comparator delay.

Comparators in C8051F410 processors have analogue multiplexers at their inputs so the

signals can be chosen during program execution. The corresponding port pins must be

configured as analogue input using the crossbar. The output of the comparators can be polled,

used to generate an interrupt or connected to the pins of the microcontroller via the crossbar.

In the latter case, the output can be either synchronised to the internal system clock or left as

is (analogue mode).

Vp

Vn

t

Vp

Vn

OUT

Vp

Vn

t

Vp

Vn+h/2

OUT

Vn-h/2

t

Vn+h/2

OUT

Vn-h/2

Tdh Tdl

Analogue peripherals

Figure 8.3. C8051F410 comparator circuit.

Comparators are useful for detecting levels of signals in applications such as heating control.

They can be applied to convert a sinusoidal signal to a logic signal in order to measure its

period; this way, the output of voltage-to-frequency converters can be digitised. They can also

make the inputs compatible with different logic levels.

The comparator is useful for implementing a certain kind of analogue-to-digital converter.

Figure 8.4 shows how it can be used to digitise the time constant RC of a resistor-capacitor

circuit. When the push-pull output port bit is switched to logic high, the capacitor will be

charged through R and the positive input is fixed at a fraction of the driving voltage. The time

t needed to charge the capacitor to reach this voltage can be measured by a timer. This time

can be obtained from the following derivation:

21

1exp1
RR

R

RC

t

 , (8.1)

RC

t

RR

R
exp1

21

1
, (8.2)

RC

t

R

RR
exp

2

21
, (8.3)

2

21ln
R

RR
RCt . (8.4)

The logic high voltage level is not accurate, but the time does not depend on it, so the accuracy

is not degraded. There are several resistive and capacitive sensors whose signals can be

digitised using this method. Note that the input leakage current and the input capacitance can

affect accuracy if the charging current is low or if the capacitor value C is low.

P0.0

P0.2

P2.4

P2.6

P0.1

P0.3

P2.5

P2.7

D Q

C

C
R

O
SS

B
A

R

CP0A

CP0

OR INTERRUPT

Analogue peripherals

Figure 8.4. The comparator can be used to measure the time constant of the RC

circuit, thus R or C can be measured if one of them is known.

8.1.1 Application guidelines

 The comparator input pins must be associated with port pins using the input

multiplexer.

 The comparator input pins must be configured as analogue and must be skipped using

the crossbar.

 The comparator input pins must not be left floating.

 The source impedance of the two input signals must be low and balanced to avoid an

undesired voltage drop due to the input leakage current, and to reduce noise pickup.

 The comparator raw analogue output or the output synchronised to the system clock

can be connected to a port pin using the crossbar.

 The comparator response time and power should be selected.

 The hysteresis should be configured. Noisier or slower signals typically need higher

hysteresis.

 The input voltage range must be within the specifications; typically between ground

and supply.

 The comparator interrupt can be generated on falling edge, on rising edge or on both

transitions. If used, it must be enabled and the interrupt pending flag must be cleared

in the interrupt service routine.

8.1.2 Troubleshooting

Problem:

 The comparator does not seem to detect the polarity of the voltage between its input

terminals properly.

Possible reasons:

 The comparator is not enabled.

 The input multiplexer is not configured to assign the desired signals.

 The signals are out of the valid input range.

 The signals never cross each other; for example, one of the inputs is at GND while the

other is always positive.

 The input signals are too fast; the polarity of the voltage between the input terminals is

changing too quickly.

 An input is floating

C8051F410

C

R R
2

R
1

PORT BIT

PROCESSING

Analogue peripherals

 The source impedances of the two input signals are highly different; therefore, the input

leakage current causes an undesired voltage drop.

Problem:

 The comparator interrupt is not generated.

Possible reasons:

 The comparator is not configured properly,

 The interrupt is not enabled or it is not configured properly.

Problem:

 The comparator output changes randomly or irregularly.

Possible reasons:

 The comparator is not configured properly.

 One or both of the inputs are floating or the source impedance is too high.

 The input signals are noisy or very slowly changing; the hysteresis is too small.

8.2 Voltage reference

Most of the analogue peripherals need a stable, clean and accurate voltage. Comparators may

need accurate voltage levels to which they can relate their input signals. Analogue-to-digital

converters compare the input voltage to a reference voltage and determine the ratio of these

voltages. Digital-to-analogue converters output a current or voltage that is an integer multiple

of a small quantity. Although some use the supply voltage as a reference, it is absolutely not

recommended, since the value is not stable enough: it depends on loading, it can be rather

noisy and its accuracy is very poor. One must always use a precise dedicated reference voltage.

Note that the accuracy of the reference determines the accuracy of all circuits that use it.

Mixed-signal microcontrollers have integrated voltage references but can use external

references as well. Typically, the internal reference is not as accurate; some applications may

need better performance. Typical parameters are the following.

Absolute accuracy. Guaranteed minimum and maximum voltage limits. Sometimes the

error is given as percentage of the nominal voltage. Internal references have accuracies of 1%-

2%, while external references can have accuracies below 0.1%.

The C8051F410 value is 1.8%.

Temperature coefficient. The reference voltage is somewhat temperature dependent. The

value is given as ppm/K: parts-per-million change in the nominal voltage per degree. The value

is typically around 30 ppm/K; for external references it can be below 3 ppm/K.

The C8051F410 value is 35 ppm/K.

Load regulation. The reference voltage depends slightly on the loading current. It can be

given as voltage change per loading current or as ppm per loading current. A few ppm/A is

typical.

The C8051F410 value is 10 ppm/A.

Power supply rejection. Changes in the value of supply voltage can cause small changes in

the reference voltage. The smaller the change, the better the rejection. The ratio of the voltage

reference change and the supply voltage change is given (mV/V or ppm/V).

Analogue peripherals

The C8051F410 value is 2 mV/V.

Maximum loading current. Voltage references can drive external resistor dividers and

other circuitry. However, the loading current cannot exceed a certain value; otherwise, the

specifications are not guaranteed.

The C8051F410 value is 200 A.

Turn-on time. The voltage reference can be turned on and off, which allows the use of an

external reference and can help to optimise power management. Since the output voltage of

the reference must be decoupled with capacitors (100 nF and 4.7 F-10 F), it takes a

considerable amount of time – typically a few milliseconds – for the voltage to reach the final

accurate value. It is a typical mistake to enable the reference and do an analogue-to-digital

conversion without having waited for the reference settling time to pass. The error can be very

large in this case.

The C8051F410 value is about 7 ms using 100 nF and 4.7 F capacitors.

Figure 8.5 shows typical reference connections.

Figure 8.5. Both external and internal reference can be used. The decoupling

capacitors must be placed as close as possible to the reference pin.

8.2.1 Application guidelines

 Decide whether to use internal or external reference. In both cases use decoupling

capacitors.

 If internal reference is used, it must be enabled and the internal reference buffer should

also be enabled.

 Do not overload the reference. It is a good practice to apply only loads well under the

maximum (below 10%). Use an external operational amplifier buffer to provide higher

current.

 Consider the reference turn-on time. Use it only after the value is surely stabilised.

 The reference port pin must be configured as analogue and must be skipped by the

crossbar.

8.2.2 Troubleshooting

The troubleshooting for references is given in the following sections.

C8051Fxxx

4u7 100nF

INTERNAL
VREF

OPTIONAL
EXTERNAL

VREF

ADC, DAC

Analogue peripherals

8.3 ADC

The analogue-to-digital converter outputs a b-bit binary number d that depends on the input

voltage as

 5.02

ref

b

V

V
d , (8.5)

where Vref is the voltage of the internal or external voltage reference [12]. The smallest voltage

change that can be detected, Vref/2b, is called the voltage of the least significant bit (VLSB) or

voltage resolution. There are also differential ADCs, which measure voltage difference between

their inputs and output a 2s complement binary number. Negative voltages are not allowed,

because they are out of the range of the supply voltage — microcontrollers do not have a

negative supply. This means that external signal conditioning is needed if the signal is out of

range, if it is too small or if it is not a low-impedance voltage.

Figure 8.6 shows the block diagram of the 12-bit ADC integrated into the C8051F410

microcontroller. This successive approximation register (SAR) ADC is a very common

architecture. Note that the conversion takes several steps (the number of bits plus 1), so a start

signal and a periodic clock (SAR clock) signal are needed for proper operation.

