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Abstract. Deep learning is regarded by some as one of the most important
technological breakthroughs of this decade. In recent years it has been shown
that using rectified neurons, one can match or surpass the performance achieved
using hyperbolic tangent or sigmoid neurons, especially in deep networks. With
rectified neurons we can readily create sparse representations, which seems
especially suitable for naturally sparse data like the bag of words representation
of documents. To test this, here we study the performance of deep rectifier
networks in the document classification task. Like most machine learning
algorithms, deep rectifier nets are sensitive to class imbalances, which is quite
common in document classification. To remedy this situation we will examine
the training scheme called probabilistic sampling, and show that it can improve
the performance of deep rectifier networks. Our results demonstrate that deep
rectifier networks generally outperform other typical learning algorithms in the
task of document classification.
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1 Introduction

Ever since the invention of deep neural nets (DNN), there has been a renewed interest in
applying neural networks (ANNs) to various tasks. The application of a deep structure
has been shown to provide significant improvements in speech [5], image [7], and
other [11] recognition tasks. As the name suggests, deep neural networks differ from
conventional ones in that they consist of several hidden layers, while conventional
shallow ANN classifiers work with only one hidden layer. To properly train these multi-
layered feedforward networks, the training algorithm requires modifications as the
conventional backpropagation algorithm encounters difficulties (“vanishing gradient”
and “explaining away” effects). In this case the “vanishing gradient” effect means that
the error might vanish as it gets propagated back through the hidden layers [1]. In
this way some hidden layers, in particular those that are close to the input layer, may
fail to learn during training. At the same time, in fully connected deep networks, the
“explaining away” effects make inference extremely difficult in practice [6].

As a solution, Hinton et al. presented an unsupervised pre-training algorithm [6]
and evaluated it for an image recognition task. After the pre-training of the DNN,
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Fig. 1. The rectifier activation function and the commonly used activation functions in the neural
networks, namely the logistic sigmoid and hyperbolic tangent (tanh)

the backpropagation algorithm can find a much better local optimum of the weights.
Based on their new technique, a lot of effort has gone into trying to scale up deep
networks in order to train them with much larger datasets. The main problem with
Hinton’s pre-training algorithm is the high computational cost. This is the case even
when the implementation utilizes graphic processors (GPUs). Several solutions [4,10,2]
have since been proposed to alleviate or circumvent the computational burden and
complexity of pre-training, one of them being deep rectifier neural networks [2].

Deep Rectifier Neural Networks (DRNs) modify the neurons in the network and
not the training algorithm. Owing to the properties of rectified linear units, the DRNs
do not require any pre-training to achieve good results [2]. These rectified neurons
differ from standard neurons only in their activation function, as they apply the rectifier
function (max(0, x)) instead of the sigmoid or hyperbolic tangent activation. With
rectified neurons we can readily create sparse representations with true zeros, which
seem well suited for naturally sparse data [2]. This suggests that they can be used in
document classification, say, where the bag of words representation of documents might
be extremely sparse [2]. Here, we will see how well DRNs perform in the document
classification task and compare their effectiveness with previously used successful
methods. To address the problem of unevenly distributed data, we combine the training
of DRNs and ANNs with a probabilistic sampling method, in order to improve their
overall results.

2 Deep Rectifier Neural Networks

Rectified neural units were recently applied with success in standard neural networks,
and they were also found to improve the performance of Deep Neural Networks on
tasks like image recognition and speech recognition. These rectified neurons apply
the rectifier function (max(0, x)) as the activation function instead of the sigmoid or
hyperbolic tangent activation. As Figure 1 shows, the rectifier function is one-sided,
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hence it does not enforce a sign symmetry or antisymmetry. Here, we will examine the
two key properties of this one-sided function, namely its hard saturation at 0 and its
linear behaviour for positive input.

The hard saturation for negative input means that only a subset of neurons will be
active in each hidden layer. For example, when we initialize the weights uniformly,
around half of the hidden units output are real zeros. This allows rectified neurons to
achieve truly sparse representations of the data. In theory, this hard saturation at 0 could
harm optimization by blocking gradient back-propagation. Fortunately, experimental
results do not support this opinion, suggesting that hard zeros can actually help
supervised training. These results show that the hard non-linearities do no harm as long
as the gradient can propagate along some path [2].

