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Prefae

Nowadays, speeh reognition tehnology is built on Deep Neural Networks. These

networks represents the latest diretion of mahine learning. They are based on the

theory of arti�ial neural networks, whih have been used for deades. However, unlike

traditional Neural Networks, all deep networks ontain many proessing layers, whih

allow the hierarhial proessing of the input data. While the onept of deep networks

is not totally new, their e�ient training required several new ahievements. These

new networks managed to ompletely replae the Gaussian Mixture Models in the

state-of-the-art speeh reognition systems.

In this study, I deided to fous on Deep Neural Network-based reognition systems.

First, I ompared the performane of several new training algorithms with eah other,

in order to determine the best one for later use. Then, I turned my attention to the

algorithms that the new speeh reognition systems have inherited from the previous

Gaussian Mixture Model-based approahes, as the algorithms might not be optimal for

Deep Neural Networks. I proposed new algorithms for obtaining the initial alignment

of the frame-level state labels and the reation of ontext-dependent states, and found

that they are better suited for the new aousti models. Lastly, I also experimented

with a data re-sampling method to improve the auray of the models.
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Chapter 1

Introdution

Automati Speeh Reognition (ASR) is a key topi of speeh tehnology, where the

goal is to transribe an audio reording (an utterane) in an automati way. For deades

the traditional ASR systems used Hidden Markov Models (HMM) with Gaussian Mix-

ture Models (GMM) and, until very reently, these HMM/GMM models represented

the state-of-the-art tehnology in ASR. Nowadays, with the advent of Deep Neural

Networks (DNN) the original HMM/GMM models have been replaed by the new

HMM/DNN hybrids.

DNNs are a new type of Arti�ial Neural Networks, whih di�er in one important

aspet from the previous ones, namely that they have more than one hidden layer

(usually three or more). This de�nition might seem a little vague and the question

arises of whether this means that we only need to add a few new hidden layers to an

ANN to upgrade it to a DNN. The simple answer of ourse is no, as with the addition of

extra hidden layers we ome up against several problems that make it hard to train the

nets. So besides adding new hidden layers, we need other modi�ations like hanging

the ativation funtion of the neurons or the learning algorithm itself.

The new HMM/DNN hybrids are now routinely used in state-of-the-art ASR sys-

tems, but they inherited many of the algorithms from their predeessors (the standard

HMM/GMM systems). However, the optimality of these algorithms is not guaranteed

with the new models. The main fous of this dissertation is to modify some of these

earlier methods in speeh reognition so that they better suit the new DNN-based

aousti models. Our main goal is to reate new solutions that allow the training of

HMM/DNN aousti models without relying on GMMs during the training proess.

To ahieve the GMM-free training of a HMM/DNN hybrid, we have to solve two key

problems, namely the initial alignment of the frame-level state labels and the reation

of ontext-dependent (CD) states. We solved the �rst problem by modifying a standard

sequene disriminative training method and showed that with the modi�ed algorithm

it is possible to train randomly initialised DNNs without the frame-level alignment

1



2 Chapter 1. Introdution

Figure 1.1: An example ANN struture with one hidden layer.

of the ontext independent (CI) labels. For the reation of CD states, we proposed

a solution whih applies a Kullbak-Leibler divergene-based deision riterion during

state lustering. Quite reently, several artiles have been published about GMM-free

systems, so we also ompared the performane of our methods with some of these new

approahes and found that our algorithms are quite ompetitive. Furthermore, we also

addressed a speial problem of the CD states, namely that of the imbalaned lass

distribution. We showed that a very simple re-sampling method with the adjustment

of the priors an signi�antly improve the auray of DNN-based aousti models.

1.1 Arti�ial Neural Networks

Now, we will give a brief desription of Arti�ial Neural Networks (ANN) [2℄. The

onept of ANNs was inspired by biologial neural networks, and the basi building

blok of these networks is the arti�ial neural model alled the pereptron. In an ANN,

these neurons form layers so that the neurons in one layer are onneted to neurons

from other layers (the onnetion is direted), and eah onnetion has a weight whih

represents the strength of the given onnetion. The layers an be grouped into three

ategories. The input stimuli are passed to the network through the input layer, and

the response of the ANN is observable in the output layer. The hidden layers are

responsible for extrating di�erent features (hidden representations), and this is where

the atual proessing is done. Figure 1.1 depits a simple ANN struture.

The neurons are very simple proessing units. They reeive the ativations of other

neurons (x) through the inoming onnetions, then they alulate the weighted sum

of these values using the weights (w). After the sum has been alulated, bias value (b)

of the neuron is also added. Then, the ativation funtion (f) is applied to determine
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the output (o) of a given neuron. Formally,

o(x) = f

(

M
∑

i=1

wixi + b

)

, (1.1)

where M is the number of inputs for the given neuron.

One of the most widely spread ativation funtions for hidden neurons is the sigmoid

funtion,

Sigmoid(x) =
1

1 + e−x
. (1.2)

This funtion is still in use mostly in shallow networks, as in deep strutures it is

plagued by an e�et alled the vanishing gradient e�et. The output neurons of an

ANN lassi�er use a speial ativation funtion alled the softmax funtion. It is

de�ned by the relation

Softmax(xi) =
exi

∑N

j=1 e
xj

, (1.3)

where N is the number of output neurons. By applying this type of ativation, we an

interpret the output of the network as a posterior probability vetor, as the values ful�l

all the requirements, sine they are guaranteed to be non-negative and add up to one.

The last thing we need to address here is the training algorithm of the ANN.

The bakpropagation algorithm o�ers a simple solution to this [2℄. The �rst thing

it requires is an error funtion, whih determines the error by omparing the output

produed by the ANN and the expeted output. For lassi�ation tasks, we minimise

the ross-entropy (CE) ost funtion

CE(p, y) = −

N
∑

i=1

yilog(pi), (1.4)

where y is the one-hot expeted output vetor and the pi values are the ativations

of the output neurons. Using CE we an easily alulate the error of eah output

neuron, then all we need to do is to propagate this error bak to the hidden neurons.

One eah hidden neuron has an error value, the gradients of the weights and biases

an be alulated. After the gradient omputations, the parameters are updated in an

attempt to minimise the error funtion. For more details on how the bakpropagation

algorithm works, see [2℄.

1.2 Automati Speeh Reognition

Automati Speeh Reognition or Speeh-to-Text systems seek to transribe the audio

input automatially, where the transription is usually a sequene of words or in some
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Figure 1.2: The standard work�ow of a HMM/DNN-based ASR system.

ases a sequene of phonemes. This transformation is not an easy task; it takes humans

years to learn it, and even then we still make mistakes (we mishear words) [3℄.

A standard ASR system onsists of three main omponents, as shown in Figure 1.2;

namely the feature extrator, the aousti model and the language model. In the fol-

lowing setions we will explain the funtions of these parts, but before that we need to

address an important question. It is how we an determine whih methods are better

and whih are worse. Many ASR solutions have been proposed over the years so we

need an evaluation metri to ompare the results of these methods. Perhaps the most

straightforward way of omparing di�erent ASR solutions is to evaluate them on the

same test data and alulate their auray values. To alulate the auray, we need

to ompare the transriptions produed by the system with the original referene tran-

sriptions. For this, �rst the optimal alignment is found using a dynami programming

method, and then the number of substitution (S), deletion (D) and insertion errors

(I) an be alulated. The auray metri is then de�ned as

Accuracy =
N −D − S − I

N
, (1.5)

where N is the total number of words or phonemes in the referene transriptions.

With this metri, we an easily ompare the performane of di�erent systems.

1.3 Feature Extration for Speeh Proessing

Next, we will fous on the most popular methods that are used to transform the raw

speeh waveform into a sequene of parameter vetors. The feature extration step

is an essential part of the speeh reognition pipeline, but we should mention that

very reently a new alternative has appeared. Some new networks attempt to use the

raw audio input without any transformation [4℄; however the reognition auraies of

these approahes are still far from those of the best systems built on standard feature

extration methods.
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Figure 1.3: Illustration of the triangular �lters on the mel-sale (image from the HTK-

Book [1℄)

1.3.1 Filterbanks

It is well known that the human ear resolves frequenies non-linearly aross the audio

spetrum, and empirial evidene also suggests that designing a front-end to operate

in a similar non-linear manner ought to improve reognition performane. Filterbank

analysis (FBank) o�ers a straight-forward route for obtaining the desired non-linear

frequeny resolution [1℄. As an be seen in Figure 1.3, the �lters used by the FBank

analysis have a triangular form and they are equally spaed along the mel-sale, whih

is de�ned by

Mel(f) = 2595 log10(1 +
f

700
). (1.6)

The FBank extrator �rst transforms a window of speeh data using a Fourier

transform and the magnitude is alulated. The magnitude oe�ients are then binned

by orrelating them with eah triangular �lter. These triangular �lters are spread over

the whole frequeny range from zero up to the Nyquist frequeny, and binning means

that eah Fast Fourier Transformation (FFT) magnitude oe�ient is multiplied by

the orresponding �lter gain. After the aumulation of the results, eah bin holds a

weighted sum representing the spetral magnitude in that �lterbank hannel. For the

last step, we take the logarithm of the bins values to get the �nal FBank features.

The main problem with FBank features is that they are highly orrelated, so if we

want to use it as the input of a HMM/GMM based reogniser, we will need to apply

a epstral transformation �rst.

1.3.2 Mel-Frequeny Cepstral Coe�ients

For deades the most favoured feature type in speeh reognition was the Mel-Frequeny

Cepstral Coe�ients (MFCCs) [1℄. These are alulated from the FBank amplitudes
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{mj} using the Disrete Cosine Transform (DCT)

ci =

√

2

N

N
∑

j=1

mj cos

(

πi

N
(j − 0.5)

)

, (1.7)

where N is the number of �lterbank hannels. By taking just the �rst few basis vetors

we get a good, data-independent approximation of the prinipal dimensions. Doing

this, the features beomes deorrelated, hene they an be used by a GMM.

To further augment the FBank or MFCC feature sets it is ommon pratie to

onatenate the energy of the speeh window with the features. The energy in a frame

is omputed as the log of the signal energy; that is, for speeh samples {sn}

E = log

T
∑

n=1

s2n, (1.8)

where T is the number of samples in a given frame.

1.3.3 Feature-spae Maximum Likelihood Linear Regression

Nowadays, speaker adapted systems ahieve the best results on many speeh reogni-

tion tasks. Speaker adaptive training (SAT) ould and should be used if the training

orpus ontains a su�ient amount of speeh from multiple speakers. The main idea of

SAT is to transform every utterane in the training orpus before we train the aousti

model, the goal of this transformation being to redue the interspeaker di�erenes,

while keeping the intraspeaker variations. Feature-spae Maximum Likelihood Linear

Regression (fMLLR), also known as onstrained MLLR, is a widely used speaker adap-

tation tehnique, but it an only be used if a HMM/GMM system trained on MFCCs

is available. Next, we shall give a brief desription of how fMLLR works based on

the artile of Povey and Saon [5℄. The fMLLR method applies a very simple a�ne

transformation in the form of

x̂t = W sφt, (1.9)

where φt = [xt

1 ] is the extended input feature vetor at time t and W s = [As, bs] is the

transformation matrix of speaker s. The name �onstrained� omes from the fat that

only one transformation matrix (A) is used instead of using separate transformations

for the means and the ovarianes. To �nd the best W s
transformations, �rst we

de�ne the auxiliary funtion as the sum of log|det(As)| and the likelihood of x̂t
. The

part of the auxiliary funtion that hanges with the urrent transform W s
(exluding

the determinant) an be written as

−0.5
M
∑

m=1

csmE
(

d
∑

i=1

(µ
(m)
i − wT

i φ
t)2

σ2(m)

i

)sm

, (1.10)
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where csm is a onstant, E(.)sm alulates the average value for speaker s and Gaussian

m, µ(m)
and σ2(m)

are the means and ovarianes of Gaussian m, respetively.

To simplify the auxiliary funtion, let us de�ne the linear and quadrati terms in

wi (the ith row of W s
) as ki and Gi:

ki =

M
∑

m=1

csmµ
(m)
i E(φ)sm

σ2(m)

i

, (1.11)

Gi =
M
∑

m=1

csmE(φφT )sm

σ2(m)

i

. (1.12)

Then the auxiliary funtion an be expressed as

log(|det(A)|)−

d
∑

i=1

(wT
i ki − 0.5wT

i Giwi). (1.13)

Lastly, the W s
matries are estimated by using a row-by-row method that maximises

Equation 1.13. For more details on fMLLR, see [6℄.

To summarise, fMLLR o�ers an easy way to perform SAT, but it has a big drawbak

as speaker annotations are needed for eah utterane before adaptation.

1.3.4 Using the ∆ and ∆∆ features

Empirial studies demonstrate that the performane of a speeh reognition system

an be greatly enhaned by adding time derivatives to the basi stati parameters.

One possible explanation of why this helps is that by doing so we basially extend the

input window of the aousti model, thus we allow it to use information from a wider

time window. The delta oe�ients an be omputed using the following regression

formula [1℄

∆t =

∑Θ
θ=1 θ(ct+θ − ct−θ)

2
∑Θ

θ=1 θ
2

, (1.14)

where ∆t is a delta oe�ient at time t omputed in terms of the orresponding stati

oe�ients from ct−Θ to ct+Θ. If we apply the same formula to the delta oe�ients,

we get the aeleration oe�ients (∆∆).

1.4 Aousti modelling with HMMs

After the feature extration step, we an train the aousti model omponent of the

reogniser. This task is not an easy one as the aousti model has to learn the relation-

ship between the input features and the words uttered. Traditional systems �rst split
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the transription at the word-level into a phoneme sequene, and these phonemes an

be de�ned as speeh segments that possess distint physial or pereptual properties.

The phonemes are the basi building bloks in speeh reognition.

Now we need a method that an be trained to produe the orret phoneme se-

quene given the input features. Hidden Markov Models (HMMs) are the most popular

hoie for this task. A HMM is haraterised by the following:

• S is the �nite set of the states, whih are also alled hidden states (as they

are not diretly observed). In speeh reognition, eah state orresponds to

a phoneme or part of the phoneme. We shall denote the individual states by

S = s1, s2, . . . , sN , and the state at time t by qt

• O = o1, o2, . . . , oT is the observation sequene, and V = v1, v2, . . . , vM is the

set of the individual symbols, whih an be omitted.

• The atual state ould be determined using the state transition probability values

A = aij, where

aij = P (qt+1 = sj|qt = si). (1.15)

• The output of the HMM is ontrolled by the observation probability distribution

B = {bi(k)}, where

bi(k) = P (ot = vk|qt = si). (1.16)

• Lastly the model needs an initial state distribution, whih stores the probability

values of P (q1 = si).

As an be seen, HMMs make two key assumptions. First, they assume that the

urrent observation (ot) is only dependent on the atual state (qt). The problem with

this is that we expet the model to orretly guess qt using only one input frame, whih

is usually a 25 ms-long MFCC or Fbank vetor, whih represents only a fration of the

average phoneme duration (˜150 ms). A possible solution to overome this problem

is to extend the input with a few neighbouring frames, thus allowing the model to

make deisions using a more appropriate time window. The seond assumption that

HMMs make is that st only depends on st−1 and it is onditionally independent of the

other preeding states. One ould ompensate for this by further extending the input

window, but empirially a better solution is to use the ∆ and ∆∆ features, as this

allows the system to guess the previous and suessive values e�iently.

As we mentioned before, the hidden states usually orrespond to a phoneme, but

the problem of o-artiulation ompliates this. The most ommon way of dealing with

o-artiulation is to use a tri-state model. In a tri-state model eah phoneme is split

into three parts; namely the beginning, the middle and the ending part. Figure 1.4
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Figure 1.4: The tri-state HMM phoneme model.

shows the tri-state phoneme model. The idea behind this is simple. As o-artiulation

does not a�et the middle part of the phone, by separating the problemati parts we

hope to make the learning task easier. The tri-state model has an additional bene�t

that it enfores a minimal duration (3 frames at least) on eah phoneme as the deoder

has to go through all three states. Using ontext dependent (CD) labels is another

option. In this ase, we use three phonemes to label the atual observation, namely the

preeding, the atual and the sueeding phonemes. Unfortunately the large amount

of possible observations makes it impossible to train the aousti model, so we need

to luster these CD states before training. We will desribe state lustering in more

detail later on in Chapter 4.

We should mention that Equation 1.16 desribes a HMM with disrete observa-

tions, but speeh is represented by a ontinuous signal. Of ourse, HMMs an omit

ontinuous observations with the use of Gaussian Mixture Models (GMMs), the task

of these GMMs being to provide a ontinuous estimation for bi(k). These models are

alled HMM/GMM and they were the standard tehnique in ASR for deades, until

the appearane of DNNs. In the past few years the GMM part has been replaed by

DNN, resulting in the new HMM/DNN hybrid model, whih will be explained later.

Now we an fous on the three basi tasks that an be handled with an HMM,

namely the evaluation, deoding and learning problems. Evaluation means that we wish

to �nd the probability of an observation given the HMM parameters, an example of this

in speeh reognition being the task of isolated word reognition. The seond problem

(deoding) is essential in ontinuous speeh reognition, whih seeks to �nd the most

likely sequene of hidden states (phonemes) given the HMM and and observation

sequene. The Viterbi algorithm is a dynami programming method that o�ers a

simple solution to the deoding problem [7℄.