The analogue multiplexer allows 27 different signals to be digitised. If the analogue signal

(voltage) to be digitised is connected to a port pin, this pin must be configured as an analogue

input using the crossbar and it must also be ‘skipped’, i.e. the crossbar must not assign any

other peripherals to this pin. Note that the voltage reference pin (P1.2) must also be configured

as an analogue input and skipped regardless of whether external or internal voltage reference

is used.

Figure 8.6. The A/D converter circuit of the C8051F410.

The 12-bit result of the conversion can immediately go to the 16 bits of SFRs ADC0H and

ADC0L in left- or right-justified format. It is also possible to accumulate 1, 4, 8 or 16 samples

and transfer their sum to the ADC0H and the ADC0L. In this case, the data must be right-

justified, since the sum can take all 16 bits. A window comparator can set a flag or generate an

interrupt depending on whether the result is in a specified range.

A
N

A
LO

G
U

E
 M

U
LT

IPLE
X

E
R

P0.0

P0.1

P2.6

P2.7

12-bit A/D
converter

TEMP

VDD

ADC0H ADC0L

ACCUMULATOR
1,4,8,16 samples

WINDOW
COMPARATOR

ADC0LTH ADC0LTL ADC0GTH ADC0GTL

Left justified

Right justified

INTERRUPT

INTERRUPT
(AD0INT)

START
CONVERSION

B
0

B
1

B
2

B
3

B
4

B
5

B
6

B
7

B
8

B
9

B
1

0
B

1
1

B
0

B
1

B
2

B
3

B
4

B
5

B
6

B
7

B
8

B
9

B
1

0
B

1
1

Vref

Analogue peripherals

The conversion can be started in several ways, as shown in Figure 8.7. At the end of conversion

the AD0INT flag is set and an interrupt can be generated.

Figure 8.7. Start of conversion sources.

It is important to note that before conversion, the input signal is sampled by a capacitor Cs, as

shown in Figure 8.8.

Figure 8.8. Simplified schematic of the ADC input.

The capacitor must be charged to a voltage that is close enough to the input voltage. If the

deviation is less than half of the voltage resolution ½ VLSB = Vref/213, the error thus introduced

does not degrade the 12-bit resolution. Since the capacitor is charged through Rext and the

internal resistance RMUX=5 kΩ, the sampling time must be at least

 ns540ns110
k

2lnpF12k52ln ext13

ext

13

MUXext

R

RCRR s , (8.6)

so at least a 540-ns signal tracking time is required. However, the datasheet specifies 1000 ns

as minimum due to the uncertainty of the values 5 kΩ and 12 pF. In order to ensure reliable

operation, it is best to keep a minimum of 1000 ns tracking time and add 200 ns for every kΩ

of output impedance of the signal source:

 ns1000ns200
k1

ext
track

R
t , (8.7)

Even if a DC signal is measured, this minimum tracking (or sampling) time must be

guaranteed, because the sampling capacitor is discharged during conversion.

Note that the analogue input has a leakage current. It flows through Rext, therefore causes an

error voltage. For higher impedances, an operational amplifier is recommended to provide

low-impedance output.

A more common connection can be seen in Figure 8.9, when an external capacitor is placed

between the input and ground. This capacitor can remove high-frequency noise, charge the

sampling capacitor quickly and isolate the signal source from the current transients caused by

WRITE 1 TO AD0BUSY

TIMER 3 OVERFLOW

CNVSTR (P0.6)

TIMER 2 OVERFLOW

START CONVERSION

C8051F410

RMUX

Cs

12-bit A/D
converter

Rext

TRACK CONVERT

IL

Analogue peripherals

the switched sampling capacitor. The latter is especially useful when the signal source is the

output of an operational amplifier. Cext is typically chosen to be much greater than the sampling

capacitance. For example, if it is 1000 times greater, it can charge the sampling capacitor to

99.9% even without drawing current from the signal source. However, between conversions

the external capacitor must be recharged to represent the input voltage with a specified

accuracy.

Figure 8.9. Signal source connected to the input via a series resistor (Rext) and a

capacitor (Cext).

In order to make it clearer, an example follows. Let us assume that the voltage of the source is

Vin and the sampling frequency is fs. This means that in every conversion cycle the sampling

capacitor drains a charge of VinCs, so the average current flowing to the input is the charge

divided by the sampling period ts (which is equal to 1/fs):

 ssin

s

sin fCV
t

CV
I

 , (8.8)

This current flows through Rext, therefore causes an average voltage drop on it:

 ;ssinext fCVRV (8.9)

therefore, the relative error can be estimated as

 ssext

in

fCR
V

V

. (8.10)

Thus at a given sample rate and relative error the Rext resistance is limited as

ssin

ext

1

fCV

V
R

 , (8.11)

or for a given Rext value the sample rate must be limited as

extsin

1

RCV

V
fs

 . (8.12)

For example, if 0.1% error is allowed, then at a sample rate of 10 kHz Rext must be less than

0.001/(1210-12104) Ω 8333 Ω.

In summary:

 when no external capacitor is used, the minimum tracking time is given by Equation

8.7;

 using an external capacitor much (about 1000 times) greater than the sampling

capacitor, the tracking time can be kept at its minimum, but the sample rate is limited

according to Equation 8.12.

C8051F410

RMUX

Cs

12-bit A/D
converter

Rext

TRACK CONVERT

IL

Cext

Analogue peripherals

According to the above the external resistor and capacitor can only be used as a simple anti-

aliasing filter if Equations 8.11 and 8.12 are satisfied. On the other hand, single pole filters do

not reduce higher frequency components properly. If the signal contains significant

components above fs/2, then an active anti-aliasing filter is preferred. A popular simple

second-order low-pass filter [11] is shown in Figure 8.10.

Figure 8.10. Sallen-Key second-order low-pass filter. Note that Rext and Cext are

not parts of the filter.

The transfer function of this filter can be given as:

 2121

2

221i1

1
)(

CCRRCRR
A

 , (8.13)

where is the angular frequency: =2f.

The general formula of a second-order low pass filter can be written as:

2

0

2

0

i
1

1
)(

Q

A . (8.14)

The values of Q and 0 can be obtained from tables or by using filter design software, while the

values of the resistors and capacitors can be determined.

Higher-order filters with better high-frequency rejection can be realised by cascading several

first- or second-order stages. Note that Rext and Cext are not parts of the filter: these components

are needed to isolate the output of the operational amplifier from the transient load caused by

the switched sampling capacitor.

The C8051F410 microcontroller offers several tracking options that are illustrated in Figure

8.11.

Rext

CextR1

C1

R2

C2

Analogue peripherals

Figure 8.11. Time diagram of the different tracking modes.

The safest mode is the dual tracking mode. The post-tracking mode can be used to save power,

since the ADC is in an idle state between conversions. The pre-tracking mode can help to

achieve the highest possible conversion rate, but one must be very careful, because a minimum

tracking time is not guaranteed. Therefore, the use of this mode is not recommended.

The following simple example code illustrates ADC handling in polling mode.

P0MDIN = 0xFE; // P0.0 analogue input

P1MDIN = 0xFB; // P1.2 analogue input (VREF)

P0SKIP = 0x01; // skip P0.0 since it is an analogue input

P1SKIP = 0x04; // skip P1.2 since it is an analogue input

REF0CN = 0x13; // enable internal VREF

ADC0CF = 0x00; // 191406-Hz ADC clock

ADC0CN = 0x80; // enable ADC (conversion start: set AD0BUSY)

unsigned int GetADC(unsigned char channel)

{

 ADC0MX = channel; // set the multiplexer

 ADC0CN = 0x80; // enable the ADC

 AD0INT=0; // clear the end of conversion flag

 AD0BUSY=1; // start A/D conversion

 while (!AD0INT); // wait for end of conversion

 AD0INT=0; // clear the end of conversion flag

 return (ADC0H << 8)+ADC0L; // return the result of the A/D conversion

}

A more efficient way is to read the converted data in an interrupt service routine. One possible

implementation can be seen below.