For a given input, the computation is linear on the subset of active neurons. Once
the active neurons have been selected, the output is a linear combination of their input.
This is why we can treat the model as an exponential number of linear models that
share parameters. Based on this linearity, there is no vanishing gradient effect [2], and
the gradient can propagate through the active neurons. Another advantage of this linear
behaviour is the smaller computational cost: there is no need to compute the exponential
function during the activation, and the sparsity can also be exploited. A disadvantage of
the linearity property is the “exploding gradient” effect, when the gradients can grow
without limit. To prevent this, we applied L1 normalization by scaling the weights such
that the L1 norm of each layer’s weights remained the same as it was after initialization.
What makes this possible is that for a given input the subset of active neurons behaves
linearly, so a scaling of the weights is equivalent to a scaling of the activations.

Overall, we see that Deep Rectifier Neural Networks use rectified neurons as hidden
neurons. Owing to this, they can outperform pre-trained sigmoid deep neural networks
without the need for any pre-training.

3 Probabilistic Sampling

Most machine learning algorithms – including deep rectifier nets – are sensitive to
class imbalances in the training data. DRNs tend to behave inaccurately on classes
represented by only a few examples, which is sometimes the case in document
classification. To remedy this problem, we will examine the training scheme called
probabilistic sampling [12].

When one of the classes is over-represented during training, it might cause that the
network will favour that output and label everything as the most frequent class. To avoid
this, it is necessary to balance the class distribution by presenting more examples taken
from the rarer classes to the learner. If we have no way of generating additional samples
from any class, then resampling is simulated by repeating some of the samples of the
rarer classes.

Probabilistic sampling is a simple two-step sampling scheme: first we select a class,
and then randomly pick a training sample from the samples belonging to this class.
Selecting a class can be viewed as sampling from a multinomial distribution after we
assign a probability to each class. That is,

P(ck) = λ
1

K
+ (1 − λ)Prior(ck), (1)
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where Prior(ck) is the prior possibility of class ck , K is the number of classes and
λ ∈ 0, 1 is a parameter. If λ is 1, then we get a uniform distribution over the classes;
and with λ = 0 we get the original class distribution.

4 Experimential Setup

In our experiments, the Reuters-21,578 dataset was used as our training and testing sam-
ple set. This corpus contains 21,578 documents collected from the Reuters newswire,
but here just the 10 most frequent categories were taken from the 135. For each cat-
egory, 30% of the documents were randomly selected as test documents and the rest
were employed as the training sets. In the evaluation phase, one category was employed
as the positive class, and the other nine categories were lumped together and treated
as the negative class; and each category played the role of the positive class just once.
The documents were represented in a tf-idf weighted vector space model, where the
stopwords and numeric characters were ignored.

4.1 Baseline Methods

In order to compare the performance of our method with that for the other machine
learning algorithms, we also evaluated some well-known machine learning methods on
our test sets.

First, we applied C4.5, which is based on the well-known ID3 decision tree learning
algorithm [9]. This machine learning method was a fast learner as it applied axis-parallel
hyperplanes during the classification. We trained the J48 classifier of the WEKA
package [3], which implements the decision tree algorithm C4.5. Decision trees were
built that had at least two instances per leaf, and used pruning with subtree raising and
a confidence factor of 0.25.

Support Vector Machines (SVM) [13] were also applied. SVM is a linear function
having the form f (x) = wt x +b, where w is the weight vector, x is the input vector and
wt x denotes the inner product. SVM is based on the idea of selecting the hyperplane
that separates the space (between the positive and negative classes) while maximizing
the smallest margin. In our experiments we utilized LibSVM1 and the Weka SMO
implementation.

4.2 Neural Network Parameters

For validation purposes, a random 10% of the training vectors were selected before
training. Our deep networks consisted of three hidden layers and each hidden layer
had 1,000 rectified neurons, as DRNs with this structure yielded the best results on the
development sets. The shallow neural net was a sigmoid net with one hidden layer, with
the same number of hidden neurons (3,000) as that for the deep one.