The Baum-Welh algorithm [7℄ is the standard method used to train a HMM. It
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applies the forward-bakward algorithm (desribed in Chapter 3) to �nd the maximum

likelihood estimates of the parameters given a set of observed feature vetors and the

known sequene of hidden states.

1.4.1 HMM/DNN model

After having outlined the HMM part of the hybrid model, we will now fous on the

DNN part. It is lear that the aousti model requires a omponent that an estimate

the bi(k) values (the observation probability values). For deades GMMs were routinely

used for this task, but we should add that shallow ANNs were also used by sientists

but they failed to signi�antly outperform GMMs. This situation has hanged with the

appearane of DNNs, whih have a superior performane in general ompared to that

of the GMMs.

The suess of the DNNs ould be redited to several fators. These are:

• DNNs are able to estimate the posterior probabilities of HMM states using any

kind of input, even highly orrelated ones, unlike GMMs.

• DNNs an be trained e�iently using a large amount of training data. Atually,

it is an essential aspet of deep learning to use a lot of data.

• DNNs generalise better than GMMs. The explanation for this is the fat that

the output of a DNN is sensitive to a lot of weights in the network, hene it an

learn far more omplex relationships between the inputs and the labels.

Of ourse, we should mention that it is also harder to train a DNN than it is to

�t a GMM. DNNs have many meta-parameters that need to be �ne-tuned and usually

they have many more parameters than GMMs do. Fortunately, nowadays one an train

DNNs on speial hardware alled the Graphial Proessing Unit (GPU) to speed up

the training proedure and quikly tune the meta-parameters.

When DNNs are trained as aousti models, they attempt to estimate the proba-

bility values of the hidden states using observations as input. The ith output of the

network at time t an be written as

dnni,t = P (qi|ot). (1.17)

The problem is that the HMM requires the estimates of P (ot|qi), so using the

Bayes rule the outputs of the DNNs must be reformulated as

dnni,t = P (qi|ot) =
P (ot|qi)P (qi)

P (ot)
. (1.18)
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After reordering, we get

P (ot|qi) = P (ot)
P (qi|ot)

P (qi)
= P (ot)

dnni,t

P (qi)
, (1.19)

where P (qi) is the prior probability of state i. Sine the deoding proess aims to �nd

the most probable sequene of states and P (ot) is onstant for eah state, it an be

ignored.

1.5 Language Model

The purpose of a language model (LM) is to assign probabilities to word sequenes.

In speeh reognition it is used to onvert the output of the aousti model into a

word sequene, and to ahieve this it requires a lexion (also alled the pronuniation

ditionary) that ontains the pronuniations for all reognizable words. In our study,

we utilised the simplest model alled an N-gram. N-grams use the Markov assumption,

meaning that the probability of a word depends only on the previous N word. Thus

the N-gram model approximates the probability of the next word in a sentene as

P (wn|w
n−1
1 ) ≈ P (wn|w

n−1
1+n−N). (1.20)

Using a 2-gram (also alled a bigram model), the probability of the whole sequene

an be alulated by using the hain rule

P (wn
1 ) ≈

n
∏

i=1

P (wi|wi−1). (1.21)

Next, we need a way to estimate the N-gram probability values. Lukily, we an

alulate the N-gram probabilities using a very simple method alled Maximum Likeli-

hood Estimation (MLE) [7℄. The onditional probabilities an be alulated by getting

the number of ourrenes from a orpus and normalising them to a value between 0

and 1. In the ase of a bigram model this means that we need to ount all appearanes

of the words x and y, when they are in the orret order and divide this by the number

of all word pairs, whih start with x. Formally,

P (y|x) =
C(xy)

∑

w C(xw)
. (1.22)

Typially, however, the N-gram model probability values are not alulated diretly

from the frequeny ounts, as it gives 0 when onfronted with any N-gram that is not

present in the training orpus. To overome this problem, some form of smoothing is

neessary, diverting a portion of the total probability mass to unseen N-grams. Various



12 Chapter 1. Introdution

methods are used, ranging from the simple add-one smoothing (assign a ount of 1 to

unseen n-grams) to more sophistiated methods, like the Good-Turing disounting or

the bak-o� models. Here we used the Katz bak-o� model [7℄, whih simply redues

N if the N-gram was not seen enough times in the training data. The new estimate

for PKatz(wi|wi−N+1 . . . wi−1) is






dwi−N+1...wi

C(wi−N+1...wi−1wi)

C(wi−N+1...wi−1)
, ifC(wi−N+1 . . . wi) > k

αwi−N+1...wi−1
PKatz(wi|wi−N+2 . . . wi−1) otherwise,

(1.23)

where α is the bak-o� weight, k is a threshold and d is a saling fator, whih typially

has a value of the amount of disounting found by the Good-Turing estimation.

1.6 The Szeged Broadast News Corpus

The Szeged Hungarian Broadast News Corpus was the dataset used in all hapter. It

was reorded and transribed at the Researh Group on Arti�ial Intelligene, belong-

ing to the Hungarian Aademy of Sienes and the University of Szeged Institute of

Informatis [8℄. The orpus ontains 115 news broadasts whih were reorded from 8

di�erent television hannels. These reordings were ut into short utteranes, and the

resulting segments were plaed into one of the following ategories:

• Clean speeh: utteranes in this ategory ontain well-artiulated, mostly planned

speeh, and have a minimal level of bakground noise. Most reordings in this

ategory were originally �lmed in a studio, and were spoken by professional news-

asters.

• Noisy speeh: speeh in this ategory is still mostly planned, but it has a higher

level of bakground noise. Reordings in this ategory are typially taken from

on-site reporters speaking in a noisy environment.

The database ontains approximately 28 hours of reordings, from whih 22 hours

were seleted for the training set, 2 hours for the development set and 4 hours for the

test set. The lean part of the orpus was also partitioned, 44 newsasts (altogether

approximately 5.5 hours) were used for training, 9 newsasts (altogether approximately

1 hour) were used for development and validation, while the remaining 17 newsasts

(altogether approximately 2 hours) were used for testing purposes. Both partitionings

of the reordings were arried out in suh a way that eah set ontained reordings

from all television stations. All the reordings were orthographially typed, and the or-

responding phoneti transripts were reated with a simple phoneti transriber. The

phoneti labels of the database onsist of 52 ategories. In this thesis, we onduted

both phoneme and word reognition experiments on this orpus.
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1.7 Summary by Chapters

The thesis is organised as follows:

• In Chapter 2, we ompare the performane of four algorithms used to train

DNNs. The �rst two algorithms are two-phase methods as they apply a pre-

training step before �ne-tuning the DNN, the �rst one being the original algo-

rithm proposed by Hinton et al. [9℄. The seond algorithm reated by Seide et al.

[10℄ is alled disriminative pre-training. As for the third option, we hoose the

Deep Reti�er Network (DRN), whih di�ers greatly from the above two in the

sense that here it is not the training algorithm that is modi�ed, but the ativation

of the hidden neurons. The fourth training algorithm is a regularization method

alled Dropout[11℄, whih simply turns o� neurons temporarily during training.

In our experiments, we �rst ompared the results got by using these methods

on the English TIMIT database and on a Hungarian audiobook orpus [12℄, but

the main goal in this ase is to obtain results for a large voabulary Hungarian

reognition task. For this purpose, we trained a reognition system on the 28-

hour speeh orpus of the Szeged Hungarian Broadast News [8℄.

• In Chapter 3, we ompare two sequene training approahes, namely the Con-

netionist Temporal Classi�ation (CTC) and the Maximum Mutual Information

(MMI) method. Our aim here is to �nd a purely DNN-based solution that ould

be used to train randomly initialised DNNs without fore-aligned labels. Although

CTC was originally proposed for the training of reurrent neural networks, here

we show that it an also be employed to train reti�er networks as well. We will

also show that with our modi�ations, MMI is also suitable for this task.

• In Chapter 4, we fous on reating a GMM-free HMM/DNN system. For this

we have to solve two problems, namely the initial alignment of the frame-level

state labels and the reation of ontext-dependent states. To reate the ini-

tial alignments, we rely on the MMI-based method desribed in Chapter 3 and

ompare it with another solution, whih iteratively trains and realigns the DNN.

Reently, some new methods have been published whih o�er a way to reate

CD states using only HMM/DNNs. We will ompare the performane of three

of these new approahes with that of our own solution.

• In Chapter 5, we explore a possible way of handling the imbalane in the CD

state distribution. This imbalane in the lass distribution poses a signi�ant
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hallenge to DNNs. A straightforward solution is to re-sample the training data,

either by upsampling the rarer lasses or by dowsampling the more ommon

lasses. Here, we experiment with the so-alled probabilisti sampling method

that applies downsampling and upsampling at the same time. We also propose a

new method to re-estimate the lass priors, to remedy the mismath between the

training and the test data distributions introdued by re-sampling. Our experi-

mental results indiate that by applying the probabilisti re-sampling algorithm

during the training and properly setting the priors, we an markedly improve the

auray of CD DNNs.

• In Chapter 6, we provide a brief summary of the ontributions outlined in the

thesis and disuss possible diretions for future researh.



Chapter 2

A Comparison of Deep Neural

Network Training Methods for

Large Voabulary Continuous

Speeh Reognition

In the past few years there has been a renewed interest in applying neural networks to

speeh reognition, thanks to the invention of Deep Neural Networks. As we already

remarked in Chapter 1, DNNs di�er from onventional ones in that they onsist of

several hidden layers. The appliation of a deep struture an provide signi�ant im-

provements in speeh reognition results ompared to previously used tehniques [13℄.

However, modifying the network arhiteture also requires modi�ations to the training

algorithm, beause the onventional bakpropagation algorithm enounters di�ulties

when training many-layered feedforward networks [14℄. As a solution, Hinton et al.

presented a pre-training algorithm that works in an unsupervised fashion [9℄. After this

pre-training step, the bakpropagation algorithm an �nd a muh better loal optimum

of the parameters. The �rst appliations of Deep Networks for speeh reognition were

performed on the TIMIT database [15℄, whih is muh smaller than the orpora rou-

tinely used for the training of industrial-sale speeh reognizers. Hene, sine their

invention, a lot of e�ort has been devoted to saling up DNNs so that they ould be

trained using muh larger datasets and large voabulary tasks [10, 16, 17℄. The main

problem is that Hinton's pre-training algorithm is quite intensive omputation-wise,

even when implemented on graphi proessors. Several solutions have been proposed

to alleviate or irumvent the omputational burden of pre-training, but the searh for

the optimal training tehnique is still going on.

15
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Chapter 2. A Comparison of Deep Neural Network Training Methods for Large

Voabulary Continuous Speeh Reognition

2.1 Introdution

In this hapter, we ompare four di�erent tehnologies used for the training of DNNs.

The �rst one is the original pre-training algorithm of Hinton et al. [9℄. It treats the

network as a deep belief network built out of restrited Bolztmann mahines, and opti-

mizes an energy-based target funtion using the ontrastive divergene (CD) algorithm.

After pre-training, the network has to be �ne-tuned using some onventional training

method like bakpropagation.

The seond algorithm is alled �disriminative pre-training� by Seide et al. [10℄.

This method onstruts a deep network by adding one layer at a time, and trains these

sub-networks after the addition of eah layer. Both the pre-training of the partial nets

and the �nal training of the full network an be performed using bakpropagation, so

no speial training algorithm is required.

As for the third method, it is di�erent from the two above in the sense that in

this ase it is not the training algorithm that is modi�ed, but the neurons themselves.

Namely, the usual sigmoid ativation funtion is replaed with the reti�er funtion

max(0, x). These kinds of neural units were proposed by Glorot et al., and were

suessfully applied to image reognition and NLP tasks [14℄. Reti�ed linear units were

also found to improve restrited Boltzmann mahines [18℄. It has been shown reently

that a deep reti�er network an attain the same phone reognition performane as

that for the pre-trained nets of Mohamed et al. [15℄, but without the need for any

pre-training [19℄.

The fourth method alled Dropout was introdued a few years ago by Hinton et

al. [11℄. Unlike the previous methods, it is a regularisation tehnique, meaning that

it is just a re�nement of the training algorithm. The term �dropout� refers to the

fat that during training, neurons in the network are randomly dropped out. Dropping

neurons from the network an be ahieved by simply zeroing out the ativation of the

hosen units. The main advantage of this method is that it helps neural networks to

generalise better, thus it improves their performane espeially in ase of noisy input.

Another advantage of Dropout is the fat that it an be ombined with any training

algorithms, sine it is a regularisation method, so we will use it not just with standard

sigmoid networks but with reti�er ones too.

In our experiments, we �rst ompared the performane of the four methods on the

English TIMIT database and on a Hungarian audiobook orpus [12℄, but the main goal

of this study is to obtain results for a large voabulary Hungarian reognition task. For

this purpose, we trained a reognition system on a 28-hour speeh orpus of Hungarian

Broadast News, presented in Setion 1.6.

The reogniser is a hybrid HMM/DNN system [20℄ that estimates the state-level
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posterior probability values from the neural net, while the deoder is the HDeode

program, whih is a part of the HTK pakage [1℄. As Hungarian is an agglutinative

language, our system runs with a relatively large ditionary of almost �ve hundred

thousand word forms.

2.2 Training Methods for Deep Neural Networks

In the last few years there has been a renewed interest in applying neural networks,

espeially Deep Neural Networks, to various tasks. To properly train these multi-layered

feedforward networks, the training algorithm requires modi�ations as the onventional

bakpropagation algorithm enounters di�ulties (�vanishing gradient� and �explaining

away� e�ets).

In this ase the �vanishing gradient� e�et means that the error might onverge to

zero as it gets propagated bak through the hidden layers [21℄. The reason for this

is simple: eah weight in the neural network reeives an update proportional to the

gradient of the error funtion with respet to the urrent weight during eah iteration

of training. The most ommonly used ativation funtions like the sigmoid funtion

have gradients in the range (0, 1), and bakpropagation omputes gradients using the

hain rule. This means that if we multiply these small values to ompute gradients of a

�deeper� layer in a neural network, the gradient (error signal) dereases exponentially.

This ould ause some hidden layers, in partiular those that are losest to the input

layer, to have gradients lose to zero and as a onsequene the whole network may fail

to learn.

At the same time, in fully onneted deep networks, the �explaining away� e�ets

make inferene extremely di�ult in pratie [9℄. Explaining away is a well-known

phenomenon in Bayesian networks whih has a V shaped struture (two input and

one output node). For DNNs the assumption that hidden neurons are independent

beomes invalid as they ould beome antiorrelated. For example, if an output node

an be ativated by two equally rare and independent events (hidden neurons) with

an even smaller hane of ourring simultaneously, then the ativation of one of the

hidden nodes negates (explains away) the ourrene of the other in suh a way that a

negative orrelation is obtained between the two neurons. This makes the training of

DNNs using the standard bakpropagation di�ult as it ould onverge to a suboptimal

model. Several solutions have been proposed to overome these problems, and here

we ompare four of them empirially.
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H1 H2 H3

V1 V2 V3 V4

Figure 2.1: RBM with 3 hidden and 4 visible neurons.

2.2.1 DBN Pre-Training

This e�ient unsupervised algorithm, �rst desribed in [9℄, an be used to learn the

onnetion weights of a Deep Belief Network (DBN) onsisting of several layers of

Restrited Boltzmann Mahines (RBMs). The RBMs are a variant of Boltzmann

Mahines, with the restrition that their neurons must form a bipartite graph. They

have an input layer (alled the visible layer), representing the features of the given

task, and a hidden layer whih has to learn some representation of the input. The

restrition ompared to the simple Boltzmann Mahines is that eah onnetion in an

RBM must be between a visible unit and a hidden unit, thus forming a bipartite graph.

Figure 2.1 provides a graphial depition of an RBM. These RBMs an be trained

using the Contrastive Divergene (CD) algorithm proposed by Hinton et al. in [9℄.

The main idea behind CD is that the RBM assigns the following energy value to eah

on�guration of visible and hidden state vetors, denoted by v and h, respetively:

E(v, h; Θ) = −

V
∑

i=1

H
∑

j=1

wijvihj −

V
∑

i=1

aivi −

H
∑

j=1

bjhj (2.1)

where the weights of the onnetion between a visible and hidden neuron are stored

in the matrix w, while bi and ai are the hidden and visible biases respetively. A key

element of the CD algorithm is Gibbs sampling, whih is a Markov hain Monte Carlo

algorithm. For RBMs one an sample the visible and hidden units using blok Gibbs

sampling, as the layers are onditionally independent. A sampling step is performed as

follows:

hn = f(Wvn−1 + b) (2.2)

vn = f(W ′hn−1 + a) (2.3)

In theory, eah learning epoh would require Gibbs sampling to be repeated until

full onvergene is ahieved. It is lear that in pratie one annot run the sampling

hain up to onvergene, as it would be omputationally expensive and extremely time-

onsuming. As a solution, Hinton proposed the one-step ontrastive divergene (CD-1)
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Figure 2.2: The DPT training proess is shown, the new parts of the network being

shown in red; after a new layer is added we train the whole network not just the newly

added parts.

update rule for the visible-hidden weights:

∆wij ∝ 〈v0i h
0
j〉 − 〈v1i h

1
j〉. (2.4)

Note that CD-1 does not wait for the Markov hain to onverge, it runs a Gibbs sampler

initialised on the data for one full step.