TMR2RLL = 0x60; // high byte of reload register for a 100-Hz overflow rate

TMR2RLH = 0xFF; // low byte of reload register for a 100-Hz overflow rate

TMR2CN = 0x04; // enable Timer 2

P0MDIN = 0xFE; // P0.0 analogue input

P1MDIN = 0xFB; // P1.2 analogue input (VREF)

P0SKIP = 0x01; // skip P0.0 (input signal)

P1SKIP = 0x04; // skip P1.2 (VREF)

REF0CN = 0x13; // enable internal VREF

ADC0CF = 0x00; // 191406-Hz ADC clock

ADC0CN = 0x83; // enable ADC (conversion: TIMER 2)

EIE1 = 0x08; // enable ADC interrupt

IE = 0x80; // enable interrupts

TRACK CONVERT TRACK CONVERT TRACK

TRACK CONVERT IDLE TRACK CONVERTIDLE

TRACK CONVERT TRACK TRACK CONVERTTRACK

CONVERT START

PRE
TRACKING

POST
TRACKING

DUAL
TRACKING

13 ADC CLOCKS

Analogue peripherals

/***

ADC interrupt service routine

**/

void ADC_ISR(void) __interrupt ADC_VECTOR

{

 AD0INT = 0; // clear the end of conversion flag

 adc_data = (ADC0H << 8) | ADC0L; // save the result of the A/D conversion

}

8.3.1 Application guidelines

 The ADC should be enabled for proper operation.

 Select the event that starts the conversion: it can be the write signal to AD0BUSY SFR

bit, the overflow of Timer 2 or Timer 3 or a rising edge of an external signal (CNVSTR,

P0.6). If CNVSTR is used, the port pin must be skipped and configured as open-drain

and 1 must be written to the corresponding port bit.

 If a timer overflow is used to start a conversion periodically, the timer must be

configured properly, and the timer interrupt should not be enabled.

 Select the input signal by setting the multiplexer to the desired port pin. The pin must

be configured as analogue and must be skipped using the crossbar. If multiple signals

must be converted, then all associated pins must be configured as analogue and must

be skipped.

 Select the desired ADC SAR conversion clock. Choose the highest frequency available

but not higher than the specified maximum (3 MHz for the C8051F410). The full

conversion takes 13 cycles plus the tracking time.

 If the system clock frequency is low or low-power operation is needed, the use of burst

mode is recommended. In this mode, the ADC is operated from a high-speed clock

independent of the system clock and is only out of idle state during conversion.

 Select the proper tracking mode and post-tracking time. Dual tracking mode is

preferred in most cases, since it guarantees a minimum tracking time. Post-tracking

mode can be used when low-power operation is needed.

 Consider the output impedance Rext of the signal, the external capacitance Cext, the

internal resistance of the multiplexer and the value of the sampling capacitor to

estimate the minimum tracking time and maximum sample rate using Equations 8.7

and 8.11–8.12. The input leakage current flows through Rext, so it also causes an error.

An operational amplifier can be used if the impedance is high.

 The voltage reference pin (P1.2) must be configured as analogue and must be skipped

using the crossbar. If the internal voltage reference is used, it must be enabled and the

internal reference buffer must be enabled. The internal bias generator must also be

enabled.

 If the conversion is started by writing to the AD0BUSY bit, polling the AD0INT bit can

be used to wait for the end of conversion. The AD0INT bit must be cleared before

starting the conversion. In multichannel applications, the next channel must be

selected just after the end of conversion.

 If the conversion is started by a timer overflow or by an external signal (CNVSTR), then

the end of conversion event should be handled by the ADC interrupt service routine. In

the routine, the AD0INT flag must be cleared and in multichannel applications, the next

channel must be selected at the beginning of the routine to allow the longest possible

settling time.

Analogue peripherals

 The 12-bit ADC can be left- or right-justified. Multiple (4, 8 or 16) samples can be

accumulated and then their sum can be read. In this mode, the data must be right-

justified, because addition would cause an overflow otherwise. If 16 samples are

accumulated, the result will be a 16-bit word. Note that averaging may reduce the noise

in certain cases but does not improve accuracy. Taking 16 samples can reduce the noise

to one fourth.

8.3.2 Troubleshooting

Problem:

 No A/D conversions can be detected.

Possible reasons:

 The ADC is not enabled.

 Interrupt mode is planned but the ADC interrupt is not enabled or the global interrupt

flag is disabled.

 The start of conversion signal is missing or not configured properly. If timers are used,

they might not be enabled. The external start of conversion signal pulse can be too

narrow.

Problem:

 The conversion result is not valid.

Possible reasons:

 The port pin is not configured as an analogue input.

 Due to improper multiplexer settings, the signal is not connected to the ADC input.

 The voltage reference or the internal bias generator is not enabled.

 Internal reference is used, but the internal reference buffer is not enabled.

 The voltage reference is enabled just before starting a conversion. Note that the voltage

reference stabilisation time can be several milliseconds, which must be allowed to pass

before starting a conversion.

 The voltage reference is overloaded, so it does not provide the proper value.

 Polling mode is used and the data are read before the end of conversion. The AD0INT

flag might not be logic low before starting a conversion.

 Improper integer data handling occurred. For example, left-justified or accumulated

data must be stored in an unsigned short.

 The ADC SAR clock frequency is too high (>3 MHz) or too low.

 The tracking time is too short. The signal output impedance might be too high, which

necessitates a longer tracking time; see Equation 8.7.

 The signal output impedance is high, so the input leakage current causes significant

error.

 The signal is out of the measurement range (0–Vref).

8.4 DAC

The rich set of analogue peripherals of the C8051F410 includes two independent 12-bit current

output digital-to-analogue converters. The output current range (full-scale output current,

Imax) can be set as 0.25 mA, 0.5 mA, 1 mA or 2 mA.

Analogue peripherals

Current output DACs are typically faster, but need external circuitry if voltage output is needed.

Even a simple resistor of value R suffices (see Figure 8.12), but the specified compliance range

must be met, and the output voltage must be below Vdd-1.2 V. Note also that in such a

configuration, the output impedance is R. For example, 1 V output range at 1 mA full-scale

current requires R=1 kΩ.

Figure 8.12. A resistor converts current to voltage for the C8051F410 current

output DACs. The output voltage is Vout=RImaxN/212.

The digital-to-analogue conversion can be initiated by simply writing to the DACs SRFs (IDA0L

first then IDA0H), but for the most accurate timing – needed for example for waveform

generation –, timer overflow or the transitions of an external signal can be used, as shown in

Figure 8.13.

Figure 8.13. Sources that can control the DAC output update.

A simple example of using DAC 0 with output update upon writing to IDA0H:

P0MDIN = 0xFE; // P0.0 analogue mode

P0SKIP = 0x01; // skip P0.0

IDA0CN = 0xF2; // enable DAC0, update by write to IDA0H

 // 1 mA full scale, left-justified data

IDA0L = 0; // low byte of the DAC output register

// writing to the high byte of the DAC output register updates the DAC output:

IDA0H = 128; // high byte of the DAC output register, half scale: 0.5mA

The following code updates the DAC 0 output at a rate of 100 Hz and generates a ramp signal:

unsigned short dac_data = 0;

C8051F410

12-bit D/A
converter

R

outV

WRITE TO IDA0H

TIMER 0 OVERFLOW

CNVSTR
P0.6

TIMER 2 OVERFLOW

12-bit D/A
converter

TIMER 1 OVERFLOW

TIMER 3 OVERFLOW

ID
A

0
L

ID
A

0
H

LA
TC

H

OR

Analogue peripherals

P0MDIN = 0xFE; // P0.0 analogue mode

P0SKIP = 0x01; // skip P0.0

IDA0CN = 0xA2; // enable DAC0, update: Timer 2 overflow

 // 1 mA full scale, left justified data

TMR2RLL = 0x60; // high byte of the reload register for 100-Hz overflow rate

TMR2RLH = 0xFF; // low byte of the reload register for 100-Hz overflow rate

TMR2CN = 0x04; // enable Timer 2

IE = 0xA0; // enable Timer 2 a global interrupts

/***

Timer 2 interrupt service routine

**/

void Timer2_ISR(void) interrupt TIMER2_VECTOR

{

 TF2H=0; // clear interrupt pending flag

 IDA0L=dac_data; // set lower order byte

 IDA0H=dac_data >> 8; // set higher order byte

 dac_data++; // increment the value for linear ramp

}

8.4.1 Application guidelines

 The port pin associated with the DAC output should be set as analogue and must be

skipped using the crossbar.

 Select the DAC output current range.

 Select the DAC output update source: write to the DAC register, timer overflow, or

external signal (CNVSTR, P0.6). If CNVSTR is used, then it must be configured as open-

drain and must be skipped. If the update source is timer overflow or an external signal,

an associated interrupt service routine should set the next DAC value.

 The DAC update can be precisely synchronised to ADC conversions. In this case, the

ADC interrupt routine must update the DAC registers and the ADC start of conversion

and the DAC update source must be the same (timer overflow or CNVSTR).

 Enable the DAC and the internal bias generator.