1 http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Table 1. The F-score results got from applying different machine learning algorithms (DRN:
Deep Rectifier Network, ANN: Shallow Neural Network, SMO, LibSVM: Support Vector
Machine, J48: Decision Tree) on the Reuters Top 10 classes

Task DRN ANN SMO LibSVM J48

ship 88.20 87.12 87.65 88.61 83.15
grain 96.40 95.11 94.77 93.1 95

money-fx 93.52 94.06 88.56 78 86.13
corn 83.22 76.80 86.9 78.12 91.78
trade 95.74 93.38 94.41 91.04 85.52
crude 94.62 91.21 91.23 90.63 86.36
earn 98.74 98.31 98.46 98.52 96.43

wheat 87.12 81.97 92.49 86.42 91.86
acq 97.54 97.13 96.76 96.86 91.83

interest 94.46 96.00 89.96 77.25 82.71

micro-avg 96.22 95.42 92.18 87.64 87.86

The output layer for both the shallow and the deep rectifier nets was a softmax layer
with 2 neurons – one for the positive class and one for the negative class. The softmax
activation function we employed was

softmax(yi ) = eyi

K
j=1 eyj

, (2)

where yi is the i th element of the unnormalised output vector y. After applying the
softmax function on the output, we simply select the output neuron with the maximal
output value, and this gives us the classification of the input vector. For the error
function, we applied the cross entropy function.

Regularization is vital for good performance with neural networks, as their flexibility
makes them prone to overfitting. Two regularization methods were used in our study,
namely early stopping and weight decay. Early stopping regularization means that the
training is halted when there is no improvement in two subsequent iterations on the
validation set. The weight decay causes the weights to converge to smaller absolute
values than they otherwise would.

The DRNs were trained using semi-batch backpropagation, the batch size being 10.
The initial learn rate was set to 0.04 and held fixed while the error on the development
set kept decreasing. Afterwards, if the error rate did not decrease in the given iteration,
then the learn rate was subsequently halved. The λ parameter of the probabilistic
sampling was set to 1, which means that we sampled from a uniform class distribution.

5 Results

Table 1 lists the overall performance we got from training the different machine learning
methods on the Reuters dataset. Here, F-scores were used to measure the effectiveness
of the various classifiers and we applied the micro-average method [8] to calculate an
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Table 2. Neural networks results got with and without probabilistic sampling (P.S.), on the three
most unbalanced tasks

ship corn wheat
Method F-score Prec. Recall F-score Prec. Recall F-score Prec. Recall

DRN 88.20 94.67 82.56 83.22 80.52 86.11 87.12 93.42 81.61
DRN+ P.S. 90.48 92.68 88.37 87.50 87.50 87.50 89.89 87.91 91.95

ANN 87.12 92.21 82.56 76.80 90.57 66.67 81.97 78.13 86.21
ANN+ P.S. 90.36 93.75 87.21 85.29 90.63 80.56 85.56 80.00 91.95

overall F-score. Micro-averaging pools per-document decisions across classes, and then
computes an effectiveness measure on the pooled contingency table.

As can be seen, the DRN method outperformed the other methods in general, but
it performed poorly (F-score below 90) on three classes. From among the baseline
algorithms, the best one was the SMO, with a micro-average score of 92.18. Compared
to the other two baseline methods, which yielded approximately the same micro-
average score, the SMO achieved a better overall score of 4.5. To make a sense of
the relative effectiveness of the neural nets, we decided to compare their perfomance
with that for the SMO – the best one of the baseline methods. The micro-average score
of the DRN is 96.22, which is 4.04 higher than that for the SMO. The ANN achieved
an average F-score of 95.42, which is 3.24 higher than that for the micro-average score
of the SMO. This means that the average effectiveness of DRNs is competitive with
classifiers like SVMs and decision trees. However, on small classes (‘ship’, ‘corn’ and
‘wheat’), which were represented with fewer than 200 positive examples in the training
set, DRNs and ANNs performed much worse. Interestingly, on these rare classes the
baseline algorithms performed quite differently. On the ‘ship’ class LibSVM yielded
the best result, but on the ‘corn’ class J48 was the best and for the ‘wheat’ class the
SMO achieved the best result.

Next, we investigated the three tasks on which the neural networks approach was
outperformed by the other methods. These tasks were the most under-represented
classes, so to improve the results we applied probabilistic sampling. In Table 2, we
see the improvements got for the deep and the shallow networks after applying it. For
the DRNs, the improvement was 3.11 on average, while for the ANNs it was 5.1; but
the DRNs yielded better results for all three classes.