Although RBMs with the energy funtion of Equation (2.1) are appliable for binary

data, in speeh reognition the aousti input is typially represented by real-valued

feature vetors. For real-valued input vetors, the Gaussian-Bernoulli restrited Boltz-

mann mahine (GRBM) an be used, and it requires making only a minor modi�ation

of Equation (2.1). The GRBM energy funtion is given by:

E(v, h|Θ) =
V
∑

i=1

(vi − ai)
2

2
−

V
∑

i=1

H
∑

j=1

wijvihj −
H
∑

j=1

bjhj (2.5)

Hinton et al. showed that the weights resulting from the unsupervised pre-training

algorithm an be used to initialise the weights of a deep, but otherwise standard, feed-

forward neural network. After this initialisation step, a softmax output layer needs

to be added to the network, then we simply use the bakpropagation algorithm to

�ne-tune the network weights with respet to a supervised riterion.

2.2.2 Disriminative Pre-Training

`Disriminative pre-training' (DPT) was proposed in [10℄ as an alternative to DBN

pre-training. It is a simple algorithm where �rst we train a network with one hidden

layer to full onvergene using bakpropagation; then we replae the softmax layer by

another randomly initialized hidden layer and a new softmax layer on top, and we train
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Figure 2.3: The reti�er ativation funtion and other ommonly used ativation fun-

tions.

the network again; this proess is repeated until we reah the desired number of hidden

layers. Figure 2.2 illustrates the general proedure.

This training method is very similar to the greedy layer-wise training algorithm of

Bengio et al. [22℄, but di�ers in that Bengio only updates the newly added hidden layers

and the output layer. Seide et al. found that this method gives the best results if one

performs only a few iterations of bakpropagation in the pre-training phase (instead of

training to full onvergene) with an unusually large learn rate. In their artile, they

onluded that this simple training strategy performs just as well as the muh more

ompliated DBN pre-training method desribed above [10℄.

2.2.3 Deep Reti�er Networks

Reti�ed neural units were reently applied with suess in standard neural networks,

and they were also found to improve the performane of DNNs on tasks like image

reognition and speeh reognition [14, 19℄. These reti�ed neurons apply the reti�er

funtion (max(0, x)) as the ativation funtion instead of the sigmoid or hyperboli

tangent ativation. The main advantage of Deep Reti�er Networks (DRNs) is that

thanks to their properties, they an be trained with the standard bakpropagation

algorithm, without any time-onsuming pre-training. As Figure 2.3 shows, the reti�er

funtion is one-sided, hene it does not enfore a sign symmetry or antisymmetry.

Here, we will examine the two key properties of this one-sided funtion, namely its

hard saturation at 0 and its linear behaviour for positive input.

The hard saturation for negative input means that only a subset of neurons will

be ative in eah hidden layer. For example, when we initialize the weights uniformly,

around half of the hidden units output are real zeros. This allows reti�ed neurons

to ahieve truly sparse representations of the data. In theory, this hard saturation

at 0 ould harm optimization by bloking gradient bak-propagation. Fortunately,
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experimental results do not support this opinion, suggesting that hard zeros an atually

help supervised training. These results show that the hard non-linearities do no harm

as long as the gradient an propagate along some path [14℄.

For a given input, the omputation is linear on the subset of ative neurons. One

the ative neurons have been seleted, the output is a linear ombination of their in-

put. This is why we an treat the model as an exponential number of linear models

that share parameters. Based on this linearity, there is no vanishing gradient e�et

[14℄, and the gradient an propagate via the ative neurons. Another advantage of

this linear behaviour is the smaller omputational ost: there is no need to ompute

the exponential funtion during the ativation, and the sparsity of neuron ativity an

also be exploited. A disadvantage of the linearity property is the �exploding gradient�

e�et, when the gradients an grow without limit. To prevent this, one ould apply

a regularisation tehnique alled weight normalisation [23℄. Weight normalisation at-

tempts to keep the L1- or L2-norm of the weight matries the same as it was after

initialization by saling the weights during training. What makes this possible is that

for a given input the subset of ative neurons behaves linearly, so a saling of the

weights is equivalent to a saling of the ativations.

2.2.4 Dropout

Dropout di�ers from the previous methods in that it is a regularisation tehnique.

The name refers to the fat that this method drops out neurons during training. In

pratie, the neuron dropout an be performed by applying a random binary mask.

By dropping a neuron out and temporarily removing it from the network, along with

all its inoming and outgoing onnetions, we basially reate a di�erent model for

eah training example. The goal of dropout is to prevent over�tting by ombining

exponentially many di�erent neural network arhitetures e�iently. The dropout mask

ould be generated randomly with a λ parameter, and this ontrols the perentage of

the dropped neurons.

During validation or testing, it is not feasible to average the preditions from

exponentially many models. However, a very simple approximate averaging method

works well in pratie. The idea is to use the original neural net struture without

dropout, but the weights of this network need to be a saled-down version of the

trained weights. The saling-down ould be arried out in the following way: if a

neuron drops out with probability p during training, then the weights of that unit are

multiplied by 1−p before testing. The main advantage of this regularisation tehnique

besides its simpliity is that it an be readily used with other training algorithms and

it an provide signi�ant improvements.
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2.3 Experimental Setup

Here, we report the results of applying the ANN-based reognisers on three databases.

The �rst one is the lassi TIMIT database of English sentenes, while the seond is

a orpus of a Hungarian audiobook. The third database is alled Szeged Broadast

News. On TIMIT quite a lot of phone reognition results are available, so it is good

for omparative purposes. However, TIMIT is quite small and usually only phone-level

results are reported on it. The training set onsisted of the standard 3696 'si' and 'sx'

sentenes, while testing was performed on the ore test set (192 sentenes). A random

10% of the training set was held out for validation purposes, and this blok of data

will be referred to as the 'development set'. The sores reported are phone reognition

error rates using a phone bigram language model.

As the seond database we hose an audiobook for whih the original novel is so old

that its text is no longer opyrighted. Our hoie fell on the short story olletion by

Gyula Krúdy entitled 'Sinbad's Voyages', presented by the ator Sándor Gáspár. The

total duration of the orpus was 212 minutes and it was was arefully annotated, and

the di�erenes between the original text and the sound material were orreted [12℄.

Eah �le in the orpus was segmented further into roughly two-minute long parts,

and for training and test purposes the reordings were divided into two parts. From

the ten short stories, eight were used for training (186 minutes) and two for testing

(26 minutes). As the training data was limited we only performed phoneme level

reognition with a phone bigram. One ould say that this task is very di�erent from

a real-life reognition task, as there was minimal noise and the training and testing

set are not speaker independent, atually the entire database is spoken by one person.

Due to these fats one ould say that this task is speeh reognition under optimal

onditions, and the results ould provide an empirial glass eiling for other tasks.

Lastly, in our tests on the Szeged Broadast News orpus we sought to measure

the large voabulary reognition performane of the methods applied. The language

model was reated from texts taken from the Origo news portal (www.origo.hu), from

a orpus of about 50 million words. Hungarian is an agglutinative language with a lot of

word forms, hene we limited the size of the reognition ditionary to 486982 words by

keeping only those words that ourred at least twie in the orpus. The pronuniations

of these words were obtained from the `Hungarian Pronuniation Ditionary' [24℄.

Based on the Origo orpus, a trigram language model was built using the language

modelling tools of HTK [1℄.

As for the aousti features, we applied the standard 39 MFCC oe�ients, ex-

trated from 25 ms frames with 10 ms frame skips. We used MFCC oe�ients

(inluding the energy), along with the orresponding ∆ and ∆∆ values. In eah ase,
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the neural network was trained on 15 neighbouring frames, so the number of inputs to

the aousti model was 585.

Neural networks require a frame-level labeling of the training data. For this purpose,

we �rst trained a standard hidden Markov model (HMM) speeh reogniser, again using

the HTK toolkit. For the TIMIT dataset, monophone 3-state models were reated,

whih resulted in 183 states. For the broadast news dataset, triphone models were

onstruted, onsisting of 2348 tied triphone states in total. The HMM states were

then aligned to the training data using fored alignment. These labels served as training

targets for the neural nets.

For the reognition proess, we applied the deoders of the HTK pakage. We used

HVite for the phone reognition experiments on TIMIT and the Hungarian audiobook,

while the HDeode routine was applied for the large voabulary reognition tests on the

broadast news task. In both ases, the aousti modeling module of HTK required a

slight modi�ation so that it ould use the posterior probability values produed by the

neural nets. For the TIMIT and the audiobook dataset, the language model weight and

the insertion penalty fator were set to 1.0 and 0.0, respetively. With the broadast

news dataset, these meta-parameters were tuned on the development set. Lastly, for

a fairness of omparison, the pruning beam width was set to the same value for eah

network.

2.3.1 Training Parameters for the Neural Networks

As is standard in mahine learning, all hyperparameters of the training methods were

�ne-tuned on the development set. In the ase of the DBN-based pre-training method,

we applied stohasti gradient desent (i.e. bakpropagation) training with a mini-

bath size of 128. For Gaussian-binary RBMs, we ran 50 epohs with a �xed learning

rate of 0.002, while for binary-binary RBMs we used 30 epohs with a learning rate of

0.02. Then, to �ne-tune the pre-trained nets, again bakpropagation was applied with

the same mini-bath size as that used for pre-training. The initial learn rate was set

to 0.01, and it was halved after eah epoh when the error on the development set

inreased.

During both the pre-training and �ne-tuning phases, the learning was aelerated

by using a momentum of 0.9. Momentum is a well-known regularisation tehnique

for aelerating gradient desent [25℄, whih aumulates a veloity vetor of gradient

updates aross previous iterations. The momentum update rule in our implementation

is given by:

vt+1 = m ∗∆Wt+1 + (1−m)vt (2.6)

Wt+1 = Wt + ǫvt+1, (2.7)
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Figure 2.4: Phone error rates on the TIMIT dev set as a funtion of the number of

hidden layers.

where v is the matrix in whih the momentum of the gradient is stored, m is the

momentum oe�ient parameter and ǫ is the learning rate.

Turning to the disriminative pre-training method, the initial learn rate was set

to 0.01, and it was halved after eah epoh when the error on the development set

inreased. The learn rate was restored to its initial value of 0.01 after the addition

of eah layer. Furthermore, we found that using 5 epohs of bakpropagation after

the introdution of eah layer gave the best results. For both the pre-training and

�ne-tuning phases, we used a bath size of 128 and momentum of 0.8 (exept for the

�rst epoh). The initial learn rate for the �ne-tuning of the full network was again set

to 0.01.

The training of deep reti�er nets did not require any pre-training at all. The

training of the network was performed using bakpropagation with an initial learn rate

of 0.001 and a bath size of 128. The dropout method was applied with standard

sigmoid networks and with reti�ed ones as well. We did not ombine dropout with

the pre-training methods sine their training already required a lot of time and dropout

would have inreased it even further. In the ase of the sigmoid network 20% of the

neurons were dropped randomly, while the reti�er networks required only 10% dropout

to ahieve the best results.
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Figure 2.5: Phone error rates on the TIMIT ore test set as a funtion of the number

of hidden layers.

2.4 Results

2.4.1 TIMIT

Figures 2.4 and 2.5 show the phone reognition error rates obtained on the TIMIT dev

and ore test set, respetively, with a varying number of hidden layers, eah hidden layer

ontaining 2048 neurons. As an be seen, the deep learning methods performed very

similarly, up to 4 hidden layers and in the ase of �ve hidden layers, the reti�er nets

performed slightly better than the others. Eah deep learning method outperformed

the standard bakpropagation method (BP) one the network had at least two hidden

layers. The best results (21.87% and 21.75%) were obtained with reti�er networks,

whih had �ve hidden layers. The dropout regularisation improved the deep sigmoid

networks signi�antly, but it gave only a minor improvement in the ase of the reti�er

networks. Besides the fat that dropout failed to improve the results signi�antly, the

new hyperparameter, namely the dropout rate notieably inreased the time needed

to tune the hyperparameters. Using similar features, training labels and network sizes,

Mohamed at al. reported a 22.3% error rate with DBN pre-training [15℄, while Tóth

reported a 21.8% �gure with reti�er nets [19℄. As our sores fall in the same range,

the results also demonstrate the soundness of our methodology.

2.4.2 Hungarian Audiobook

Figure 2.6 shows the results for the Audiobook orpus. The standard method ahieves

its best performane with three hidden layers, only slightly better than the one ahieved
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Figure 2.7: Word error rates for the broadast news orpus as a funtion of the number

of hidden layers.

with only one hidden layer. It is also interesting that using more than three hidden

layers leads to an inreasing PER. The Dropout regularisation inreased the auray

of the sigmoid networks, but they still followed the same trend. The two pre-training

methods performed in a quite similar way and just like on the TIMIT dataset the

reti�er networks proved to be the best models performane-wise.
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2.4.3 Hungarian Broadast News

Figure 2.7 shows the word error rates got for the large voabulary broadast news

reognition task. Similar to the TIMIT tests, 2048 neurons were used for eah hidden

layer, with a varying number of hidden layers. The trends of the reognition results

are quite similar to those for the TIMIT database. The error rates seem to saturate at

4-5 hidden layers, and the urves for the methods run parallel and have only slightly

di�erent values. The lowest error rate is attained with the �ve-layer reti�er network,

both on the development set and the test set.

Although their reognition auray sores are quite similar, there is another fator

we need to onsider, namely the training times. These methods di�er signi�antly

in the training times required,and Table 2.1 shows the training times we measured

using a NVIDIA GTX-560 TI graphis ard. These values tell us how long it took

to train one DNN, after we found the optimal hyperparameters. We should add that

in the ase of the DBN pre-training method and the dropout method, we spent far

more time on properly tuning their hyperparameter values than in the ase of the

others. Evidently, the DBN pre-training algorithm also has the largest omputational

requirements. This algorithm has no learly de�ned stopping riterion, and various

authors run it with a widely di�ering number of iterations. The iteration ount we

applied here (50 for Gaussian RBMs and 30 for binary RBMs) is an average value,

and follows the experiments arried out by Seide et al. [10℄. Mohamed applies many

more iterations [15℄, while Jaitly et al. use far fewer iterations [16℄. Disriminative pre-

training and dropout regularisation are also muh faster than the DBN-based method,

but they are still slower than the training of reti�er nets.

Training method Pre-training time Fine-tuning training time

Sigmoid + BP 0 hours 4.5 hours

Sigmoid + Dropout 0 hours 5.5 hours

DBN pre-training 1 hours 4 hours

Disr. pre-training 2.5 hours 3 hours

Reti�er network 0 hours 4 hours

Reti�er network + Dropout 0 hours 4.5 hours

Table 2.1: The training times required by the various methods for one network with

�ve hidden layer.

Lastly, although the main goal here was to ompare the four deep neural network

algorithms, let us now ompare the large voabulary reognition sores with those of

a onventional HMM. The same HMM model that was used to generate the training

labels attained a word error rate of 20.07% (with maximum likelihood training), while
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the best DNN system ahieved a WER of 16.59%, meaning that by replaing the

GMM with a reti�er network we got a 17% relative error rate redution. Tuning the

parameters so that the two systems had a similar real-time fator was also out of the

question, as the hybrid model was implemented on a GPU, while the HMM used a

normal CPU.

2.5 Summary

It is perhaps no exaggeration to say that deep neural nets have led to a breakthrough

is speeh reognition. However, they are omputationally intensive, and the quest

for the optimal network arhiteture and training method is still ontinuing. In this

hapter I presented and ompared two training methods, a new type of ativation

funtion and a regularisation tehnique for DNNs, and evaluated them on two smaller

phoneme reognition tasks and on a Hungarian large voabulary reognition task. To

the best of my knowledge, I was the �rst to apply HMM/DNN systems to Hungarian

speeh reognition. These deep learning algorithms yielded pretty similar reognition

performanes on a medium-sized orpus, yet reti�er networks produed better results

and their training was onsiderably faster. Based on these fats, in my later experiments

deep reti�er networks beame my preferred hoie.

In this hapter, the author regards the following as his main ontributions:

• Performing an experimental omparison of four deep learning methods.

• First results for Hungarian speeh reognition using HMM/DNN hybrids.

And the results presented in this hapter were published in [26℄.
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Sequene Training Methods for

Deep Reti�er Neural Networks

In our pursuit of a stritly DNN-based ASR solution, we �rst turned our attention to

the task of �at start training. Most of the urrent DNN tehnologies require frame-

aligned labels, whih are usually reated by �rst training an HMM/GMM. Obviously,

it would be far more e�ient to just use DNN-based reognisers without the need to

reate an HMM/GMM to do the same task. Although �at start training via iteratively

realigning and retraining the DNN using a frame-level error funtion is viable, it is

quite umbersome. In this hapter, we ompare two sequene training approahes,

namely the Connetionist Temporal Classi�ation (CTC) and the Maximum Mutual

Information (MMI) method. Our aim here is to �nd a purely DNN based �at start

solution, whih ould be used to train randomly initialised DNNs without using fore-

aligned labels.

The �rst method (CTC) that we examined was originally proposed for the training

of reurrent neural networks, but here we will show that it an also be used to train

more onventional feed-forward networks as well. As our seond hoie, from the wide

variety of sequene disriminative training methods we opted for MMI training [27℄.

While this is routinely applied only in the �nal phase of model training, here we will

show that with proper modi�ations it is also suitable for obtaining the alignments of

ontext-independent models.

In the experimental part, we evaluate the two methods on several phone reognition

tasks. For eah database we tested, we found that the sequene training methods give

better results that those obtained with fore-aligned training labels produed by an

HMM/GMM system. These results suggests that �at start training is possible without

the use of GMMs.