 If voltage output is needed, connect a resistor between the output and ground. The

output compliance range (Vdd–1.2 V) should not be exceeded, so at full-scale current

the voltage on the resistor must be within this range.

 Select left or right justification. If only the 8 most significant bits are used, left-justified

mode should be selected, since only the higher-order byte is used in this case.

 If used, the lower-order byte (IDA0L or IDA1L) must be written first. The DAC output

is updated if the higher order byte is written (IDA0H or IDA1H), unless the update

method is configured differently.

8.4.2 Troubleshooting

Problem:

 The DAC output is unchanged or invalid when writing to the DAC registers

Possible reasons:

 The DAC or the bias generator is not enabled.

 Only the lower-order byte (IDA0L) is written.

 The output update source is a timer, but it is not configured properly or it is not enabled.

Analogue peripherals

 If an interrupt routine must update the DAC output, the interrupt might not be enabled.

 The output is not configured as analogue or is not skipped. The port pin is used by

another peripheral or port latch.

 The output compliance range is violated.

 The output update rate is too high, whereas the DAC output needs a certain settling

time.

8.5 Temperature sensor

The C8051F410 microcontroller has an internal diode-based temperature sensor, whose

output voltage can be measured by the ADC. The voltage depends almost linearly on the chip

temperature:

 ,bTaV (8.15)

where the value of a is 2.950 mV/⁰C0.073 mV/⁰C and b=900 mV17 mV.

The linearity error – the maximum deviation from the ideal linear dependence – is 0.2 ⁰C;

the overall accuracy is about 3 ⁰C.

Note that depending on the operating power the chip temperature can be significantly higher

than the ambient temperature. In a low-power application (below 5 mW), the chip temperature

is close to the temperature of the printed circuit board (approximately within 1 ⁰C–2 ⁰C).

The temperature sensor can be used to monitor the operating temperature of the chip and the

containing printed circuit board. In some very low power applications it can be used to estimate

the ambient temperature with an accuracy of about 3 ⁰C. Temperature changes can be

monitored more accurately.

8.6 Exercises

 Measure the resistance of a resistor in the range of 1 kΩ to 99 kΩ using the comparator

as shown in Figure 8.4. Use C=100 nF, R1=27 kΩ and R2=47 kΩ. Display the result in

kΩ units on two 7-segment displays. Measure 1% precision resistors (1 kΩ, 3.3 kΩ,

10 kΩ and 33 kΩ) and compare the results with the nominal values.

 Measure the capacitance of a capacitor in the range of 1 nF to 99 nF using the

comparator as shown in Figure 8.4. Use R=100 kΩ, R1=27 kΩ and R2=47 kΩ. Display

the result in nF units on two 7-segment displays. Measure 1 nF, 3.3 nF, 10 nF and

33 nF capacitors and compare the results with the nominal values. Also consider the

precision of the nominal values.

 Try to measure the internal voltage reference turn-on time using the ADC.

 Read the position of the potentiometer with the ADC and display the value converted

into 0 to 99 on two 7-segment displays.

 Write a program that generates a sinusoidal waveform using the DAC. One period

should contain 64 points; the output data rate defined by a timer overflow should be

100 kHz; use a 24.5-MHz system clock. Check the result with an oscilloscope.

 Implement a voltage-to-frequency converter by measuring the voltage at the output

of the potentiometer and generate a logic signal whose frequency is a linear function

Analogue peripherals

of this voltage. The frequency range should be 1 kHz to 10 kHz. Use the PCA frequency

output mode.

 Write code that can delay a signal by 100 µs to 10000 µs in 100 µs units. Convert the

signal at a rate of 10 kHz and output the delayed signal on DAC0. Use a timer to

synchronise the ADC sample rate and DAC update rate. The delay value should be set

by the potentiometer. Check the result on an oscilloscope.

 Measure the on-chip temperature using the internal temperature sensor. Measure the

on-chip temperature as a function of the system clock frequency.

 Find a method to estimate how much higher the on-chip temperature is than the

temperature of the printed circuit board.

Sensor interfacing

9 Sensor interfacing

There are many different sensors that can be interfaced to mixed-signal microcontrollers. In

most cases, some external analogue signal conditioning circuitry is needed [11]. Since the

microcontroller is a single-supply device, level shifting is used to handle bipolar signals.

External active signal conditioning is typically based on single-supply operational amplifiers

that may need additional attention.

In the following the most important solutions are presented briefly.

9.1 Voltage output sensors

If the voltage to be measured is in the range of the ADC (0–Vref), then it can be connected

directly to one of the ADC inputs. If the voltage is unipolar but can exceed Vref, then a simple

resistive voltage divider can be used to reduce the voltage to match the input range. Figure 9.1

shows the above-mentioned connections.

Figure 9.1. Unipolar voltage output sensors can be connected directly or via a

voltage divider to the ADC input. On the left, the ADC input voltage VADC is equal

to V, while on the right it is R2/(R1+R2)V.

Small voltages or high output impedance sources may need an amplifier circuit, see Figure 9.2.

Figure 9.2. Small unipolar voltage output sensors can be interfaced using a non-

inverting amplifier circuit.

C8051F410

R

4u7 100nF

C

12-bit A/D
converter

INTERNAL
VREF

V

C8051F410

R
2

4u7 100nF

R1
12-bit A/D
converter

INTERNAL
VREF

C

V

C8051F410

R2

4u7 100nF

R1

12-bit A/D
converter

INTERNAL
VREF

R

C

V

Sensor interfacing

The output voltage of this circuit can be given as

 V
R

R
V

1

2
ADC 1 (9.1)

If only a unity gain buffer is required to provide a low impedance driver for the ADC, R1 can be

removed and R2 can be a wire.

Figure 9.3. Small or large bipolar voltages can be measured using an

operational amplifier.

If the voltage is small or bipolar, then an operational amplifier can be used to convert the signal

int0 0–Vref. A general-purpose inverting circuit is shown in Figure 9.3. The output voltage of

this circuit is fed to the ADC and is equal to

 V
R

R

R

R

RR

RV
V

1

2

1

2

43

4ref
ADC 1

 (9.2)

One can see that this formula allows small and large voltages, since the signal amplification is

–R2/R1, so it can be less or greater than 1. At zero input signal, VADC should be close to Vref/2

for the optimal usage of the input range.

The instrumentation amplifier circuit containing three high-accuracy operational amplifiers is

very useful for handling small differential sensor signals where high input impedance (no

loading of the signal) is required [15]. The gain can be set by a single resistor Rg, and it has a

level-shifting input called reference or ground. Note that the supply range of the amplifier

limits the input signal range as well. Figure 9.4 shows the simplified schematic of the

instrumentation amplifier.

C8051F410

R2

4u7 100nF

R1

12-bit A/D
converter

INTERNAL
VREF

R

C

V

R3R4
4u7 100nF

Sensor interfacing

Figure 9.4. Instrumentation amplifier (IA) circuit. Integrated IAs contain the

parts drawn within the rectangle. Vout=G(V2-V1)+V0, where G=1+2Rf/Rg.

The instrumentation amplifier is also available as a single integrated circuit including the low

voltage AD623 amplifier, which is ideally suited to single-supply microcontroller applications.

Figure 9.5 shows a typical input signal conditioning circuit using an instrumentation amplifier.

Note that the operational amplifier is needed to ensure a low-impedance drive to define the

middle output voltage (in our example, Vref/2) of the instrumentation amplifier.

Figure 9.5. Small voltage differences can be measured by applying an

instrumentation amplifier. The ADC input voltage is VADC=V+Vref/2.

9.2 Current output sensors

Current-to-voltage conversion can be done by even a single resistor (Figure 9.6) if the current

is not too high (which would cause high power dissipation) or not too low (too high impedance

because of the high-value resistor). The resistor R must be chosen to get a voltage equal to Vref

when the maximum current flows.

Rf

R
g

Rf

R R

R R

V1

V2

Vout

V0

Va

Vb

C8051F410

12-bit A/D
converter

4u7 100nF

INTERNAL
VREF

Rd Rd

100nF

Max 200uA

4u7

Rg IA R3

C

Vref/2

GV+Vref/2

V0

ΔV

Sensor interfacing

Figure 9.6. Current-to-voltage conversion using a resistor.

If the current is low, as in the case of a photodiode, a low input current operational amplifier

based current-to-voltage converter circuit should be used; see Figure 9.7. The feedback resistor

value determines the output voltage, IRf.

Figure 9.7. Photodiode current-to-voltage conversion using an operational

amplifier.