With probabilistic sampling, DRNs outperformed LibSVM on all three tasks, and
the SMO was better only on the ’wheat’ class. The J48 results were still better on the
’corn’ and the ’wheat’ classes, but the DRNs performed much better on the other eight
classes.

6 Discussion

Deep Rectifier Neural Networks outperformed our baseline algorithms, which probably
tells us that they are suitable for document classification tasks. However, they face
difficulties when some of the classes are underrepresented.



114 T. Grósz and István Nagy T.

The results of our experiment show that probabilistic sampling greatly improves the
F-scores for the DRNs and the ANNs on the underrepresented classes. To understand
precisely how probabilistic sampling helps the training of neural networks on these
classes, we investigated the effects it produced. The most important one is that after
probabilistic sampling balanced the distribution of positive and negative examples,
the recall values increased here. The reason behind this is quite simple: the neural
networks get more positive examples during training. As the neural nets get more
positive samples, the proportion of negative samples decrease. This sometimes caused a
drop in the precision score. However this reduction was much smaller than the increase
in the recall score, as the negative samples were still well represented.

Comparing the results of the DRNs with those got using ANNs, we can say
that the DRNs are not only better but their training and evaluation phases are
faster too. To support this opinion, we should mention that the shallow sigmoid
network had approximately 1.5 times more parameters. The ANN had 2,000×3,000
connections between input units and hidden units and 3,000×2 weights for the output
layer, while the DRN had only 2,000×1,000 input-hidden, 1,000×2 hidden-output,
and 2×1,000×1,000 hidden-hidden connections. Thanks to the greater number of
parameters, ANNs were able to learn a better model for the ‘money-fx’ and ‘interest’
classes. On the other eight classes, the DRNs yielded better results, and this suggests
that deep structures are better than shallow ones, for the tasks described earlier.

7 Conclusions

In this paper, we applied deep sparse rectifier neural nets to the Reuters document clas-
sification task. Overall, our results tell us that these DRNs can easily outperform SVMs
and decision trees if the class distribution is reasonably balanced. With extremely unbal-
anced data, we showed that probabilistic sampling generally improves the performance
of neural networks.

In the future, we would like to investigate a semi-supervised training method for
DRNs, so they could be applied on such tasks where we have only a small number of
labelled examples and a large amount of unlabelled data.

Acknowledgment. Tamás Grósz were funded in part by the European Union and the
European Social Fund through the project FuturICT.hu (TÁMOP-4.2.2.C-11/1/KONV-
2012-0013).

References

1. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural
networks. In: Proc. AISTATS, pp. 249–256 (2010)

2. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier networks. In: Proc. AISTATS, pp.
315–323 (2011)

3. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA
data mining software: an update. SIGKDD Explorations 11(1), 10–18 (2009)

4. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving
neural networks by preventing co-adaptation of feature detectors. CoRR. 1207.0580 (2012)



Document Classification with Deep Rectifier Neural Networks 115

5. Hinton, G.E., Deng, L., Yu, D., Dahl, G.E., Rahman Mohamed, A., Jaitly, N., Senior, A.,
Vanhoucke, V., Nguyen, P., Sainath, T.N., Kingsbury, B.: Deep neural networks for acoustic
modeling in speech recognition: The shared views of four research groups. IEEE Signal
Process. Mag. 29(6), 82–97 (2012)

6. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural
Computation 18(7), 1527–1554 (2006)

7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional
neural networks. In: Proc. NIPS, pp. 1106–1114 (2012)

8. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge
University Press (2008)

9. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc.,
San Francisco (1993)

10. Seide, F., Li, G., Chen, X., Yu, D.: Feature engineering in context-dependent deep neural
networks for conversational speech transcription. In: Proc. ASRU, pp. 24–29 (2011)

11. Srivastava, N., Salakhutdinov, R.R., Hinton, G.E.: Modeling documents with a deep Boltz-
mann machine. In: Proc. UAI, pp. 616–625 (2013)

12. Tóth, L., Kocsor, A.: Training HMM/ANN hybrid speech recognizers by probabilistic
sampling. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS,
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