29
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3.1 Problem desription and literature overview

For three deades now, Hidden Markov Models (HMMs) have been the dominant

tehnology in speeh reognition. Their suess is due to the fat that they handle

loal (frame-level) likelihood estimation and ombine these loal estimates to get a

joint global (utterane-level) sore, in a uni�ed mathematial framework. Reently,

however, it was shown that DNN-based solutions an signi�antly outperform standard

HMMs [28℄. As desribed in Chapter 1, this new tehnology replaes the Gaussian

mixtures of the HMM by a DNN, while the utterane-level deoding is still performed

by the HMM. The DNN omponent of these hybrid models is usually trained only at

the frame level. That is, we generate frame-level training targets for the network, and

during training we optimise some frame-level training riteria. However this frame-

by-frame training has several drawbaks. Firstly, we have to have frame-level labels

to be able to start the training. For very old and small databases (like the TIMIT

dataset used here), a manual phoneti segmentation is available. However, for more

reent orpora whih might be hundreds of hours long, manual segmentation is learly

out of the question. Hene, the usual solution for obtaining frame-level labels is to

train a standard HMM/GMM system, and then use it in fored alignment mode. This

means that, based on the urrent tehnology, the training of a DNN-based reogniser

should always be preeded by the training of a standard HMM model. This learly

makes the reation of a DNN-based system muh more tedious and time-onsuming,

and although quite reently there have been some attempts at having the standalone

training of DNN systems, these tehnologies are still far from omplete [29℄.

Seondly, besides the ost of reating fored aligned labels, the frame-level training

of a neural network has a deeper, more theoretial limitation. During this training, we

minimise the frame-level error ost, suh as the frame-level ross-entropy (CE) between

the network output and the training targets. These training targets are hard-labeled,

whih means that we expet the network to give an output of 1 for the orret lass

and 0 for the remaining ones. This is not neessarily optimal regarding the deoding

proess, whih ombines the frame-level sores. A more sophistiated method that

derives �soft� training targets from the sentene-level sores an be expeted to result

in a better performane.

Graves et al. proposed a method that provides a solution to both the above-

mentioned problems, and alled it the Connetionist Temporal Classi�ation (CTC)

method for Reurrent Neural Networks (RNNs) [30℄. This method requires just the

transription of the utterane, without any further label alignment information. Never-

theless, their arhiteture di�ers fundamentally from the standard HMM/ANN model:

owing to the use of reurrent neural network lassi�ers, they apply the training method
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alled bakpropagation through time [31℄, making the training proess muh more time-

onsuming and quite omplex. The number of model parameters is also quite high.

Furthermore, as frames have to be proessed in a stritly inreasing order, deoding

is muh harder to parallelise. When using bidiretional reurrent networks (whih are

required to ahieve the best performane with this approah [32℄), we have to wait for

the end of the utterane before we an start evaluating the network, making real-time

speeh proessing impossible. Lastly, instead of using a standard language model like

a phoneme n-gram, they use a speial tehnique alled a predition network, whih is

also based on an RNN. Thus, their approah is quite involved and quite di�erent from

the usual HMM/ANN model.

In this hapter we show that the CTC training sheme is not an inseparable part of

the RNN-based arhiteture, and with a few small modi�ations it an also be applied

to the training of HMM/ANN models. Here, we use it to train standard feed-forward

deep neural nets on a phone reognition task over three di�erent databases.

Altough CTC is a viable option for �at start training [33℄, it has a serious drawbak,

namely that it annot be used to generate aurate fored alignments of the phone la-

bels. To overome this problem, we also experimented with the MMI training method.

Within the framework of HMM/GMM systems, several sequene-disriminative train-

ing methods have been developed, and these have now been adapted to HMM/DNN

hybrids as well [27, 34℄. However, most authors apply sequene-disriminative riteria

only in the �nal phase of training, for the re�nement of the DNN model. That is, the

�rst step is always CE-based training, either to initialise the DNN (e.g. [35, 36, 37℄)

or just to provide frame-level state labels (e.g. [27, 34, 38, 39, 40℄). In ontrast with

the previous authors, here we propose a training proedure that applies sequene-

disriminative training in the �at start training phase. This requires several small mod-

i�ations ompared to the standard usage of sequene-disriminative training, whih

will be elaborated on later.

3.2 Flat start training of HMM/GMMs

The �at start training �rst initialises a so-alled �at model, whih does this by esti-

mating a uniform GMM from all the training data and then applies it for all initial

distributions. This also implies that during the �rst yle of training, eah training

utterane will be uniformly segmented.

After the �at initialisation, the Baum-Welh algorithm [7℄ ould be used to train

the HMM/GMM aousti model, whih makes use of the forward-bakward algorithm

desribed later in Setion 3.3.1. The basi assumption of the initialisation is that a

su�ient number of the phone models align or overlap with the atual position of
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that phone, so that during the seond and subsequent iterations, the models align as

intended.

3.3 Connetionist Temporal Classi�ation

Following the researh work of Graves et al. [30℄, �rst we will outline the Connetionist

Temporal Classi�ation training sheme. Similar to standard frame-level bakpropa-

gation training, it is an iterative method, where we sweep through the whole audio

training data set several times. A speial feature of this training method is that we

proess one whole utterane at a time instead of using just �xed-sized bathes of it;

furthermore, we only need the orret transription of the utterane, and time-aligned

labels are not required.

The CTC training method is built on the dynami searh method alled forward-

bakward searh [41℄, whih is a standard part of HMM training. The forward-bakward

algorithm not only gives the optimal path, but at the same time we also get the

probability of going through the given phoneme of the transription for all the frames

of the utterane. Using the forward-bakward algorithm, we an alulate a probability

distribution over the possible phonemes, for eah frame; then these values an be used

as target values when training the aousti lassi�er.

3.3.1 The Forward-Bakward Algorithm

Let us begin with the formal desription of the forward-bakward algorithm. First, let

us take the utterane with length T , and let its orret transription be z = z1z2 . . . zn.

We will also use the output vetors yt of the neural network trained in the previous

iteration. In the �rst iteration, due to the random initial DNN weights, these will

be pratially random values. The forward variable (α(t, u)) an be de�ned as the

summed probability of outputting the u-long pre�x of z up to the time index t ≤ T .

The initial onditions state that the orret sequene starts with the �rst label in z:

α(1, u) =

{

y1z1 if u = 1,

0 if u ≥ 2.
(3.1)

Thereafter the forward variables at time t an be alulated reursively from those at

time t− 1; and we an remain in state zu−1, or move on to the next one (zu). Thus,

α(t, u) =

{

ytzuα(t− 1, u) if u = 1,

ytzu
(

α(t− 1, u) + α(t− 1, u− 1)
)

otherwise.

(3.2)

In the bakward phase we alulate the bakward variables β(u, t), whih represent the

probability of produing the su�x of z having length n − u starting from the frame
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Figure 3.1: The α (left), β (middle) and αβ (right) values for a given utterane.

The horizontal axis orresponds to the frames of the utterane, while the vertial axis

represents the phonemes.

t+ 1. The bakward variables an be alulated reursively using the following rules:

β(T, u) =

{

1 if u = n,

0 otherwise,

(3.3)

and for eah t < T

β(t, u) =

{

ytzuβ(t+ 1, u) if u = n,

ytzu
(

β(t+ 1, u) + β(t+ 1, u+ 1)
)

otherwise.

(3.4)

Figure 3.1 depits the forward variables, the bakward variables and their produt for

a short utterane.

3.3.2 Using the αβ values for ANN training

The α(t, u)β(t, u) produt values express the overall probability of two fators, summed

along all paths: the �rst is that we reognise the orret sequene of phonemes, and the

seond is that at frame t the system omits the uth phoneme of z. For neural network

training, however, we would need a distribution over the phoneme set for frame t. It

is not hard to see that suh a distribution over the phonemes of z an be obtained by

normalising the α(t, u)β(t, u) produts so that they sum up to one (by whih step we

eliminate the probability of reognising the orret sequene of phonemes). Then, to

normalise this distribution to one over the whole set of phonemes, we need to sum up

the sores belonging to the multiple ourrenes of the same phonemes in z. That is,

the regression targets for any frame t and phoneme ph an be de�ned by the formula

∑

i:zi=ph

α(t, i)β(t, i)

n
∑

i=1

α(t, i)β(t, i)
. (3.5)

We an use these values as training targets instead of the standard binary zero-or-one

targets with any gradient-based non-linear optimisation algorithm. In our experiments,

we applied the bakpropagation algorithm to train the networks.
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3.3.3 Garbage Label

Although the above training method may work well for the original phoneme set, Graves

et al. introdued a new label (whih we will denote by X ), by whih the neural network

may hoose not to omit any phoneme. This label an be inserted between any two

phonemes, but of ourse it an also be skipped. They alled this label �blank�, but

we onsider the term �garbage� more reasonable as frames belonging to this lass are

thrown away during deoding.

To interpret the role of this label, let us onsider a standard tri-state model. This

divides eah phone into three parts. The middle state orresponds to the steady-state

part of the given phone, whereas the beginning and end states represent those parts

of the phone that are a�eted by oartiulation with the preeding and the subsequent

phones, respetively. By introduing the label X , we allow the system to onentrate

on the reognition of the leanly pronouned middle part of a phone, and it an map

the oartiulated parts to the symbol X . Therefore, we �nd it more logial to use

the term garbage label instead of blank, as the latter would suggest that the label X

overs silenes, but in fat this label more likely orresponds to the oartiulated parts

of phones.

Formally, introduing this label means that instead of the phoneme sequene z we

will use the sequene z′ = X z1X z2X . . .X znX . The forward-bakward algorithm also

has to be modi�ed slightly. Namely, the initial α values are set to

α(1, u) =

{

y1
z′1

if u = 1 or u = 2,

0 if u ≥ 3,
(3.6)

while for the latter labels we allow skipping the X states:

α(t, u) =











ytz′uα(t− 1, u) if u = 1,

ytz′u

(

α(t− 1, u) + α(t− 1, u− 1)
)

if z′u = X ,

ytz′u

(

α(t− 1, u) + α(t− 1, u− 1) + α(t− 1, u− 2)
)

otherwise.

(3.7)

The alulation of the β(t, u) values is performed in a similar way.

CTC is a proess with a positive feedbak: phonemes with generally high y values

will have higher αβ values, resulting in higher target target values, and during the

iterations they typially tend to suppress all other phonemes. When using the label X ,

usually this label dominates during training, and the outputs of a trained CTC network

tend to form a series of spikes, whih are separated by the garbage lass. Figure 3.2

shows the outputs of a trained network. As an be seen, the garbage label permits the

lassi�er to hoose that a given frame does not belong to any of the original phoneme

set, similarly to the anti-phoneme model of segment-based speeh reognition [42℄. It
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Figure 3.2: Non-garbage outputs generated by a CTC network for the utterane "Ezt

mondja a Semmelweis". The network predits the sequene of phones as a series of

spikes, whih are separated by the garbage lass.

is also possible to use the garbage label with a tri-state model: then X is inserted

between every state of all the phonemes, while still being optional.

3.3.4 Deoding and generating fored alignments

When a preditor RNN is used for deoding, it is obvious that we annot perform a

standard Viterbi beam searh; this is why Graves et al. had to modify the deoding

algorithm as well. However, when we swith to a HMM/DNN that has a feed-forward

DNN arhiteture, this onstraint vanishes and we an apply any kind of standard

deoding method.

The only reason why we need to alter the deoding part is that we need to remove

the garbage label from the resulting phoneme sequene. Lukily, in other respets the

use of the garbage label does not a�et the stritly-interpreted deoding part. This

label of ourse has to be ignored during searh when we apply a language model like

a phoneme n-gram. In our tests, we used our own implementation of the Viterbi

algorithm [41℄.

Generating time-aligned labels for eah frame is important for later steps like the

state lustering phase. Stritly speaking, it is impossible to generate aurate align-

ments as most of the frames will be labelled as garbage, and the presene of the phones

are represented only by spikes. In [33℄ the authors takle this problem by just using

the frames that orrespond to the spikes, however this means that a large portion of

the data will be ignored during state lustering.
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3.4 Sequene-Disriminative Training Using MMI

Several sequene-disriminative training riteria have been developed for the traditional

HMM/GMMs [43℄ � and adapted to HMM/DNNs [27, 34, 39, 44℄ � from whih the

maximum mutual information (MMI) riterion is the oldest and simplest. The MMI

funtion measures the mutual information between the distribution of the observation

and the phoneme sequene. Denoting the sequene of all observations by Ou =

ou1, . . . , ouTu
, and the label-sequene for utterane u by Wu, the MMI riterion an be

de�ned by the formula

FMMI =
∑

u

log
p(Ou|Su)

αp(Wu)
∑

W p(Ou|S)αp(W )
, (3.8)

where Su = su1, . . . , suTu
is the sequene of states orresponding to Wu, and α is

the aousti saling fator. The sum in the denominator is taken over all phoneme

sequenes in the deoded speeh lattie for u. Di�erentiating Equation (3.8) with

respet to the log-likelihood log p(out|r) for state r at time t, we get

∂FMMI

∂ log p(out|r)
= αδr;sut −

α
∑

W :st=r p(Ou|S)
αp(W )

∑

W p(Ou|S)αp(W )
(3.9)

= α
(

δr;sut − γDEN
ut (r)

)

,

where γDEN
ut (r) is the posterior probability of being in state r at time t, omputed over

the denominator latties for utterane u using the forward-bakward algorithm, and

δr;sut is the Kroneker delta funtion (the one-hot frame-level phoneti target vetor).

3.5 Performing MMI training without frame align-

ments

Sequene training riteria like the MMI error funtion are now widely used for DNN

training. However, almost all authors initialise their networks using CE training, and

apply the sequene-disriminative riterion only in the �nal phase of the training proe-

dure, to �ne-tune their models [34, 39℄. This makes it neessary to use some method

(like HMM/GMM or iterative CE training) to provide frame-level state targets. In

ontrast with these authors, here we propose to apply MMI training in the �at start

phase. In order to be able to perform �at start of randomly initialised DNNs using

MMI training, we made some slight hanges in the standard proess, whih we will

desribe next.

Firstly, we use the numerator oupanies γNUM
ut (r) in Eq. (3.9) instead of the

δr;sut values. This way we an work with smoother targets instead of the rude binary
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ones usually employed during DNN training. Another advantage of eliminating the

δr;sut values is that it allows us to skip the preeding (usually GMM-based) label

alignment step, responsible for generating the frame-level training targets. We applied

the forward-bakward algorithm to obtain the γNUM
ut (r) values, this solution has been

mentioned in some studies (e.g. [34, 44℄); but we only found Zhou et al. [35℄ atually

doing this. However, they pre-trained their DNN with the CE riterion �rst, while we

apply MMI training from the beginning, starting with randomly initialised weights.

The seond di�erene is that sequene training is onventionally applied only to

re�ne a fully trained system. Therefore, the MMI training riterion is alulated with

CD phone models and a word-level language model. This makes the deoding proess

slow, and hene the numerator and denominator latties are alulated only one,

before starting MMI training. In ontrast to this, we exeute sequene DNN training

using only phone-level transripts and CI phone models. This allows very fast deoding,

so we an realulate the latties after eah sentene. This di�erene is ruial for

the fast onvergene of our proedure. For onverting the orthographi transripts to

phone sequenes, one an follow the strategy of HTK. That is, in the very �rst step we

get the phoneti transripts from the ditionary, with no silenes between the words.

Pronuniation alternatives and the optional short pause at word endings an be added

later on, when realignment an be performed with a su�iently well-trained model [1℄.

A further di�erene is that we use no state priors or language model, whih makes

the α saling fator in Eq. (3.9) unneessary as well. Next, to redue the omputational

requirements of the algorithm, we estimated γDEN
ut (r) using just the most probable

deoded path instead of summing over all possible paths in the lattie (denoted by

γ̂DEN
ut (r)).

With these modi�ations, the gradient with respet to the output ativations (aut)

of the DNN is found using

∂FMMI

∂aut(s)
=
∑

r

∂FMMI

∂ log p(out|r)

∂ log p(out|r)

∂aut(s)
(3.10)

= γNUM
ut (s)− γ̂DEN

ut (s),

whih an be applied diretly for DNN training. A standard tehnique in DNN training

is to separate a hold-out set from the training data (see [45℄). If the error inreases on

this hold-out set after a training iteration, then the DNN weights are restored from a

bakup and the training ontinues with a smaller learning rate. This strategy an be

readily adapted to sequene DNN training [27℄, and we found it to be essential for the

stability of our �at start MMI training method.
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In summary, the modi�ations that we propose in order to make MMI training

suitable for DNN �at start are:

1. Frame-level phoneti targets (γNUM
ut (r)) are determined by a forward-bakward

searh.

2. We employ only phoneme-level transripts and CI phoneme states.

3. We do not apply state priors or language model.

4. We estimate γDEN
ut (r) by just using the most probable deoded path (γ̂DEN

ut (r)).

5. We measure training error on a hold-out set; when the error inreases after a

training iteration, we restore the weights and derease the learning rate.

Note that steps (1) to (4) seek to simplify the proedure both to speed it up and to

make it more robust. Step (2) also helps us to perform sequene-disriminative DNN

training before CD state tying, whih is essential for applying it in �at start. Step

(5), however, is applied in our general DNN training proess, but we found it ruial

to avoid the �runaway silene model� issue [46℄, whih is a ommon side-e�et that

haunts sequene-disriminative DNN training. The �runaway silene model� is aused

by the poor lattie quality, meaning that the number of silene frames after deoding

inreases as the training epoh inreases leading to a high number of deletion errors.