Bipolar currents can be handled by simply shifting the zero-current output voltage to Vref/2, as

shown in Figure 9.8.

C8051F410
R

4u7 100nF

12-bit A/D
converter

INTERNAL
VREF

C

A

C8051F410

12-bit A/D
converter

Rf

4u7 100nF

INTERNAL
VREF

C

C
R

Sensor interfacing

Figure 9.8. Bipolar current-to-voltage conversion. Here the ADC input voltage

VADC is equal to IRf+Vref/2. At zero current the voltage is equal to Vref/2.

9.3 Resistive sensors

Resistive sensors, such as thermistors and photoresistors, can output a voltage if they form a

resistive voltage divider with a resistor of known value (Figure 9.9). The input of the divider is

the reference voltage Vref. This circuit works in a ratiometric operation, since the ADC uses the

same reference voltage as the voltage divider, so the result of the conversion does not depend

on Vref.

Figure 9.9. A voltage divider allows the measurement of Rs. VADC seen by the

ADC is equal to Rs/(R+Rs)Vref.

Potentiometric sensors can also be connected in a very similar manner, as shown in

Figure 9.10.

C8051F410

12-bit A/D
converter

Rf

4u7 100nF

INTERNAL
VREF

C
R

fADC RIV
A

C8051F410

12-bit A/D
converter

4u7 100nF

INTERNAL
VREF

Rs R

Max 200uA

C

Sensor interfacing

Figure 9.10. Potentiometric sensors can be used as voltage dividers of Vref. The

ADC input voltage is VADC= Vref.

If the Vref loading were violated because of too small resistor values, the Vref voltage can be

buffered by an operational amplifier; see Figure 9.11.

Figure 9.11. An operational amplifier buffer removes reference loading. VADC is

equal to Rs/(R+Rs)Vref.

Pressure sensors, load cells and force sensors are typically based on a resistor bridge. The

bridge can be driven by a voltage and a small differential voltage between two terminals must

be measured by a high input impedance stage. The instrumentation amplifier is the ideal choice

in this case, because the gain can be set by a single resistor and the output can be level-shifted

by connecting a voltage – typically Vref/2 – to its reference input. Figure 9.12 shows a possible

solution.

C8051F410

12-bit A/D
converter

4u7 100nF

INTERNAL
VREF

Rs

Max 200uAαRs (1-α)Rs

C

C8051F410

12-bit A/D
converter

4u7 100nF

INTERNAL
VREF

1k

Max 200uA

R

C
Rs

Sensor interfacing

Figure 9.12. Bridge sensors can be connected to the analogue input in

ratiometric configuration using an instrumentation amplifier. The ADC input

voltage is VADC=(GR/R+1)Vref/2.

9.3.1 Application guidelines

 Always consider the following in voltage measurement:

o Voltage range. Unipolar or bipolar signal handling may be required.

o Output impedance of the source. If it is too high, then the tracking time can be

too short. Inverting amplifiers have quite a low input impedance.

9.3.2 Troubleshooting

Problem:

 Cannot communicate with the real-time clock peripheral.

Possible reasons:

 The interface is not opened properly. Only a reset can end the blocked state and restore

normal operation.

9.4 Exercises

 Design a circuit that can convert the voltage range of -10 V–10 V to 0 V–2.5 V. Check

the transfer function using a circuit simulator.

 Design a circuit to measure the supply voltage.

 Design a circuit to measure the supply current.

 Connect a thermistor and a 10-kΩ resistor as a voltage divider of Vref to the ADC input.

Convert the input continuously and display the temperature on the two 7-segment

displays. The temperature in Celsius as a function of thermistor resistance is given by

the formula T=1/(1/298 °C+ln(R/R25)/B)-298 °C, where R25 is the value of the

R
g IA

C8051F410

12-bit A/D
converter

4u7 100nF

INTERNAL
VREF

Rd Rd

100nF

Max 200uA

4u7

R3

C

Vref/2

Vref/2

Sensor interfacing

thermistor resistance at 25 ⁰C (nominally 10 kΩ) and B can be found in the datasheet

of the thermistor (it is typically 4000 °C).

 Replace the thermistor with a photoresistor and display the resistance in kΩ on the

two 7-segment displays.

Real-time clock

10 Real-time clock

The real-time clock circuit is a counter that is driven by an oscillator based on a tuning fork

crystal with a frequency of 32768 Hz (Figure 10.1). Crystals typically have an absolute accuracy

of about 10 ppm-20 ppm. For example, a 20-ppm accuracy means an error of about 1 minute

in a month.

The real-time clock (called smaRTClock [6]) of the C8051F410 microcontroller uses a 47-bit

binary counter that is mapped to 6 bytes (RTC0–RTC5). The least significant bit of this six-

byte value is not used. This means that the four most significant bytes (RTC2–RTC5) can be

considered as a 32-bit counter driven by a 1-Hz source, so it is incremented in every second.

Typically the value corresponds to seconds elapsed from 0:00 January 1, 1970 and can be

converted to date format using the standard C library functions declared in time.h.

Figure 10.1. Structure of the real-time clock.

CAPTURE0–CAPTURE5 registers are used to read and write the 47-bit counter. If it is to be

written first, the CAPTURE registers must be loaded, then a write operation must be

performed. A read transaction copies the current value to the CAPTURE registers for byte-

wise reading. The ALARM registers can define a certain value that is compared to the counter

and an interrupt can be generated if the values match. This can be used to wake the processor

up at a certain time.

Note that if no crystal is present, the counter can also be driven by an internal oscillator, which

has a selectable frequency of 20 kHz or 40 kHz. Due to its low accuracy, it cannot be used to

measure real time; however, it can be useful in very low power applications when selected as

the system clock.

Write or read operations of the smaRTClock registers can only be performed if the interface is

opened by sending a special keyword to enable these operations. Three SFRs are available for

operations: RTC0KEY, RTC0ADR and RTC0DAT. All internal registers can be accessed

through the RTC0ADR address and the RTC0DAT data registers (see the datasheet for

details).

RTC5

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

RTC4

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

RTC3

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

RTC2

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

RTC1

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

RTC0

0
7

0
6

0
5

0
4

0
3

0
2

0
1 X

CAPTURE5 CAPTURE4 CAPTURE3 CAPTURE2 CAPTURE1 CAPTURE0

ALARM5 ALARM4 ALARM3 ALARM2 ALARM1 ALARM0

47-bit COMPARATOR

32768Hz
OSC

ALARM
IRQ

Real-time clock

A simple example code of basic communication functions is listed below.

/***

Unlock the smaRTClock interface

**/

void Open_RTC()

{

 RTC0KEY = 0xA5; // first this value must be written to the key register

 RTC0KEY = 0xF1; // next this value must be written to the key register

}

/***

Write to the smaRTClock registers

**/

void Write_RTC(unsigned char address, unsigned char data)

{

 while (RTC0ADR & 0x80); // wait while the smaRTClock is busy

 RTC0ADR = address; // set the target address

 RTC0DAT = data; // write the data into the register

}

/***

Read from the smaRTClock registers

**/

unsigned char Read_RTC(unsigned char address)

{

 while (RTC0ADR & 0x80); // wait while the smaRTClock is busy

 RTC0ADR = address; // set the target address

 RTC0ADR|=0x80; // define a read operation

 while (RTC0ADR & 0x80); // wait for the data

 return RTC0DAT; // return the data

}

The following code initialises and starts the smaRTClock in crystal oscillator mode:

Open_RTC();

Write_RTC(0x07,0xE0); // crystal mode, auto gain, double bias

Write_RTC(0x06,RTC0CN_DEF); // power on the oscillator

for (i = 0; i < 3000; i++); // wait a bit for stabilisation

while ((Read_RTC(0x07) & 0x10)==0); // wait for oscillator OK

Write_RTC(0x07,0xC0); // crystal mode, auto gain, single bias

Note that at the beginning, the bias current of the oscillator is doubled for enhanced reliability

and robustness. After stabilisation, the bias current can be reduced to normal to save power

but can also be left doubled if power consumption is not a concern.

10.1.1 Application guidelines

 Unlock the interface of the smaRTClock peripheral by writing 0xA5 and 0xF1, in this

order, to RTC0KEY. If other codes are written or invalid read or write operations are

initiated, the interface will be disabled until a system reset occurs.

 Select crystal oscillator mode for accurate real-time operation (an external 32768-Hz

crystal must be used).

 Enable the smaRTClock crystal oscillator and wait for stabilisation by polling the

corresponding bit.

 Write the initial value to the counter.