Our solution simply monitors the performane of the network, and one the deoding

result deteriorates the weights of the DNN are reverted to their previous values and

the training is ontinued with a lower learning rate.

3.6 Experiments and Comparison

3.6.1 Databases

We tested the CTC and MMI training methods on three di�erent databases. The

�rst was the well-known TIMIT set [47℄, whih is frequently used for evaluating the

phoneme reognition auray of a new method. Although it is a small dataset by

today's standards, a lot of experimental results have been published for it; also, due to

its relatively small size, it is ideal for experimentation purposes. We used the standard

(ore) test set, and withheld a small part of the training set for development purposes.

The standard phoneme set onsists of 61 phonemes, whih is frequently redued to a

set of 39 labels when evaluating the models; we experimented with training on these

61 phonemes and also on the restrited set of 39 phonemes.



3.6. Experiments and Comparison 39

The seond database was a Hungarian audiobook, the same one desribed in the

previous hapter. Lastly, for the third database, the lean part of the Szeged Hungarian

Broadast News Corpus was hosen.

3.6.2 Experimental Setup

In our experiments, we ompared only the phoneme error rates of the algorithms, sine

our aim was to develop a method apable of performing �at start training. Although it

is standard pratie to use a phoneme bigram, we hose to fous only on the aousti

models and we did not utilize any language model. The reason for this is that the

following steps in the ASR training proess rely heavily on the quality of the initial

aousti models. Furthermore, due to the introdution of the garbage symbol in the

phoneme set in the ase of CTC, inluding a phoneme n-gram in the dynami searh

method seems overly ompliated.

As the frame-level lassi�er we utilised Deep Reti�er Neural Networks (DRN) [14,

19℄, whih have been shown to ahieve state-of-the-art performane on TIMIT [48℄.

DRN di�er from traditional deep neural networks in that they use reti�ed linear units

in the hidden layers; these units di�er from standard neurons only in their ativation

funtion, where they apply the reti�er funtion (max(0, x)) instead of the sigmoid or

hyperboli tangent ativation. Due to the better behaviour of this ativation funtion,

we an build deep networks with many hidden layers without the need for ompliated

pre-training methods, just by applying standard bakpropagation training. Neverthe-

less, to keep the weights from growing without limit, we have to use some kind of

regularisation tehnique; here, we applied the method alled L2 normalisation. Our

DRN onsisted of 5 hidden layers, with 1000 reti�er neurons in eah layer. The initial

learn rate was set to 0.2 and held �xed while the error on the development set kept

dereasing. Afterwards, if the error rate did not derease for a given iteration, the

learn rate was subsequently halved. The learning was aelerated by using a momen-

tum value of 0.9. We used the well-known MFCC+∆+∆∆ feature set as aousti

features. In eah ase, the neural network was trained on 15 neighbouring frames.

3.6.3 Results

First we evaluated the CTC and MMI training methods on the TIMIT database, the

results of whih an be seen in Table 3.1. In this data set a manual segmentation is

also available, so we deided to use the results obtained by training using the manually

given boundaries as baseline. As a further omparison, the training was repeated in the

usual way, where the training labels are obtained using fored alignment. We found

that the results obtained using the hand-labeled set of labels were notieably worse
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Database Method Dev. set Test set

TIMIT

Monostate (39)

CTC + DRN 26.69% 28.60%

MMI + DRN 27.70% 30.94%

Hand-labeled 27.26% 29.35%

Fored Alignment 27.10% 28.92%

Monostate (61)

CTC + DRN 26.07% 27.34%

MMI + DRN 25.16% 27.89%

Hand-labeled 26.42% 27.94%

Fored Alignment 25.92% 27.55%

Tristate (183)

CTC + DRN 23.20% 24.41%

MMI + DRN 20.32% 22.76%

Hand-labeled 22.75% 24.7%

Fored Alignment 22.78% 24.48%

Table 3.1: The phoneme error rates got for the di�erent DRN training methods.

than those we got when we used fored-aligned labels got by a HMM/GMM. This

re�ets the fat that the manually plaed phone boundaries are suboptimal ompared

to the ase, where the algorithm is allowed to re-align the boundaries aording to its

needs. On all three databases, the results obtained using tri-state models were always

better than those got with monostate ones.

Furthermore, the CTC+DRN training model onsistently outperformed the other

two non-sequene-based training shemes (although sometimes only slightly), when

evaluated on the test set. On the development set usually the standard training strate-

gies were better than the CTC method, whih an probably be attributed to over�tting.

The MMI+DRN networks performed poorly with monostate labels, mostly beause

of the runaway silene problem. By using tristate labels we enfore eah phone to have

a minimal length, hene it is harder for the silene to suppress the other phones. As

an be seen in Table 3.1 and Table 3.2 the tri-phone MMI+DRN models signi�antly

outperformed all other methods.

Comparing the training times of the MMI and CTC we notied that they were

slightly slower than the baseline ases: alulating the α and β values inreased the

exeution times only by a very small amount, but it took a few more iterations to

make the weights onverge. On TIMIT, CTC used all training vetors 24-25 times and

MMI performed 21-24 training iterations, whereas the baseline required only 18-19.

This is probably due to the fat that the sequene-based methods strongly rely on the

aousti lassi�er trained in the previous iteration, so it takes a few iterations before
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Database Method Dev. set Test set

Audiobook

Monostate (52)

CTC + DRN 17.85% 16.55%

MMI + DRN 16.95% 16.12%

Fored Alignment 17.76% 16.98%

Tristate (156)

CTC + DRN 12.58% 11.67%

MMI + DRN 10.08% 9.67%

Fored Alignment 12.53% 11.96%

Broadast news

Monostate (52)

CTC + DRN 25.96% 25.58%

MMI + DRN 35.66% 65.26%

Fored Alignment 25.82% 25.64%

Tristate (156)

CTC + DRN 21.62% 21.23%

MMI + DRN 20.74% 20.42%

Fored Alignment 22.13% 21.74%

Table 3.2: The phoneme error rates got for the two di�erent DRN training methods.

the training starts to onverge. We think these values are not high, espeially as Graves

et al. reported muh higher values for CTC (frequently over 100 iteration) [32℄.

Another interesting point is that besides the similar auray sores, standard non-

sequene-based method leads to a relatively high number of phoneme insertions, while

when performing sequene training it is ommon to have a lot of deletion errors. The

reason is that the orret phonemes are often suppressed by X s (in the ase of the

CTC) or by the silene model (in the ase of the MMI). During deoding, the X labels

are deleted from the output before the auray sore is alulated. This behaviour,

fortunately, does not a�et the overall quality of the result.

3.7 Summary

In this hapter, I adapted two sequene learning method to a standard HMM/DNN

arhiteture. The CTC method was originally developed for RNNs, but here I showed

that it an be used with DRNs as well. The CTC method relies on the blank or garbage

label, whih makes the deoding proess problemati. Furthermore, the DRNs trained

with CTC annot be used to generate proper fored alignment of the labels.

The other method desribed here (MMI) is widely used in DNN training, but it

usually requires some initialisation before training. To irumvent this onstraint, I

proposed several modi�ations to the original method, to make it suitable for �at start

training.
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Compared to standard zero-or-one frame-level bakpropagation DNN training, I

found that networks trained with these sequene learning method always produed

higher auray sores than the baseline ones. From the results it was also lear that

MMI with tristate labels works best, so it is well suited for �at start training.

In this hapter, the author regards the following as his main ontributions:

• The use of CTC with feedforward DRNs;

• Modi�ations to MMI training algorithm, to make it appliable to �at start

training;

The methods and results presented in this hapter were published in [49℄ and [50℄.



Chapter 4

A GMM Free Training Method for

Deep Neural Networks

Today, deep neural network based speeh reognizers have ompletely replaed Gaus-

sian mixture-based systems as the state-of-the-art. While some of the modeling

tehniques developed for the GMM-based framework may diretly be applied to the

HMM/DNN systems, others may be inappropriate. One suh example is the reation

of ontext-dependent tied states, for whih an e�ient deision tree state tying method

exists. The tied states used to train DNNs are usually obtained using the same tying

algorithm, even though it is based on likelihoods of Gaussians, hene it is more appro-

priate for HMM/GMMs. Reently, however, several re�nements have been published

whih seek to adapt the state tying algorithm to the HMM/DNN hybrid arhiteture.

Unfortunately, these studies reported results on di�erent (and sometimes very small)

datasets, whih does not allow their diret omparison.

Some of the new state tying methods hange only the input of the lustering

algorithm, while the whole state tying algorithm remained intat. These methods feed

the output or the ativations of the neurons in the last hidden layer to the lustering

method and use the same standard Gaussian-based deision tree lustering method.

Other studies proposed novel deision riteria as well for the standard state tying

method, whih better suit the new input.

In this hapter, we present a new state tying riterion, and evaluate it by omparing

its performane to three other methods on the same LVCSR tasks, under the same ir-

umstanes. We found that, besides hanging the input of the ontext-dependent state

tying algorithm, it is worth adjusting the tying riterion as well. The methods whih

utilised a deision riterion designed spei�ally for neural networks onsistently, and

markedly outperformed those whih employed the standard Gaussian-based algorithm.

43
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4.1 Problem desription and literature overview

While deep neural network-based speeh reognizers have reently replaed Gaus-

sian mixture-based systems as the state-of-the-art in ASR, the training proess of

HMM/DNN hybrids still relies on the HMM/GMM framework. Reently, however,

attempts have been made to remove GMMs from the training proess of deep neural

network-based hidden Markov models (HMM/DNN). For the GMM-free training of a

HMM/DNN hybrid we have to solve two problems, namely the initial alignment of the

frame-level state labels and the reation of ontext-dependent states. Conventionally,

we start the training of a HMM/DNN by onstruting a HMM/GMM system, whih is

then applied to get an alignment for the frame-level state labels. These labels are then

used as the training targets for the DNN. The seond task that requires GMMs is the

state-tying algorithm utilised for the onstrution of ontext-dependent (CD) phone

models. We propose a GMM-free solution for state lustering here [51℄, and we will

ombine it with DNN-based methods, whih an generate an initial state alignment.

The most onvenient way of training the DNN omponent of a HMM/DNN hybrid

is to apply a frame-level error riterion, whih is usually the ross-entropy (CE) funtion.

This solution, however, requires frame-aligned training labels, while the training dataset

ontains just orthographi transripts in most ases. Of ourse, one ould train a

HMM/GMM system to get aligned labels, but this is learly a waste of resoures.

The proedure for training HMM/GMM systems without alignment information

is ommonly known as '�at start training' [1℄. This onsists of initialising all phone

models with the same parameters, whih would result in a uniform alignment of phone

boundaries in the �rst iteration of Baum-Welh training. It is possible to onstrut a

�at start-like training proedure for CE-trained DNNs as well, by iteratively training

and realigning the DNN. For example, Senior et al. randomly initialised their neural

network [52℄, while Zhang et al. trained their �rst model on equal-sized segments for

eah state [53℄. As these solutions have a slow onvergene rate, they require a lot of

training-realignment loops.

Although training the DNN at the frame level is straightforward, it is learly not

optimal, as the reognition is performed and evaluated at the sentene level. Within the

framework of HMM/GMM systems, several sequene-disriminative training methods

have been developed, and these have now been adapted to HMM/DNN hybrids as

well [27, 34, 49℄. However, most authors apply sequene-disriminative riteria only in

the �nal phase of training, for the re�nement of the DNN model. That is, the �rst

step is always CE-based training, either to initialize the DNN (e.g. [35, 36, 37℄) or just

to provide frame-level state labels (e.g. [27, 34, 38, 39, 40℄).

The CTC approah has reently beome very popular for training DNNs without
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an initial time alignment being available [32℄. Rao et al. proposed a �at start training

proedure whih is built on CTC [33℄. However as we explained earlier, CTC has several

drawbaks ompared to MMI. First, it introdues blank labels, whih require speial

are in the later steps (e.g. CD state-tying) of the training proess. Nevertheless,

the CTC algorithm is not a sequene-disriminative training method, so for the best

performane it has to be ombined with tehniques like sMBR training [32, 33℄. After

performing �at-start training with CTC, however, it is not lear how to revert to the

standard phoneme set for CD state-tying or standard CE CD DNN training. Therefore

integrating the CTC �at start method into the standard DNN training framework does

not appear to be a suitable option. Still, MMI with proper modi�ations is suitable for

�at start training a DNN.

While hybrid models applied only ontext-independent (CI) phone models for a

long time [20℄, there is now ommon agreement that HMM/DNN systems also greatly

bene�t from using ontext-dependent tied states [54, 17℄. Thus, it is neessary to

�nd an approah for e�iently reating ontext-dependent tied states for systems built

on DNNs. Currently, the dominant solution is the deision tree-based state tying

method of Young et al. [55℄. This tehnique �ts Gaussians on the distribution of

the states, and uses the likelihood gain to govern a deision tree-based state-splitting

proess. Thanks to the Gaussian assumption and the deision tree representation, this

approah is omputationally very e�ient. However, as we have already mentioned,

it may be inappropriate to just impose the ommon HMM/GMM-based tehniques on

the HMM/DNN training proedure, and this may hold for this state-tying algorithm

as well.

GMM-based methods assume that the Gaussian omponents have diagonal o-

variane matries, and hene require deorrelated features like epstral oe�ients

(MFCCs). However, HMM/DNN hybrids tend to work better on more primitive fea-

tures like mel �lter bank energies (Fbank) [15℄. Sine onventional HMM/GMM sys-

tems annot be e�iently trained on these features, the usual approah is to build

a HMM/GMM system on a standard feature set like MFCCs, reate the tied-state

inventory and alignment, and then throw away the feature set and the whole model.

This proess, besides wasting resoures, also implies that state tying is done on an

mismathed feature set. Furthermore, intuitively, the state lustering algorithm should

split those states where the splitting would be bene�ial for the respetive lassi�er.

Sine the objetive funtions during GMM and DNN training are di�erent, measuring

how a Gaussian �ts a given lass may be unrelated to the di�ulty of modeling that

lass by a DNN. This suggests that if we perform the CD state-tying by following the

standard approah, we do it on a mismathed feature set and using a mismathed

similarity metri.
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Not so long ago, a number of artiles were published on CD state tying for

HMM/DNNs. The issue of the �inappropriate feature set� an be handled by perform-

ing the state lustering proess on the output of a DNN instead of the raw features.

This idea was investigated in a ouple of studies (e.g. [56, 53, 52, 57℄). In those

studies, however, only the input of the lustering algorithm was modi�ed, while the

whole state-tying algorithm remained intat. Other studies proposed novel deision

riteria for the standard state-tying method, whih better suit neural networks. Here,

we propose the use of the Kullbak-Leibler divergene-based deision riterion, orig-

inally developed for KL-HMMs by Imseng et al. [58℄. Zhu et al. [59℄ onstruted a

riterion that relied on entropy. Lastly, Wang et al. [60℄ trained a speial network that

optimised for Deep Canonial Correlation Analysis, and lustered the output of this

network via k-means lustering.

All these studies experiened a drop in the word error rate (WER) ompared to

the baseline that uses the standard Gaussian likelihood-based state-tying method with

the MFCC vetors. Yet, none of these studies ompared their results with other neu-

ral network-based state-tying approahes, whih makes these methods quite hard to

ompare. Furthermore, the datasets used di�ered to a huge extent as well: we used a

Hungarian database, Zhu et al. used a German one, while Wang et al. used the quite

small TIMIT orpus, where only phoneme error rates an be reported. In this hapter

we ompare four suh approahes on the same LVCSR task, where the same ontext-

independent neural network will provide the input vetors for the state lustering. Note

that, sine we obtain the frame-level CI labels by purely DNN-based �at-start meth-

ods, the CI models have no inherent GMM dependeny. Therefore those state-tying

methods that have a deision riterion designed for DNNs are ompletely GMM-free.

In the experimental part we ompare the two �at start methods, namely the one that

applies MMI with the CE-based iterative retraining realignment proedure of Zhang et

al. [53℄. We found that our method is not only faster, but it ahieves lower word error

rates as well. Furthermore, we ombine the �at start training with various DNN-based

state lustering methods to eliminate all dependenies from a HMM/GMM system,

making the whole training proedure of ontext-dependent HMM/DNNs GMM-free.

4.2 Flat Start

The �rst step of training a speeh reognition system is to get time-aligned labels for

the transription. Traditionally this is ahieved by using the Baum Welh algorithm

to train a HMM/GMM, as desribed in the previous hapter. Here, we ompare two

approahes that seek to eliminate GMMs from this proess. As the baseline method,

we apply a simple solution that iterates the loop of CE DNN training and realignment.
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Afterwards, we ompare it with an approah that reates time-aligned transriptions

for the training data by training a DNN with a sequene training riterion. From the

wide variety of sequene training methods, we opted for MMI training [27℄. Applying

sequene training to �at start requires some slight modi�ations, whih we will now

disuss.

4.2.1 Iterative Flat Start

For omparison we will also test what is perhaps the most straightforward solution for

�at start DNN training, namely just using the CE training riterion and iterating DNN

training and realignment. Here, we used the following algorithm that was based on

the desription by Zhang et al. [53℄:

1. Train a DNN using sound �les uniformly segmented into phones.

2. Use the urrent DNN to realign the labels.

3. Train a randomly initialised DNN using the new alignments.

4. Repeat steps 2�3 several times.

The �nal DNN was utilised to reate time-aligned labels for the training set.

The main advantage of this method is that it requires only an implementation

of CE training for the DNN, and the realignment step an also be readily performed

by using standard ASR toolkits. The drawbak is that the proedure of retraining

and realignment tends to be rather time-onsuming, whih was also on�rmed by our

experiments.

4.2.2 Sequene Training Based Flat Start

As an alternative to the iterative method we also used the MMI-based method desribed

in Chapter 3). For the MMI training we ommened with a randomly initialised CI

DNN and with the modi�ations of the original method the networks were suessfully

trained. As a further re�nement we also tried to improve the segmentation by training

another CI DNN with CE training, where the training labels were obtained by fored

aligning the labels using the MMI trained DNN.

4.3 State Clustering

Nowadays, state-of-the-art ASR systems are trained with CD labels. Usually these

labels onsist of three phonemes, namely the atual phone, the one before and the one
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after. With the triphone labels, one an ahieve better reognition auraies than

with CI labels, simply beause the aousti model an handle o-artiulation better

in this way. Still, swithing to triphone aousti models reates a serious problem,

namely the data insu�ieny problem. This problem is aused by the fat that the

number of possible triphones is quite large and we have only a limited amount of

training data. For instane, there are almost 14,000 triphones in the training data of

the Szeged Broadast News orpus. Furthermore, the data is usually unevenly spread,

meaning that some of the triphones our only one or twie, while other labels are

quite ommon. Additionally, it is possible for some triphones to appear only in the test

data, and understandably we annot expet the aousti model to learn to reognise

these.

Traditionally, the state-tying algorithm is used to handle these problems, whih is

basially a lustering method that aims to luster the triphones derived from the same

monophone. This way, we an use a shared label for the triphones whih are similar

and have the same entral phoneme, thus solving the data sparsity problem.

The deision tree-based state-tying algorithm was introdued by Young et al. [55℄,

and it evolved into a vital omponent of training large voabulary speeh reognisers.

The main idea is to pool all ontext variants of a state, and then build a deision tree by

suessively splitting this set into two. For eah step, the algorithm hooses one of the

pre-de�ned aousti questions in suh a way that the resulting two non-overlapping

sub-sets of the original state set S di�er maximally. The algorithm measures this

di�erene by using a likelihood-based deision riterion. The tree-based lustering has

the important advantage of providing a mapping for unseen triphones as well. Although

minor improvements to the algorithm like the automati generation of the questions

via lustering were proposed [61℄, the main sheme of the method proved so suessful

that it has remained unaltered ever sine.

4.3.1 GMM-Based State Tying

Suppose that we have a set of states S that need to be tied, using the deision tree-

based method of Young et al. [55℄. Here, at eah node, we have a set of questions, and

eah question an split S into two non-overlapping sub-sets depending on the answer to

the question. Odell formulated a maximum likelihood-based deision riteria [62℄ and

proposed a omputationally e�ient algorithm by approximating the splitting riterion

as

L(S) ≃ −
1

2

(

log[(2π)K |Σ(S)|] +K
)

∑

s∈S

N(s), (4.1)

where s ∈ S are the individual states, Σ(S) is the variane of data in S, K is the

dimension of the data and N(s) is the number of examples (frames) in the training
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data whih belong to state s. Using this formula, we should hoose the question q

whih maximizes the likelihood di�erene ∆L(q|S)

∆L(q|S) =
(

L(Sy(q)) + L(Sn(q))
)

− L(S), (4.2)

where Sy(q) and Sn(q) are the two subsets of S formed based on the answer to the

question q. It an be seen that the likelihood values do not depend on the training

observations themselves, but only on the variane over the training data orresponding

to the states, and the raw number of frames belonging to eah state. Although this

assumption (regarding the variane of the feature vetors) �ts in well with a system

employing GMMs, in a HMM/DNN hybrid speeh reogniser framework some other

deision riterion might result in a more suitable set of tied states.

4.3.2 Clustering the CI DNN output

This approah, proposed by Senior et al. [52℄, is quite straightforward. They simply

use the frame-level outputs of the auxiliary neural network as input for the state-tying

proedure. The whole lustering proess remains the same in every other respet.

Senior et al. reported a slight improvement in the WER and, naturally, with this

approah they were able to avoid the feature set mismath among CD DNN training

and the CD state-tying proess. Despite this, as they used the original state-tying

method of Odell [62℄, whih relies on likelihoods of Gaussians, in our opinion their

method an hardly be regarded as ompletely GMM-free.

4.3.3 Clustering the DNN hidden ativations

In a parallel study Bahiani and Rybah [57℄ proposed performing the lustering on the

ativations of the last hidden layer of the auxiliary CI NN. Although one annot expet

the ativation vetors to be deorrelated (or to follow any prede�ned distribution),

Bahiani and Rybah were able to use them as inputs for the CD state-tying method

of Young et al. The WERs they got were reported to be lower for smaller CD state sizes

than by using the standard approah, but for larger state ounts it was the other way

around. They explained this by realling that the frame-level CI labels were obtained

by HMM/GMMs, ausing a mismath in the frame-level targets. Sine we used a

DNN-based �at start, there will be no suh mismath.

4.3.4 KL-divergene Based State Tying

This deision riterion was introdued by Imseng et al., who suessfully applied it in

their KL-HMM framework [58℄. Here, we propose to use it during the CD state-tying
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step. Next, we will give a brief desription of this algorithm, based on artiles [63℄

and [64℄.

Although the Kullbak-Leibler divergene is known to be asymmetri, unfortunately

there is no losed form of the symmetri KL-divergene-based ost funtion. Therefore

we will apply the asymmetri KL-divergene between two posterior vetors zt and ys,

de�ned as

DKL(ys|zt) =

K
∑

k=1

ys(k) log
ys(k)

zt(k)
, (4.3)

where k ∈ {1, . . . , K} is the dimensionality index of the posterior distribution ve-

tor [65℄. The KL-divergene is always non-negative and zero if and only if the two

posterior vetors are equal. So instead of maximizing the likelihood, we will minimize

the KL-divergene

DKL(S) =
∑

s∈S

∑

f∈F (s)

K
∑

k=1

yS(k) log
yS(k)

zf (k)
, (4.4)

where S is a set of states s, and F (s) is the set of input vetors orresponding to

state s. The posterior vetor assoiated with the set S (yS) an be alulated as the

normalised geometrial mean of the example vetors belonging to the elements of S.

That is,

ỹS(k) =

(

∏

s∈S

∏

f∈F (s) zf (k)
)

1
N(S)

∑K

k=1 yS(k)
. (4.5)

After expanding and simplifying, we get [63℄

DKL(S) = −
∑

s∈S

N(s) log
K
∑

k=1

ỹS(k), (4.6)

so the KL divergene of a set of states S an be alulated based on the statistis ys

and N(s) of the individual states.

For the splitting of a set of states S, the straightforward option is to hoose the

question that maximizes the KL-divergene di�erene ∆DKL(q|S):

∆DKL(q|S) = DKL(S)−
(

DKL(Sy(q)) +DKL(Sn(q))
)

.

4.3.5 Entropy-based deision riterion

The fourth approah we tested was proposed by Zhu et al. [59℄. They also replaed

the deision riterion of Eq. (4.1) with another formula that has no impliit GMM

dependeny. The key idea was to measure the inter-similarity of eah merged luster
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by alulating the entropy of the examples belonging to it. The entropy of a K-

dimensional probability distribution an be alulated as

H(p) =

K
∑

i=1

p(i) log p(i). (4.7)

The probability distributions assoiated with eah initial state (i.e. the ys vetors) were

estimated via the mean of the DNN outputs for all the frames assoiated with a given

state. Then, for a set of states S, the prototype probability vetor (yS) was alulated

as the arithmeti mean of the prototype (ys) of the member states, weighted by the

number of state ourrenes (N(s)); from these values, the deision riterion used

during state-tying an be alulated by using the entropy funtion, i.e.

DE(S) = −
∑

s∈S

N(s)
K
∑

k=1

yS(k) log yS(k). (4.8)

4.4 Experimental Setup

In our experiments we employed DNNs with 5 hidden layers, eah ontaining 1000

reti�ed neurons [14℄, while the softmax ativation funtion was applied in the output

layer. As input, FBank features were presented to the networks along with their �rst

and seond order derivatives. Deoding and evaluation was performed by a modi�ed

version of HTK [1℄.

The methods desribed in this hapter were tested on two databases. Firstly, the

81-hour long Wall Street Journal (WSJ) English read speeh orpus [66℄ (spei�ally,

the si-284 set) was hosen to test the algorithms as it is a well known and widely

used orpus. The reognisers were evaluated on the eval92 and eval93 test sets in

the �open-voabulary� (60K word voabulary) test ondition, using a pruned version

of the standard trigram language model. We used the eval93 set as our development

set; i.e. we tuned the language model weight and the insertion penalty on it, and

also hose the optimal number of tied states for eah state-tying method based on the

WER ahieved on this set. Then, at the very end, we evaluated the models using the

optimal meta-parameters on the eval92 set as the test set.

We also used the 28 hour-long speeh orpus of Hungarian Broadast News [8℄, just

like in the previous hapters. The whole orpus was utilised with the same partitioning

as before: the training set was about 22 hours long, a small part (2 hours) was used

for validation purposes, and a 4-hour part was used for testing.

We tested three approahes for �at start training (i.e. to get the frame-level

phoneti targets for CD state-tying and CE DNN training). Sine our goal was to

reate a GMM-free system, we evaluated the two algorithms presented in setions
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4.2.1 and 4.2.2 and their ombination for �at starting with DNNs. In these tests we

always used �ve-hidden-layer CI DNNs. For the �at start method with iterative CE

training (�Iterative CE�) we performed nine training-aligning iterations on the WSJ and

four on the Hungarian database. DNN-based CD state tying was performed using the

output and the alignments reated by the �nal DNN. For MMI training (�MMI�) we

also ommened with a randomly initialised CI DNN. After applying the disriminative

sequene training method, the resulting DNN was used to reate fored aligned labels

and also to provide the input posterior estimates for KL lustering. In the last �at start

approah tested, we �rst applied the sequene-disriminative method (i.e. �MMI�).

Afterwards, we ombined the two approahes; �rst we produed the alignments using

the MMI network, then we trained another DNN with the CE riterion to supply both

the �nal frame labels and the likelihoods for CD state-tying (�MMI + CE�). After the

CI DNN training phase we tested the state-tying methods desribed in this hapter.

To see how well the state lustering methods perform we also reated CD states with

the original GMM based method (�MFCC + Likelihood �). Keep in mind that in this

ase the frame alignments were still produed by a DNN.

In the ase of the Hungarian orpus we also applied the standard GMM-based �at

start training to produe initial time-aligned labels. To further improve the segmen-

tation, we trained a shallow CI ANN using the CE riterion and re-aligned the frame

labels based on the outputs of this ANN (we will refer to this approah as the �GMM +

ANN� method). (In our early study we found that using a deep neural network for this

re-alignment setup did not bring about any improvement [51℄.) After the realignment,

only the KL-based state-tying algorithm was exeuted on the output of the CI ANN.

The main aim of this hapter is to ompare various �at start strategies and state-

tying methods. This is why, after obtaining the CD labels, the �nal DNN models

were trained starting from randomly initialised weights and using just the CE riterion.

Of ourse, it is possible to extend the training with a �nal re�nement step using CD

sequene-disriminative training, but it is out of the sope of this study.

4.5 English results

First, let us ompare the three �at start strategies, Table 4.1 shows the WERs of the

CI DNNs. It is lear that the iterative method, whih optimised the frame level CE

performed worst of all. Besides providing inferior WER, it also required far more time

than the other two approahes. In total nine training and re-aligning iterations were

required, afterwards the WER on the development set started to derease. Surprisingly,

the DNN trained with MMI yielded quite aeptable results, despite the fat that it

was only a CI aousti model. The ombination of the two methods (MMI+CE)
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Method Dev. Test

Iterative CE 28.63% 20.47%

MMI 15.78% 10.07%

MMI+CE 15.43% 9.64%

Table 4.1: WERs got by using di�erent �at start methods on the WSJ.
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Figure 4.1: The number of training frames for the di�erent state-tying methods for

the ase of about 2400 CD states.

o�ered some improvements on both the development and test set, but almost doubled

the training time. The inferior performane of the iterative method an be explained

by the �run-away silene model� e�et, meaning that these networks beame greatly

biased towards the silene label, this aused a lot of deletion errors.

Figure 4.1 shows the distribution of the training lasses after state-tying (using the

MMI+CE �at-start strategy) for the ase of roughly 2400 CD states. Besides notiing

that the distribution produed by the di�erent state-tying methods is quite similar, we

should also note that using the original deision riterion with the DNN outputs as

input (proposed by Senior et al.) resulted in the best balaned lass distribution.

First, we would like to mention that a purely GMM based system ahieves 12.74%

and 9.46% on the development and test sets, respetively [67℄. Table 4.2 lists the best

WER sores got on the development set and the orresponding WER values obtained

on the test set. All GMM-free state-tying methods ahieved the best results with an

MMI-trained DNN. We an also see that the Iterative CE strategy led to the worst

results and interestingly the MMI+CE approah yielded worse results than the MMI

based �at start.
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Flat start strategy Clustering method Development Test

Iterative CE

MFCC + Likelihood 11.02% 8.20%

DNN + Likelihood 11.48% 7.64%

DNN (hidden) + Likelihood 11.05% 7.81%

Kullbak-Leibler 10.47% 7.27%

Entropy 10.24% 7.27%

MMI

MFCC + Likelihood 8.58% 6.13%

DNN + Likelihood 8.7% 6.47%

DNN (hidden) + Likelihood 8.85% 6.04%

Kullbak-Leibler 8.06% 5.72%

Entropy 8.03% 5.92%

MMI + CE

MFCC + Likelihood 8.79% 5.97%

DNN + Likelihood 9.14% 6.45%

DNN (hidden) + Likelihood 9.43% 6.77%

Kullbak-Leibler 8.5% 6.15%

Entropy 8.09% 6.20%

Table 4.2: WER values on the development and test sets got by using the di�erent

�at-start and CD state-tying methods.

Upon examining the results it an be seen that all GMM-free methods markedly

outperformed the HMM/GMM system. Notie that on the development set the highest

WER is around 11.48%, while it is 8.2% for the test set, so the same relative WER

improvement orresponds to a smaller absolute improvement for the latter set. The

two most basi approahes worked the worst of all: using the CI DNN outputs or

the hidden ativations with the standard state-tying deision riterion. While using

MMI-based �at start and the outputs of the last hidden layer with the original state-

tying method (proposed by Bahiani and Rybah) led to slightly worse sores on

the development set, it greatly outperformed the �rst approah on the test set. This

approah is also justi�ed by the fat that the ativation vetors of a DNN are ommonly

used as features in several tasks suh as speaker identi�ation [68℄ and various image

proessing appliations [69℄. The standard state-tying method (MFCC + Likelihood)

was quite ompetitive with those that did not hange the deision riteria, meaning

that the alignments produed by a DNN were better than those got by using a GMM.

The remaining two methods utilised some novel deision riteria instead of the
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Gaussian-based, standard one; and this fat is learly re�eted in their performane.

On the development set they ahieved pratially idential WER sores (8.06% vs.

8.03% for the Kullbak-Leibler and the entropy-based deision riteria, respetively);

they di�ered somewhat on the test set, but the di�erene is not statistially signi�ant.

Overall, by relying on the Kullbak-Leibler-based deision riterion the WER sores

were redued by 0.8% ompared to the basi approah of Senior et al., meaning a 12%

improvement in terms of relative error redution.
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Figure 4.2: WER for the di�erent state-tying approahes on the development set using

the iterative �at start method.

Taking a loser look at �gures 4.2-4.7, we an see the WER sores obtained as

a funtion of the number of CD states. It an be observed that the two solutions

that used the original state-tying algorithm, and the two whih utilised a deision

riterion designed for DNN outputs, are well separated, with the latter group produing

onsistently lower WER sores for both sets regardless of the number of tied states. The

results of the MFCC + Likelihood method are a little hard to interpret as the urves of

the development and test sets do not orrelate, and sometimes behave quite di�erently.

The most probable explanation for this is the inappropriate feature set issue: the CI

DNN was trained using FBank features, but the state-tying algorithm used MFCC

features. These results, in our opinion, on�rm our hypothesis that besides hanging

the input of the CD state-tying algorithm, its behaviour should also be adapted to

better suit DNNs, allowing them to ahieve better results.
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Figure 4.3: WER for the di�erent state-tying approahes on the test set using the

iterative �at start method.
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Figure 4.4: WER for the di�erent state-tying approahes on the development set using

MMI for �at start.
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Figure 4.5: WER for the di�erent state-tying approahes on the test set using MMI

for �at start.
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Figure 4.6: WER for the di�erent state-tying approahes on the development set using

MMI-CE for �at start.
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Figure 4.7: WER for the di�erent state-tying approahes on the test set using MMI-CE

for �at start.

As a further note, inreasing the number of CD states helps those approahes

that use the original, likelihood-based riterion; for the other two methods, however,

optimality is ahieved by having about 2400 states. On the test set, all four approahes

seem to be quite insensitive to the number of tied states. Note that these inventory

sizes appear to be smaller than those ommonly used on the WSJ orpus, whih, due

to the lower omputational requirements, is an improvement by itself.