 Enable the timer by setting the timer run control bit.

Real-time clock

 If an alarm is needed, write the corresponding counter value to the alarm registers and

enable the alarm events. Provide the proper interrupt service code and enable the real

time clock interrupt.

 The actual value of the counter can be set or read at any time.

 Conversion between the counter value and real time (date, hour, minute, second) can

be done by the time and mktime functions defined in the standard C library (time.h).

10.1.2 Troubleshooting

Problem:

 Cannot communicate with the real-time clock peripheral.

Possible reasons:

 The interface is not opened properly. Only a reset can end the blocked state and restore

normal operation.

Problem:

 The alarm interrupt is not generated.

Possible reasons:

 The crystal oscillator is not running. This can be checked by reading the valid oscillation

bit.

 Counting is not enabled.

 The counter value or the alarm value is invalid.

 The alarm events are not enabled or the alarm interrupt is not enabled.

10.2 Exercises

 Using the alarm function of the smaRTClock, write code that generates an interrupt

in every second. Display the seconds on the 7-segment display.

 Write code that reads the real-time clock value and converts it to date and time using

the standard C library functions.

Watchdog and power supply monitor

11 Watchdog and power supply monitor

In every real-world– commercial, industrial, automotive, etc. – application reliable operation

is probably the most important. Microcontrollers are widely used in such embedded

applications, and since they have rather complex structure, contain digital and analogue

hardware components, run software when powered on, they can be sensitive to both hardware

and software problems. Electromagnetic interference, spikes on the supply line, software hang-

ups due to core errors, unexpected values on peripherals, infinite loops and unhandled

exceptions are all potential sources that can permanently break normal operation. Since it is

impossible to prevent these from occurring, some methods have been developed to safely

return to normal operation.

11.1 The watchdog timer

One solution to avoid permanent hang-ups is the use of the so-called watchdog timer, which

can detect hang-ups and reset the processor to restart normal operation. Of course, the code

must be developed keeping this possibility in mind. The watchdog peripheral has an internal

timer, which measures time and can reset the processor if a timeout is occurred. The timer is

always restarted if the software writes to its dedicated register, so timeout will not happen if

the software notifies the watchdog timer periodically within the timeout period. If any hang-

up happens due to hardware or software failure, the processor will be reset within the defined

timeout value.

The C8051F410 processor uses the last PCA channel to implement the watchdog timer function

[6]. It is automatically enabled upon reset; therefore, the code must be developed accordingly.

During prototyping and practicing the watchdog timer can be disabled, but this must be done

at the beginning of the code, because otherwise a reset will be generated. Note that the C

compiler generates startup code, which is executed before calling the main program and which

can take longer than the default timeout period set after reset. For example, since SDCC

initialises the variables by default, if a large array is declared in the external RAM space, the

startup code may not be finished before a watchdog reset is generated.

In order to prevent this situation, the startup code can be redefined:

/***

Startup code redefinition

**/

unsigned char _sdcc_external_startup ()

{

 PCA0MD &= ~0x40; // disable watchdog timer

 PCA0MD = 0x00; // disable watchdog timer

 VDM0CN = 0xA0; // enable VDD monitor

 return 1; // 1: do not initialise variables

}

11.2 Supply monitor

The supply monitor generates a reset if the supply voltage falls below the safe level. Since

proper operation of digital circuits can only be guaranteed if the supply is within a certain

range, unexpected behaviour may happen if the voltage gets out of this range even for a short

Watchdog and power supply monitor

period. If the supply monitor is enabled, normal operation is restored by generating a reset in

such cases.

11.2.1 Application guidelines

 Every final version of code should use the watchdog timer and the power supply

monitor to ensure reliable operation.

 During testing or code development, the watchdog timer can be disabled. It must be

done at the beginning of the code to prevent undesired resets.

 The watchdog timeout can be programmed. Prefer intervals short enough to ensure

quick recovery after a fault, yet long enough for the code to safely contact the watchdog

timer within the timeout period in normal operation.

 The supply monitor should be switched on at the beginning of the code. After a few

microseconds allowed for stabilisation, it can be enabled.

11.2.2 Troubleshooting

Problem:

 The code does not start or unexpected resets occur.

Possible reasons:

 The watchdog timer is not disabled and not handled by the code.

 The watchdog timer is not restarted in time. This can be due to too short a timeout,

improperly written code, time delay caused by interrupt routines or miscalculated

timings.

 C compilers generate code executed before the main function, which can delay the

switching off of the watchdog timer in the main function. Most compilers allow the

redefining of the startup code (_sdcc_external_startup using the SDCC compiler),

which can help to prevent this.

11.3 Exercises

 Write code that uses the watchdog timer with 1 s timeout. Try to simulate an infinite

loop and check the watchdog-generated reset.

Low-power and micropower applications

12 Low-power and micropower applications

In certain cases, the microcontroller operates from a low power-supply such as a battery, solar

cell or similar source. In this case, the power consumption must be kept as low as possible to

meet the supply specifications and to increase battery life and reliability at the same time.

In most cases, the processor must perform operations only in a fraction of the time. Therefore,

keeping the power consumption low means keeping the active operating current low and it is

desirable to put the processor into an idle mode during the inactive state. Of course, some event

must be used to terminate this idle mode and to resume normal operation.

12.1 Low-power modes

The C8051F410 processor has some low-power inactive states [6].

12.1.1 Idle mode

The processor can be placed in idle mode by setting the PCON.0 high. In this mode, program

execution is stopped and will be resumed if an enabled interrupt request occurs or a reset is

generated. The oscillator and the peripherals are not stopped in idle mode. The supply current

is reduced in idle mode: for example, the typical core supply current of 0.43 mA in normal

mode at a 1-MHz system clock will be reduced to 0.21 mA in idle mode.

12.1.2 Stop mode

A more efficient power saving mode can be realised by the stop mode. In this mode, the internal

oscillator, the core and all digital peripherals are stopped. The status of the analogue

peripherals is unaffected; they can be powered down by software before entering stop mode.

An internal or external reset is required to exit from stop mode. Therefore, program execution

will be restarted.

The power consumption can be very low in stop mode: the digital supply current can be as low

as 0.150 A

12.1.3 Suspend mode

Suspend mode is very similar to stop mode, but can be terminated by additional events

including port 0 or port 1 match to a specified bit pattern, the output of an enabled comparator

going low or real-time clock (smaRTClock) alarm or fail.

12.2 Clock speed tuning

The supply current depends on the system clock frequency in a roughly linear manner. For

example, below 15 MHz the supply current can be estimated as the actual system clock

frequency multiplied by 390 A/MHz.

This allows efficient power management even without entering idle, stop or suspend modes

and without stopping program execution. The system clock can be changed at any time, so it

can be kept low and it is only switched to a higher frequency when more processing power is

needed. The average supply current depends on the ratio of the time spent in slower mode to

that in faster mode.

Low-power and micropower applications

The internal clock generation module of C8051F410 processor provides several different clock

speeds. A 24.5-MHz internal oscillator serves as a base of the system clock generation; this

value can be divided by 1, 2, 4, 8, 16, 32, 64 and 128. This means that the system clock can be

as low as 191406 Hz for lowest power consumption and can be 24.5 Mhz for fastest execution.

If the internal clock multiplier is used, even a system clock of 49 MHz can be generated.

Since the frequency of the internal oscillator is 24.5 Mhz regardless of the division used to

generate the system clock, its power consumption is constant, typically 200 A. In conclusion,

the supply current cannot be less than this value.

Note that the real-time clock (smaRTCclock) frequency can also be selected as system clock,

which allows very low supply current down to about 20 A. The 24.5-MHz internal oscillator

should be switched off to save its 200-A operating current.

12.3 Peripheral power consumption

In most low-power applications, some peripherals are used and of course they consume power.

Some considerations follow concerning the power requirements of different components of the

microcontroller.

Port pins typically drive external devices, so they may require significant current which must

be considered. For example, LEDs, pull-up resistors (like those used for SMBus) and external

circuitry load the ports. Note that for lowest-power operation even the internal weak pull-up

resistors should be disabled.

The input clock of digital peripherals (such as timers, the programmable counter array, or

communication peripherals) is derived from the system clock; therefore, their operating

current is reduced if the system clock is reduced. These peripherals require significantly less

power than the processor core.

Analogue peripherals need a certain bias current for proper operation, so they contribute

to the total supply current. Comparators can be configured in four different power modes.