4.6 Hungarian results

Figures 4.8 and 4.9 show the resulting WER sores as a funtion of the number of

CD tied states on the Szeged Hungarian Broadast News dataset. As an be seen,

the MMI-based �at start strategy gave onsistently better results than the iterative

method in every ase, just like before. We also observed that the �nal CD models

whih got their training labels from the MMI-trained DNN were more stable with

respet to varying the number of CD states. Fine-tuning the labels of the MMI-trained

DNN with a CE-trained DNN (�MMI� vs. �MMI+CE�) again seems unneessary, as

it was not able to notably improve the results. This strongly suggests that sequene

training yields both �ne alignments and good posterior estimates.
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Flat start state-tying WER % No. of

method method Dev. Test epohs

GMM + ANN GMM 18.83% 17.27% �

GMM + ANN KL 17.12% 16.54% �

Iterative CE

KL

16.81% 16.50% 48

MMI 16.50% 15.96% 13

MMI + CE 16.36% 15.86% 29

Table 4.3: Word error rates (WER) for the di�erent �at start strategies and the KL

state-tying method.
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Figure 4.8: WER as a funtion of the number of KL-lustered tied states on the

Hungarian development set.

Table 4.3 summarises the best WER values obtained on the development set, and

the orresponding sores on the test set for the Hungarian orpus. The KL luster-

ing method learly outperformed the GMM-based state-tying tehnique. Comparing

the alignment methods, we an see that relying on the alignments produed by the

HMM/GMM resulted in the lowest auray sore, in spite of the �ne-tuning step that

used an ANN. After setting the parameter on�gurations, the Iterative CE training

method performed slightly worse than the MMI-based strategies. Unfortunately, for
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Figure 4.9: WER as a funtion of the number of KL-lustered tied states on the

Hungarian test set.

the Iterative CE method the right number of training-aligning steps is hard to tune.

For example, Zhang et al. performed 20 suh iterations [53℄, while we employed only

4 iterations. In this respet, it is more informative to ompare the training times,

whih are shown in the rightmost olumn of Table 4.3. We did not inlude the number

of epohs for the �GMM + ANN� method, as the training proedure was radially

di�erent in that ase. For our 28-hour dataset, 48 epohs were required by the four

iterations of iterative CE �at start strategy, while MMI required only one-fourth of

it. Although performing the forward-bakward searh adds a slight overhead to the

MMI training proess, it is lear that it was still muh faster, even when the �nal CE

re-alignment step was also involved (MMI+CE).

Measuring the training times in CPU/GPU time gives even larger di�erenes in

favour of the MMI method (3 hours vs. 16 hours). The reason is that for iterative

CE �at start training we used a mini-bath of 100 frames (whih we found optimal

previously [51℄), while for MMI whole utteranes (usually more than 1000 frames) were

used to update the weights, and this allowed better parallelisation on the GPU.

In our view, two modi�ations are ruial for the speed and stability of the proposed

algorithm. The �rst one is that we use only CI phone models without phone language

model, so we an very quikly update the numerator and denominator latties after

the proessing of eah sentene. This ontinuous re�nement of the frame-level soft
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targets obviously leads to a faster onvergene. The only study we know of, whih does

not perform the re-alignment of the frame-level targets immediately after a training

iteration, is that of Bahiani et al. [70℄. Their study fouses on desribing their

massively parallelised online neural network optimisation system, where a separate

thread is responsible for the alignment of the phoneti targets, while DNN training is

performed by the lient mahines. Besides the fat that in their model there is no

guarantee that the alignment of phoneti targets are up-to-date, it is easy to see that

their arhiteture is quite di�erent from a standard DNN training arhiteture, making

their tehniques pretty hard to adapt. In ontrast, our slight modi�ations an be

applied relatively easily.

As regards stability, a known drawbak of sequene training methods is that the

same proess is responsible both for aligning and training the DNN, whih often leads

to the �run-away silene model� issue [46℄. That is, after a few iterations, only one

model (usually the silene model) dominates most parts of the utteranes, whih is even

reinfored with the next training step. To prevent the ourrene of this phenomenon,

we monitored the error rate on a hold-out set during training. If the error inreased

after an iteration, we restored the weights of the network to their previous values and

the learning rate was halved. In our experiene, restoring the weights to their previous

values and ontinuing the training using a lower learning rate an suessfully handle

this issue.

4.7 Word-Level Error Analysis of a Hungarian Au-

tomati Speeh Reognizer

Next, we will take a loser look at the typial word-level errors of our best GMM-

free Hungarian speeh reognition system. To ahieve this, we seleted one hundred

utteranes from the test set and the errors produed by the ASR system were manually

annotated, then analysed. The word-level error rate in Automati Speeh Reognition

(ASR) is traditionally measured by a metri based on edit distane, whih relies on

the exat math of word forms. Like most ommon tehniques in ASR, this approah

works well with the English language, but as we will see, for other languages suh as

agglutinative ones (like the Hungarian language) it may be suboptimal.

4.7.1 Analysing the Errors

To analyse the error types, we manually ompared the ASR output and the orret

transription for a subset of the test set. First we automatially loated the errors in

the ASR output, and displayed them in a form along with one neighbouring word on
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eah side to provide a ontext for the human annotators. Error ategories were set

up by linguists, and eah error ourrene was ategorised manually by two human

annotators.

Errors were �rst ategorised based on linguisti riteria. For instane, when the

only di�erene between the gold standard text and the output of the ASR system was

just a spae, ausing only a slight hange in meaning (if any) we regarded this as a

Compounding error. Two examples of this are:

• a két százmilliárdos tétel [O ke:t sa:zmillia:rdoS te:tEl℄ (the two one.hundred.billion

item) �the two items worth one hundred billions� vs. a kétszáz milliárdos tétel

[O ke:tsa:z millia:rdoS te:tEl℄ (the two.hundred.billion item) �the item worth two

hundred billions�;

• az exportdinamikája is [OzEksportdinOmika:jO iS℄ (the export.dynamis-3SGPOSS

too) �its export dynamis too� vs. az export dinamikája is [Oz Eksport dinOmika:jO

iS℄ (the export dynamis-3SGPOSS too) �the dynamis of the export too�).

Another frequent error was that a sound was followed by another one of the same

quality, whih was treated as a long phoneme by the system. We reated two subtypes

for this ategory, one for the onsonants (Conse. onsonants), and the other for the

vowels. Sine the most ommon soure of error with vowels was that a word ending in

-a was followed by the de�nite artile a, we alled this type the Two "a" sounds. (e.g.

mondja bankszövetség [monéO O bOnksøvEtSe:g℄ (say-3SGOBJ bank.federation) �bank

federation says� vs. mondja a bankszövetség [monéO bOnksøvEtSe:g℄ (say-3SGOBJ the

bank.federation) �the bank federation says�).

In many ases, the stem of the word was orretly reognised but its su�xes were

not (Inorret su�x): either the in�etional su�x was missing (e.g. a possessive su�x

in Mez®túr polgármester [mezø:tu:r polga:rmEStEr℄ (Mez®túr mayor) �Mez®túr mayor�

vs.Mez®túr polgármestere [mezø:tu:r polga:rmEStErE℄ (Mez®túr mayor-3SGPOSS) �the

mayor of Mez®túr�), or an inorret one was assigned to the word (present vs. past

tense in szétdarabolják [se:ddOrOboj:a:k℄ (ut.into.piees-3PLOBJ) �they are utting it

into piees� vs. szétdarabolták [se:ddOrObolta:k℄ (ut.into.piees-PAST-3PLOBJ) �they

were utting it into piees�).

In other ases, one word was absent from the ASR output (Omitted word ate-

gory) (terén er®sítik [tEre:n Erø:Si:tik℄ (aspet-3SGPOSS-SUP improve-3PLOBJ) �they

improve this in this aspet� vs. terén ha er®sítik [tEre:n hO Erø:Si:tik℄ (aspet-3SGPOSS-

SUP if improve-3PLOBJ) �if they improve this in this aspet�).

In two speial ases the ASR output was orret, but it di�ered from the transrip-

tion. First, the gold standard may have ontained an error (a szennyezetett vízt®l [O

sEñ:EzEtEtt vi:stø:l℄ (the polluted-TYPO water-ABL) �from the polluted water� vs. a
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Error type NE NUM OOV Annot. Total

Compounding 3 25 25 14 61

Two �a� sounds 0 0 0 0 11

Be/de hange 0 0 9 0 9

Conse. onsonants 0 0 0 0 5

Gold standard 0 0 1 1 1

Spelling 7 0 6 0 7

Is/és hange 0 0 0 0 19

Omitted word 0 0 0 0 12

Inorret su�x 7 3 20 0 91

Other error 96 6 114 0 185

Total 113 34 175 15 401

Table 4.4: Total number of eah error type and eah annotated word type

szennyezett vízt®l [O sEñ:EzEtt vi:stø:l℄ (the polluted water-ABL) �from the polluted

water�). Seond, the errors in the Spelling ategory were aused by the fat that the

linguisti priniples behind the reation of the transript had some speial aspets.

For instane, named entities with irregular pronuniation were enoded aording to

the Hungarian orthographial norms but the ASR system provided the original spelling

for them (Magyar Helszinki Bizottság [mOéOr hElsinki bizottSa:g℄ �Hungarian Helsinki

Committee� vs. Magyar Helsinki Bizottság, the orret spelling, where the digraph sz

denotes the phoneme [s℄).

We found two other very ommon error types, both types being aused by replaing

a word with a similar sounding one. In the ase of the �rst ategory (be/de hange),

the ASR system replaed the word be [bE℄ �in� with the word de[dE℄ �but�. The seond

ategory (Is/és hange) ontained errors when the two word is [iS℄ �too� and és [e:s℄

�and� were interhanged.

Apart from the error type ategories, we also examined whih error types were

related to ertain word types. We examined four word ategories; namely the named

entities (NE ), the numbers (NUM), the out-of-voabulary words(OOV ) and words

with annotation errors (Annot.). If any of the words in the loal ontext of the atual

error belonged to the given word ategory (e.g. one of the three words was OOV ), we

marked the given error ourrene as one related to the given word ategory.

Firstly, we examined whether the orret transript ontained a named entity

(e.g. Balogh [bOlog℄ (a Hungarian surname), Fidesz [�dEs℄ (the name of a politi-

al party), tálibok [ta:libok℄ �Taliban�). Seondly, we heked whether it ontained

any numerals (e.g. ezeréves [EzEre:vES℄ �a thousand years old�, kétmilliós [ke:tmillio:S℄
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Figure 4.10: Distribution of errors among the error ategories, expressed in error (left)

and word error (right) perentages.

�(worth) two million�, ezerkilenszázötvenhatos [EzErkilEntssa:zøtvEnhOtoS℄ �of/from

1956�). Thirdly, we heked to see if any of the word forms was OOV. Lastly, we

examined whether the transript was orret, or if it ontained some error (e.g. om-

pounding error or typo).

Note that in the above approah, an error may a�et several onseutive word

ourrenes, whih are treated as one error instane. Naturally, as we use WER to

measure the word-level error, these errors in�uene the �nal WER more than those

whih only a�ets one word. Furthermore, as eah word type was treated independently

of the others, in theory an error ourrene an be related to multiple word ategories.

4.7.2 Results of the analysis

Figure 4.10 shows the distribution of error ategories, expressed in terms of the ratio of

errors and the ratio of word errors. The distribution of the error ategories and the given

word ategories an be seen in tables 4.4 and 4.5. We an see that only slightly more

that half of the error ourrenes an be assigned to one of the meaningful ategories,

while about 46% of them fell into the �Other error� ategory. When measured in

word errors, �Other errors� represent a slightly larger part � almost 50%; this an be

traed bak to the fat that for ertain error types (e.g. be/de hange, is/és hange,

two onseutive �a� sounds, omitted word, di�erene in spelling), one error ourrene

typially a�ets only one word, while on average this value is around 1.5. At the same

time, the ratio of ompounding errors inreased, as this error type leads to at least two

word errors for eah error ourrene.

Evidently, among the errors a�eting named entities, a very ommon error type was

that of spelling di�erenes, and many errors were aused by inorret su�es. This is

quite logial, as the named entities appear quite rarely in the training text orpus, and

their in�eted forms are even less frequent. Still, most errors related to named entities
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Error type NE NUM OOV Annot. Total

Compounding 6 52 52 28 124

Two �a� sounds 0 0 0 0 11

Be/de hange 0 0 9 0 9

Conse. onsonants 0 0 0 0 5

Gold standard 0 0 1 1 1

Spelling 7 0 6 0 7

Is/és hange 0 0 0 0 19

Omitted word 0 0 0 0 12

Inorret su�x 11 5 32 0 116

Other error 157 11 188 0 299

Total 181 68 288 29 603

Table 4.5: Total number of eah word error type and eah annotated word type

fell into the error ategory of Other.

Error ourrenes related to numerals mostly belonged to the ompounding error

ategory. A straightforward explanation would be that there are just too many (nu-

meral) word forms possible whih annot be listed in the voabulary, but surprisingly

out of the 25 ases only 5 were OOV ones at the same time. The high frequeny of

ompounding errors for numerals was probably beause the language model allowed

both versions (e.g. for the word kétszázharminezer [ke:tsa:zhOrmintsEzEr℄ �two hun-

dred thirty thousand� both the word kétszázharmin [ke:tsa:zhOrmints℄ �two hundred

thirty� and the word ezer [EzEr℄ �thousand� were present in the voabulary). Interest-

ingly, in 11 ases the ompounding errors related to numerals were annotation errors

at the same time.

Examining the error ategories related to OOV words, ompounding errors and

using inorret su�es altogether formed only one-fourth of the error ourrenes,

while the vast majority of these errors belonged to the ategory Other. The reason for

this is probably that for these two kinds of errors at least a variation of the OOV word

with a di�erent su�x has to be present in the voabulary. Annotation errors usually

led to ompounding errors, and in one ase there was a typo in the transription

(szennyezetett instead of szennyezett �polluted�).

Fousing on the error ategories we an see that, for a large portion of ompound-

ing errors, some of the marked word types also our; these form roughly 80% of

ompounding errors. The errors �be/de hange� are always OOV errors, simply be-

ause the word �be� was missing from the voabulary. Spelling errors a�et only named

entities, but it is surprising that in one ase it was not an OOV error. The reason for
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Category NE NUM OOV Annot. Total

Named entity 113 0 99 0 113

Numeral 0 34 10 11 34

OOV 99 10 175 1 175

Annotation 0 11 1 15 15

Total 113 34 175 15 216

Table 4.6: Total number of errors onerning eah annotated type and their ombina-

tions
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Figure 4.11: Frequeny of word ategories, expressed in a�eted error ourrenes and

word errors.

this is that besides the most ommon word form Attilának (Attila-DAT) �for Attila�,

an alternative form Atillának was also present in the voabulary.

More than half of the error ourrenes lassed as Other error ontained a named

entity, and two-thirds of them had at least one OOV word. Examining all the errors

we an see a similarly high ratio for these two word types; overall, 46% of the error

ourrenes ontained at least one of the examined word types, although these gave

60% of the WER.

Figure 4.11 shows what proportion of the given word types were present in the error

ourrenes and word errors. As expeted, a large part (almost 50%) of the errors were

OOV; yet, there were many named entities (28-30%) and numerals (8-11%) present

in the error ourrenes as well. Tables 4.6 and 4.7 show the o-ourrene of the

marked word ategories. (Evidently, diagonal elements are the same as those in the

Total row and olumn.) It an be seen that the vast majority (87%) of the error

ourrenes ontaining named entities are OOV errors as well; evidently, this ratio

is muh smaller (53%) than the other way around, as many other word forms (e.g.

su�xed forms) may be frequently missing from the voabulary. Roughly one-third of

the error ourrenes of numerals are also OOV or annotation errors. Also, notie

how frequent the numerals are among annotation errors. This is probably due to the
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Category NE NUM OOV Annot. Total

Named entity 181 0 161 0 181

Numeral 0 68 22 22 68

OOV 161 22 288 1 288

Annotation 0 22 1 29 29

Total 181 68 288 29 360

Table 4.7: Total number of word errors onerning eah annotated type and their

ombinations

ompliated spelling of Hungarian numerals (as the words with dashes were split in the

transriptions, hene hyphenation errors appear as ompounding ones).

Overall, a great amount of reognition errors simply represented a mismath be-

tween the voabulary and the transriptions. Using the orthographi transription for

proper names helped us when reating the phoneti transripts (and thus, in training

the aousti model), but these words were present in the voabulary using a di�erent

spelling. Furthermore, there may have been a mismath between the origo orpus

that was used to build the language model, and the pronuniation ditionary (the

Hungarian Pronuniation Ditionary), whih led to a number of abbreviations (mostly

names of politial parties, being present quite frequently in broadast news) missing

from the voabulary. And, for some mysterious reason, some ommon words (e.g. be

�in�, legalább �at least�) were missing from the voabulary.