Lower power can be realised at the expense of slower response. In order to reduce power

consumption, the ADC has a special burst mode. In this mode the ADC is powered only during

conversions and powered down between conversions. Therefore lowering the sample rate

lowers the power required as well. Current-output DACs definitely provide considerable

current, so if they are used, they contribute to the total supply current significantly.

12.4 Supply voltage

The supply current is roughly proportional to the supply voltage of the core and of the

peripherals. Since the total power dissipated by the system is equal to the supply current

multiplied by the supply voltage, it is very useful to reduce the supply voltage in order to

achieve low power consumption. For example, the typical supply current of the C8051F410 is

430 A at a 2.5-V core supply voltage, which is reduced to 300 A at 2.0 V. This means a power

consumption reduction from 1.1 mW to 0.6 mW.

12.4.1 Application guidelines

 The microcontroller power can be reduced using low-power modes when the core is

halted. Analogue peripherals must be switched off by software. Consider the wake-up

sources.

 The supply voltage should be kept low for low-power operation.

Low-power and micropower applications

 Lower system clock frequency corresponds to lower supply current. Consider the

constant current of the internal 24.5-Mhz oscillator.

 The system clock frequency can be changed during operation, but be careful: serial data

transfer, timer and even ADC operation can be seriously affected.

 Minimise the loading on the port pins. Always take the current required by external

components into account.

 Consider the supply current used by active digital and analogue peripherals. They

should be active only during the period they are required.

 Use burst mode if the ADC is used. Keep in mind that the ADC SAR clock is derived

from a dedicated 24.5-Mhz oscillator.

 Use low-power settings if comparators are used. Consider the reduced response time of

the comparators.

12.4.2 Troubleshooting

Problem:

 The supply current is significantly greater than the value given in the datasheet.

Possible reasons:

 The ports are loaded by external components.

 The debug adapter is connected to the system. It is safest to remove it during supply

current measurement.

 Some of the active peripherals are not considered.

Problem:

 Invalid data are received during serial communication.

Possible reasons:

 The system clock frequency is changed during data transfer or the transfer speed does

not match.

Problem:

 The ADC data seem to be invalid.

Possible reasons:

 The voltage reference or the ADC is powered up too close to the start of the conversion.

The time is too short for accurate settling of the voltage reference, which can take

several milliseconds.

 If the ADC SAR clock is too low, the internal capacitors may lose charge during

conversion. Keep the ADC SAR clock as high as possible or use burst mode to avoid this

problem.

12.5 Exercises

 Write code that iterates the system clock frequency upon each pressing of a button

from 24.5 Mhz/128 to 24.5 MHz in a cyclic manner. Measure the digital supply

current as a function of the clock frequency. Consider any possible loads on the port

pins (including the debug adapter).

Low-power and micropower applications

 Write code that wakes up the microcontroller in every second from a suspend state

using the smaRTClock alarm function. The code must switch an LED on for 100 ms

then should go back to suspend mode.

 Write code that wakes the microcontroller up from a suspend state if a button has

been pressed. The code must switch an LED on for 100 ms then should go back to

suspend mode. Use the port match event to detect button pressings and to terminate

the suspend state.

USB, wired and wireless communications

13 USB, wired and wireless communications

Most microcontrollers do not have communication interfaces that support direct connection

to personal computers or host computers. The most popular wired interface is the USB port,

which can even provide power supply for the connected peripheral. Devices can be wirelessly

connected via a Bluetooth module especially developed for low-power small device

applications.

There are microcontrollers with built-in USB interfaces or wireless communication modules,

but they only represent a fraction of the wide selection of microcontrollers with a rich set of

analogue and digital peripherals.

A more general solution is to use a USB-UART, Bluetooth or other wireless module connected

to the UART or similar port available on all microcontrollers. Somewhat more space and at

least two integrated circuits are required, but in this case, practically any microcontroller can

be used, which guarantees exceptional flexibility.

13.1 USB-UART interfaces

One of the most popular and most reliable USB-UART converters is the FT232R [19]. The chip

can be connected to the UART port and can handle the quite complicated USB protocol. Only

a few external capacitors are needed as power supply decoupling capacitors. The FT232R chip

supports full-speed USB communication (12 Mbit/s); however, baud rates are limited to a

maximum of 3 Mbit/s. Sending a byte means sending a start bit, 8 data bits and 1-2 stop bits,

so the achievable throughput is somewhat below 300 kbyte/s. The FT232R contains a 25-byte

FIFO (first in-first out) buffer memory to avoid data loss at high data rates.

Note that since downstream data must be directly received by the microcontroller from the

FT232R chip, the transmit FIFO of the FT232R cannot be used. Therefore, a software FIFO

must be implemented in the microcontroller code at high speed transfers. See the UART

interrupt mode examples in Chapter 7.2.

The host computer can communicate with the microcontroller via the native driver or via the

virtual COM port driver, which is easy to use even with a simple terminal software and easy to

program in C, C++, C#, Java, LabVIEW or Matlab.

Note that the virtual COM port mode has limited configuration possibilities. For example, the

so-called latency time cannot be set and its default value is 16 ms. This means that if the host

wants to send only a few bytes (at least less than the buffer size to trigger an USB transmit

transaction), then the latency time must elapse before sending the data. This can slow

communication down, so it is recommended to set the latency time to its minimum, 1 ms, using

the hardware configuration utility of the operating system.

USB, wired and wireless communications

Figure 13.1. Connecting a microcontroller to a USB port using the FT232R USB-

UART converter.

Figure 13.1 shows how the microcontroller can be connected to a USB port using the FT232R

USB-UART converter. The TX and RX are the UART port bits, while the RTS (ready-to-send)

and CTS (clear-to-send) on the microcontroller are provided by general-purpose port bits.

These lines are optional and can be used for handshaking – checking if data is available or if

the receiver is ready to accept data. Note that the USB port can even power the circuit; the low

dropout regulators (LDO REG) output the required supply voltage that is normally less than

5 V.

The complete example schematic and board layout can be seen in Figure 13.2 and Figure 13.3.

Figure 13.2. Schematic of the C8051F410 microcontroller USB interface.

C FT232R

D+

5V

D-TX

RX

TX

RX

RTS

CTS

RTS

CTS USB-UART
TRANSCEIVER

U
SB

 C
O

N
N

EC
TO

R

GND

LDO REGLDO REG

USB CABLE

U
SB

 C
O

N
N

EC
TO

R

USB, wired and wireless communications

Figure 13.3. Component (red) and bottom (blue) side of the C8051F410

microcontroller USB interface printed circuit board.

All supply lines are decoupled with ceramic chip capacitors placed as close to the supply pins

as possible. The bottom side realises the required solid ground plane, and the signal ground

and USB grounds are connected at the microcontroller. This separates the sensitive analogue

circuitry of the microcontroller from the noisy ground return currents of the digital part. D1

and D2 are USB data line protection diodes, X1 is the debug port and JP1 is a connector for

port P1. This port can accept both analogue and digital input or output signals depending on

the configuration of the port P1.

Note that there are faster (USB 2.0) USB-UART interfaces, including the FT2232H, which uses

the same drivers on the computer side and therefore can be used to seamlessly upgrade

communication speed. However, the microcontroller bit rate is limited, so only high clock

frequency microcontrollers can benefit from this solution.

USB-to-parallel interfaces can also be used to transfer a whole byte at a time. This provides the

fastest communication at the expense of more complex circuitry and of the fact that much more

pins of the microcontroller must be used.

13.2 Wireless communication possibilities

There are small wireless modules that can be also connected to the microcontroller. Bluetooth

modules are widely available and have a standard SPP (serial port protocol) mode to be driven

directly from a UART port of a device. After setting up the module, it will be fully transparent:

a virtual COM port on the host computer can be used in the same way as for the FT232R USB-

UART converter or a regular COM port. In such cases, even smart phones can be used to easily

communicate with the microcontroller-based hardware unit.

USB, wired and wireless communications

13.3 Exercises

 Write code that measures the state of the potentiometer and sends the data in text

format over the UART using a 9600-bit/s baud rate. Check the result with terminal

software using the virtual COM port.

 Write code that measures the state of the potentiometer and sends the data in text

format over the BTM-112 Bluetooth module. Check the result with terminal software

using the virtual COM port.

 Write code that measures the state of the in-chip temperature and sends the data in

text format over the BTM-112 Bluetooth module. Check the result with terminal

software running on a smart phone.

Development kit

14 Development kit

14.1 The C8051F410 development kit

The C8051F410 development kit is manufactured by Silicon Laboratories to support rapid

development and testing [7]. It can be used as a general-purpose platform to develop many

different microcontroller applications. The board is powered from a wall-plug adapter and

integrates LEDs, push buttons, a serial host interface, a potentiometer, a watch crystal, a

battery socket and even more. The complete description can be found in the user manual that

can be downloaded from the manufacturer’s pages.

The board has a two-row pin header connector that allows access of any port pin of the

microcontroller and supports the connection of various external circuitries. An extension

board with 6 additional LEDs, two 7-segment displays, a 3-pin general purpose analogue

sensor port and an LM75 temperature sensor is shown in the photo in Figure 15.1.

Figure 15.1. The C8051F410TB target board with the extension board. On the left

side, a thermistor connected to the general-purpose analogue input can be seen

The extension board is documented in the next chapter.

14.2 Extension board

The extension board is a powerful supplement to the C8051F410 development kit. It can be

used to practice many features of the microcontroller, while it also serves as a reference design.

The six LEDs are driven from pins of port P0 and P1. The anodes of the LEDs are connected

to the positive supply, so both open-drain or push-pull mode can be used to light them. The

current limiting resistors have a value of 1 kΩ, which ensures proper light intensity. The LEDS

Development kit

are arranged on the board as two traffic lights and their colours are red, yellow and green. This

supports practicing several related applications. Note that the LEDs form a six-point rectangle

(or circle), so, for example, stepper motor control can also be simulated and visualised.

Two 7-segment displays are connected to port P2 via a buffer to reduce the total port current

of the microcontroller. Port bit P1.3 is used to select which 7-segment display is active. Both

displays cannot be used at the same time; however, this can be used to demonstrate how a fast

alternation of the displays can be applied to implement a simultaneous-looking display of two

digits. The display therefore can be used to count from 0 to 99, implement a second counter or

display a temperature in degrees, etc.

The U$3 and U$4 pin headers are only used to connect the ground and the positive supply to

the extension boards.

An LM75 I2C temperature sensor is connected to port pins P0.0 and P0.1. This supports the

measurement of external temperature and also allows the learning of the use of the SMBus/I2C

interface.

The 3-pin header labelled IN1 is a general-purpose analogue and sensor interface. The three

pins are connected to the system ground, the 5 V supply and a high impedance input of a rail-

to-rail input and output operational amplifier. The output of this operational amplifier is

connected to pin P1.7 of the microcontroller via a voltage divider and the voltage can be

measured by the internal A/D converter. This allows the measurement of voltage-output

sensors (for example, Hall effect magnetic field sensors), resistive sensors (such as light-

dependent resistors, thermistors, etc.). Current-output sensors can also be connected if an

external current-to-voltage conversion resistor is connected in parallel with the sensor. The

5 V supply can serve as a supply for active sensors or can be used as the input voltage of a

voltage divider formed by a resistor of known value and a resistive sensor. See Chapter 9 for

more information about connecting sensors to the microcontroller.

Development kit

Figure 15.2. The extension board schematic.

Development kit

Figure 15.3. Extension board top side layout.

Acknowledgements

15 Acknowledgements

The work has been supported by the European Union and co-funded by the European Social

Fund, project number: TÁMOP-4.1.2.A/1-11/1.

We thank Silicon Laboratories and their local distributor HT-Eurep Ltd. (Hungary) for

providing the development kits to support education. The technical documents, application

notes, knowledge base and user forum of Silicon Laboratories provided very valuable help in

our work.

We are grateful to the reviewers Dr. György Györök and Dr. Péter Makra who read the original

version of the manuscript carefully; they corrected several errors and recommended changes

also.

References

16 References

[1] Chew Moi Tin, Gourab Sen Gupta: Embedded Programming with Field-

Programmable Mixed-Signal µControllers,

Silicon Laboratories MCUniversity Course Material

http://www.silabs.com/products/mcu/Pages/MCUniversity.aspx

[2] 80c51 family architecture, NXP (Philips Semiconductor)

http://www.lpcware.com/content/nxpfile/80c51-family-architecture

80c51 family programmers guide and instruction set, NXP (Philips Semiconductor)

http://www.lpcware.com/content/nxpfile/80c51-family-programmers-guide-and-

instruction-set

80c51 family hardware description, NXP (Philips Semiconductor)

http://www.lpcware.com/content/nxpfile/80c51-family-hardware-description

[3] Keil 51 Assembler,

http://www.keil.com/c51/a51kit.asp

[4] SDCC (Small Device C Compiler) User Manual,

http://sdcc.sourceforge.net/

[5] I. Scott MacKenzie, The 8051 Microcontroller (3rd Edition), Prentice Hall, 1998

[6] C8051F410 datasheet, Silicon Laboratories, 2008

[7] C8051F41x-DK User Guide, Silicon Laboratories, 2006

[8] Silicon Laboratories Application Notes,

http://www.silabs.com/products/mcu/Pages/ApplicationNotes.aspx

[9] Silicon Laboratories Knowledge Base,

http://www.silabs.com/support/knowledgebase/pages/default.aspx

[10] Silicon Laboratories User Forum,

http://www.silabs.com/support/forums/Pages/default.aspx

[11] W. Jung, Op Amp Applications Handbook, Newnes. 2006.,

http://www.analog.com/library/analogDialogue/archives/39-

05/op_amp_applications_handbook.html

[12] W. Kester, The Data Conversion Handbook, Newnes, 2005.,

http://www.analog.com/library/analogDialogue/archives/39-

06/data_conversion_handbook.html

[13] W. Kester, Mixed-Signal and DSP Design Techniques, Newnes, 2003.,

http://www.analog.com/en/content/mixed_signal_dsp_design_book/fca.html

[14] H. Zumbahlen , Linear Circuit Design Handbook, Newnes, 2008.,

 http://www.analog.com/library/analogDialogue/archives/43-

09/linear_circuit_design_handbook.html

[15] C. Kitchin and L. Counts, A Designer's Guide to Instrumentation Amplifiers 3rd

edition, Analog Devices, Inc. 2006.,

http://www.analog.com/en/power-management/power-

monitors/ad8557/products/CU_dh_designers_guide_to_instrumentation_amps/fca

.html

[16] HD44780 datasheet, see for example http://lcd-

linux.sourceforge.net/pdfdocs/hd44780.pdf

[17] 80C51FA/FB PCA Cookbook, Intel application note AP-415.

[18] Determining Clock Accuracy Requirements for UART Communications,

http://pdfserv.maximintegrated.com/en/an/AN2141.pdf

[19] http://www.ftdichip.com/

http://www.silabs.com/products/mcu/Pages/MCUniversity.aspx
http://www.lpcware.com/content/nxpfile/80c51-family-architecture
http://www.lpcware.com/content/nxpfile/80c51-family-programmers-guide-and-instruction-set
http://www.lpcware.com/content/nxpfile/80c51-family-programmers-guide-and-instruction-set
http://www.lpcware.com/content/nxpfile/80c51-family-hardware-description
http://www.keil.com/c51/a51kit.asp
http://sdcc.sourceforge.net/
http://www.silabs.com/products/mcu/Pages/ApplicationNotes.aspx
http://www.silabs.com/support/knowledgebase/pages/default.aspx
http://www.silabs.com/support/forums/Pages/default.aspx
http://www.analog.com/library/analogDialogue/archives/39-05/op_amp_applications_handbook.html
http://www.analog.com/library/analogDialogue/archives/39-05/op_amp_applications_handbook.html
http://www.analog.com/library/analogDialogue/archives/39-06/data_conversion_handbook.html
http://www.analog.com/library/analogDialogue/archives/39-06/data_conversion_handbook.html
http://www.analog.com/en/content/mixed_signal_dsp_design_book/fca.html
http://www.analog.com/library/analogDialogue/archives/43-09/linear_circuit_design_handbook.html
http://www.analog.com/library/analogDialogue/archives/43-09/linear_circuit_design_handbook.html
http://www.analog.com/en/power-management/power-monitors/ad8557/products/CU_dh_designers_guide_to_instrumentation_amps/fca.html
http://www.analog.com/en/power-management/power-monitors/ad8557/products/CU_dh_designers_guide_to_instrumentation_amps/fca.html
http://www.analog.com/en/power-management/power-monitors/ad8557/products/CU_dh_designers_guide_to_instrumentation_amps/fca.html
http://lcd-linux.sourceforge.net/pdfdocs/hd44780.pdf
http://lcd-linux.sourceforge.net/pdfdocs/hd44780.pdf
http://pdfserv.maximintegrated.com/en/an/AN2141.pdf
http://www.ftdichip.com/

References