Nevertheless, these errors might be responsible for at most 10% of WER, sine 90%

ame from ompounding errors, those of inorret su�x, and of ourse the �Other�

ategory. From this, perhaps the more interesting ase is the high number of om-

pounding errors, espeially in the ase of numerals, where the language model usually

allows both versions. In suh ases the ASR output is �pratially� orret, so it an

be read and understood very well, ontaining �only� some spelling error. This phe-

nomenon is not a frequent one in English ASR, but as we have seen, in Hungarian

(and probably for several other languages) it a�ets the WER to a notable extent. Of

ourse, word sequenes ontaining ompounding errors annot be regarded as orret

ones; still, it would be sensible to treat them as less serious mistakes instead of omit-

ting a word with an entirely di�erent meaning. What WER does in pratie, however,

happens to be the opposite: ompounding errors, by their nature, result in at least two

word errors (e.g. one substitution and one insertion). In our opinion this highlights a

language-dependent weakness of the de-fato standard WER metri.
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4.8 Summary

In this hapter, I introdued a GMM-free method to train DNN based speeh re-

ognizers. In the previous hapter I proposed several modi�ations to the standard

MMI sequene training method, whih made it possible to train randomly initialised

CI DNNs without fored aligned labels. After the �at start step I also ompared the

performane of four state lustering approahes (inluding the KL-divergene-based

one, whih was proposed by us) to reate ontext-dependent tied states for DNN

aousti models. What was ommon in the four approahes is that they utilized the

output of a ontext-independent neural network as their input. The experimental re-

sults showed that replaing the deision riterion used during state lustering is also

bene�ial. The results indiated that, ompared to the standard proedure of iterative

CE DNN training and re-alignment, the MMI based one was not only able to produe

better WER sores, but also ahieved a signi�ant redution in training times. By also

utilising several new DNN-based state-tying methods, the whole training proedure of

ontext-dependent HMM/DNNs beame GMM-free.

Furthermore, we also examined the word error types that are ommon in the output

of a standard ASR system built for the Hungarian language. For this, we olleted the

word errors and their loal ontext, then we manually ategorised and analysed them.

We found that a large amount of word errors an be traed to OOV word forms, whih

is just what we expeted. Nevertheless, ompounding errors were surprisingly ommon.

We found that the main reason for this is that the language model allows both word

forms, and the aousti model simply annot deide whih form is the orret one (as

both solutions have the same phoneti transript). This kind of error is judged to be a

minor one by human readers, yet WER, whih is based on the onept of exat word

mathing, treats these errors as more serious ones than substituting just one word with

a ompletely di�erent meaning. We found this issue quite ommon in Hungarian ASR,

hene in the future we would like to have a new metri to measure the auray of

Hungarian ASR systems.

In this hapter, the author regards the following as his main ontributions:

• The introdution of a novel KL-divergene based state-tying algorithm;

• The appliation of the MMI-based training for the �at start training of CI DNNs;

• An experimental omparison of multiple GMM-free ASR soulutions.

The methods and results of this hapter were published in [51, 50, 71℄.



Chapter 5

Training Context-Dependent

DNN Aousti Models using

Probabilisti Sampling

After exploring possible improvements in the �at start and state lustering phase, we

now turn our attention to the CD training phase. In urrent HMM/DNN speeh

reognition systems, the purpose of the DNN omponent is to estimate the posterior

probabilities of tied triphone states. In most ases the distribution of these states is

uneven, meaning that we have a markedly di�erent number of training samples for the

various states. This imbalane in the training data is a soure of suboptimality for most

mahine learning algorithms, and DNNs are no exeption. A straightforward solution

is to re-sample the data, either by upsampling the rarer lasses or by dowsampling the

more ommon lasses.

In this hapter, we experiment with the so-alled probabilisti sampling method

that applies downsampling and upsampling at the same time, to improve the auray

of CD aousti models. For this, we de�ne a new lass distribution for the training

data, whih is a linear ombination of the original and the uniform lass distributions.

As an extension to previous studies, we also propose a new method to re-estimate the

lass priors, whih is required to redue the mismath between the training and the

test data distributions introdued by re-sampling.

Using probabilisti sampling and the proposed modi�ation we ahieved relative

word error rate redutions of 5% and 6% on the TED-LIUM and on the AMI orpora,

respetively. We will also show that this re-sampling method an improve our GMM-

free system.

69
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5.1 Introdution

The imbalane in the lass distribution poses a signi�ant hallenge to most mahine

learning algorithms [72℄, and DNNs are no exeption. It is known that neural networks

tend to beome biased towards lasses with more training examples, underestimating

the posterior probabilities of the rarer lasses [73℄. Class imbalane is a typial problem

in detetion tasks, where usually only a small perentage of the training samples belong

to the positive lass [74℄. The situation is even more di�ult when the total amount

of training data is already very low in itself.

In this hapter, we fous on the e�et of lass imbalane on the training of CD DNN

aousti models. At �rst glane, lass imbalane is not an issue in speeh reognition,

as the frequeny of the phones is quite balaned, and we have tremendous amounts of

training data ompared to some other mahine learning tasks. However, we typially

use ontext dependent (CD) phone models, and the number of tied states is allowed

to inrease when the size of the training orpus inreases. We will show that the

distribution of these CD target labels is far from uniform, meaning that many of the

training samples belong to only a few lasses, while many of the CD state lasses are

represented by just a few examples. While one would think that this auses problems

only in low-resoure senarios, our experiments will show that the tehnique we propose

may signi�antly improve the reognition results even in the ase of fair-sized orpora.

The problem of lass imbalane is typially takled by applying re-sampling algo-

rithms to the training data. In the simplest approah, the lass-balane of the data is

ahieved by either reduing the number of the examples of the most ommon lasses

(downsampling) [75℄ or by presenting the rare examples more frequently (upsampling).

In this hapter, we desribe a more sophistiated algorithm alled probabilisti sam-

pling [76℄. Probabilisti sampling o�ers a way of downsampling and upsampling at

the same time by applying a two-step sampling proess. For this, we de�ne a new

probability distribution over the lasses, whih determines how frequently the lasses

are hosen during re-sampling. The �rst step of the sampling proess hooses a lass

based on this distribution. For the seond step, a sample from the training vetors

of the hosen lass is seleted following a uniform distribution. A simple solution to

reate a probability distribution over the lasses is to take the linear ombination of the

original lass distribution and the uniform distribution. This will result in a re-sampling

proess that has one free parameter, the weight λ of this linear interpolation. With

λ = 0, we retain the original lass distribution, while λ = 1 results in a uniform lass

sampling.

Tóth and Kosor applied the probabilisti sampling method to a very small speeh

reognition task in 2005 in the framework of HMM/ANN hybrids, and they reported
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improvements in the results [77℄. As they worked only with monophone lass labels,

the main problem they tried to handle by probabilisti sampling was data sarity. In

2015, Song et al. applied probabilisti sampling in the training of DNN aousti models

with ontext-dependent targets, and they obtained a signi�ant redution in the word

error rate [78℄. However, they performed their experiments on a low-resoure task,

using a orpus of only 4.5 hours of speeh.

When disussing re-sampling methods in the framework of speeh reognition, we

should also mention the in-depth study of Garía-Moral et al., who applied a simple

downsampling approah by disarding examples belonging to the more ommon lasses.

Although this made the ANN training proess muh faster, they experiened a slight

drop in the auray sores [75℄. Lastly, we should mention that over the past few years

we have suessfully used probabilisti sampling in detetion-oriented paralinguisti

tasks suh as deteting the intensity of ognitive and physial load [74, 79, 80℄.

In Chapter 1, we mentioned the lassi mathematial formulation of HMM/DNN

hybrids states. To put it simply, the neural network outputs estimate the posterior

distribution of the training labels, and the they an be inorporated in the HMM

framework after a division by the lass priors [20℄. When probabilisti sampling is

applied with uniform lass sampling, Tóth and Kosor [77℄ proved that there was no

need to divide by the priors, as the network will approximate the lass-onditional

probabilities within a saling fator.

Unfortunately, neither the authors of [77℄ nor [78℄ addressed the problem of in-

termediate distributions; that is, when the interpolation fator λ is between 0 and 1.

Garía-Moral emphasizes that in suh ases the posterior estimates require a proper

saling [75℄ after re-sampling the training data. To ahieve this, here we propose to

re-estimate the priors from the re-sampled training data, and divide the DNN outputs

by these adjusted priors. Besides examining the e�et of saling by the various esti-

mates of the lass priors, we will also ompare two di�erent strategies for the random

seletion of the samples within a given lass.

Our experiments show that with the proposed minor modi�ations probabilisti

sampling an be used to improve the results of training CD DNN aousti models, even

in ases where large amounts of data are available. In the experiments we evaluated

our method on the publily available TED-LIUM orpus (release 1), whih ontains

118 hours of training data [81℄, and the publi AMI orpus, whih has a training set

of 100 hours [82℄. With the best λ we managed to ahieve relative word error rate

redutions between 5% and 6% on these orpora.
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5.2 Probabilisti Sampling

The lass distribution of CD state labels is a heavy-tailed distribution, meaning that the

number of examples for eah state di�ers signi�antly. Figure 5.1 shows the empirial

distribution of the CD states on a logarithmi sale for the TED-LIUM orpus (the

CD states were obtained using the Kaldi reipe [83℄). As an be seen, a subset of

the lasses is signi�antly over- and under-represented, whih might bias the DNN to

favour ertain lasses and neglet some others. As a result, it generates impreise

posterior estimates for these lasses, whih usually leads to a higher word error rate

(WER). One possible way to avoid this is to arti�ially balane the lass distribution
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Figure 5.1: The distribution of tied CD states on a logarithmi sale in desending

order (TED-LIUM orpus, Kaldi reipe)

by re-sampling the training set. Usually, we have no way of generating additional

samples from a rare lass, so balaning an be ahieved by either reduing the number

of examples belonging to the most ommon lasses (downsampling) or by presenting

the rare examples more frequently (upsampling).

Probabilisti sampling o�ers a third option by ombining the two previous sampling

approahes [76℄. It applies a simple two-step sampling sheme; namely, �rst we selet

a lass, then we pik a training sample belonging to this lass. The �rst step requires

us to assign a probability to eah lass, whih determines how frequently it is seleted.

Here, we will use the following formula to de�ne the sampling probability of the lasses:
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P (ck) = λ
1

K
+ (1− λ)Prior(ck), (5.1)

where Prior(ck) is the prior probability of lass ck, K is the number of lasses and

λ ∈ [0, 1] is a parameter. For λ = 1, we get a uniform distribution over the lasses;

and with λ = 0 we retain the original lass distribution. Using intermediate λ values

leads to a linear ombination of these two distributions.

5.2.1 Seleting samples within the lasses

Having hosen a lass based on Eq. (5.1), we need to selet a sample belonging to

that lass. During re-sampling our main goal is to modify the lass distribution of

the training data and leave the distribution of the training examples belonging to the

same lass unhanged (uniform). The simplest way to do this is to pik a random

training vetor within the lass. However, as we perform only a few iterations on the

training data, this strategy ould have an undesired side-e�et that it ould hange

the distribution of the examples within the same lass. The reason for this is that for

some lasses the re-sampling method may present the training vetors to the DNN

unevenly, meaning that some examples might not be seleted at all during the whole

training proess. We propose a very simple solution to remedy the problem. First, we

de�ne a random ordering of the examples belonging to the given lass. Then, during

training, we always selet the next sample aording to this ordering. This strategy

ensures that the examples of the given lass are presented evenly.

5.2.2 Adjusting the prior probability estimates

The standard pratie for HMM/ANN hybrids is to divide the outputs of the DNN

aousti model by the lass priors, in order to onvert the posterior estimates into

likelihood estimates. When applying probabilisti sampling, in theory, the division by

the priors is required when λ = 0 (there is no re-sampling), and there is no need

to divide with the priors when λ = 1 (uniform lass sampling). The key theoretial

question here is what to do in the intermediate ases (0 < λ < 1). Laking theoretial

results, Tóth and Song performed their evaluations by dividing the posterior estimates

by the lass priors or by using the neural network outputs diretly, and found the

optimal λ value experimentally [77, 78℄. Here, we argue that the re-sampling of the

training database requires us to properly adjust the prior probabilities. The reason

is that by balaning the data we reate a mismath between the distribution of the

training and the test sets. A simple and intuitive solution for the adjustment is to apply

the lass seletion probabilities alulated using Equation (5.1) as lass prior estimates.
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This way, we an ensure that the adjusted priors estimate the lass distribution of the

re-sampled training data. In our experiments we evaluate our models with both the

original and the adjusted prior estimates to empirially justify the signi�ane of this

adjustment.

5.3 Experimental Setup

Two large English speeh databases were used to train the CD DNNs, namely the

TED-LIUM and AMI orpus. The TED-LIUM orpus [81℄ is omposed of 774 TED

talks, ontaining 118 hours of speeh overall: 82 hours of male and 36 hours of

female speeh. All reordings and their losed aptions in this orpus were extrated

from the TED website. The training data was automatially transribed and only the

development and test sets were transribed manually (for more details, see [81℄). As

training targets we used 3933 CD labels, and the lass distribution an be seen in

Figure 5.1. We evaluated the trained DNN-based aousti models using a 3-gram and

a 4-gram language model as well.

AMI is a multi-modal orpus, whih ontains reordings of meetings [82℄. All

partiipants of the meetings speak in English, but only some of them are native English

speakers, whih leads to a high degree of variability in speeh patterns. Here we

used only the audio part of the orpus, spei�ally the reordings aptured with the

independent headset mirophone (IHM). Following the Kaldi [83℄ reipe, the DNNs

predited the posterior sores of 3973 CD states, whih had a similar lass distribution

to that of the TED-LIUM orpus.

We also used the Hungarian Broadast News orpus [8℄. For this database we made

use of the best CD system (MMI-CE + KL) from the previous hapter to show that

probabilisti sampling ould also improve a GMM-free reogniser.

The aousti model in our experiments was a DNN with 5 hidden layers, eah

ontaining 1000 reti�ed neurons [14℄, while we applied the softmax ativation funtion

in the output layer. The DNNs were trained using frame aligned labels and no sequene

training was applied. As input, we used the 40-dimensional fMLLR features in the ase

of the TED-LIUM and AMI databases. We extrated the features by following the

Kaldi reipe and the DNNs were trained on 11 neighbouring frames. The Hungarian

reogniser used 15 neighbouring frames of FBank features as input, just like that

desribed in the previous hapter. To train the DNNs we used our own deep learning

framework [8℄, while the deoding and evaluation of the English orpora was performed

with Kaldi.

To determine the e�etiveness of the probabilisti sampling method, we tested λ

values between 0.1 and 1.0 with a step size of 0.1. For eah training iteration, we
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Figure 5.2: Word error rates got for the development set of the TED-LIUM orpus

using a 3-gram language model and probabilisti sampling.

re-sampled the same amount of training vetors as that in the original data. All DNN

models were evaluated with the division by the original or the adjusted priors to see

the e�etiveness of the adjustment.

5.4 Results

First, we ompared the two sample seletion approahes desribed in Setion 5.2.1. We

found that seleting training vetors within the lasses with uniform sampling led to

suboptimal models for some rare triphones. In our preliminary experiments we observed

that this strategy led to a 1% inrease in the frame error rates ompared to that for the

other seletion method, and also resulted in a higher WER. As the seletion method

that applies a random ordering performed onsistently better, we deided to apply it

in all our experiments.

5.4.1 TED-LIUM

Figures 5.2 and 5.3 show the results we got with probabilisti sampling on the TED-

LIUM orpus. Clearly, dividing the DNN outputs by the original priors gives worse
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Figure 5.3: Word error rates got for the test set of the TED-LIUM orpus using a

3-gram language model and probabilisti sampling.

LM Method Dev WER Test WER

original adjusted original adjusted

priors priors priors priors

3-gram

baseline 16.9 � 15.0 �

λ = 0.4 16.3 15.9 14.4 14.1

4-gram

baseline 15.2 � 13.7 �

λ = 0.4 14.7 14.4 13.0 12.9

Table 5.1: Best word error rates got with and without probabilisti sampling and

dividing by the original and the adjusted priors.

results as λ inreases, and we found that small λ values (here 0.4) work best. For small

λ values, i.e. when the original distribution remains dominant in the lass distribution

of the new training data, both prior estimation strategies performed similarly, but as

we inrease λ above 0.5, the mismath between the training and test sets aused a

signi�ant drop in reognition auray (even below the baseline).

When we adjusted the priors, the models beame more robust and we got better

results than the baseline for all λ values. The best result on the development set was

attained using the adjusted priors and λ = 0.4; this network ahieved a 14.1% WER
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on the test set, whih means a 6% relative error redution ompared to the baseline.

Table 5.1 summarises the best results on the TED-LIUM database. As an be

seen, probabilisti sampling always yielded better results and with the prior adjustment

we managed to improve the performane further. Using the 4-gram language model

produed similar results to those ahieved with the 3-gram model. The optimal value

for the re-sampling parameter was 0.4, just like when the 3-gram language model was

used.

5.4.2 AMI
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Figure 5.4: Word error rates got for the development set of the AMI orpus using

probabilisti sampling.

On the AMI orpus the results follow a similar trend; the best results were ahieved

with the adjusted priors, and the division by the original priors resulted in a delining

reognition auray for inreasing λ. All DNNs trained with λ ≤ 0.7 performed better

than the baseline model both on the development and the test sets. The optimal value

of λ was 0.1 when we divided by the original prior (26.7% WER on the development set

and 27.4% on the test) and 0.1 or 0.4 when the adjusted priors were used. Both DNNs

ahieved a WER of 26.6% on the development and 27.3% on the test set. On the test

set the best WER was 27.3%, whih is far better than the baseline (28.6%), yielding
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Figure 5.5: Word error rates got for the test set of the AMI orpus using probabilisti

sampling.

a relative error redution of 5%. We should mention that using uniform re-sampling

with the original priors resulted in reognition results far below the baseline.

5.4.3 Improving GMM-free systems using probabilisti sam-

pling

In the ase of the Hungarian Broadast News orpus we employed our previous best

GMM-free CD system that made use of the MMI-based algorithm followed by one

iteration of CE training for �at start. To reate the CD targets the KL-divergene

based lustering method was applied. The number of CD states was 1843, meaning

that this orpus was less imbalaned than the other two; 22 hours of training data was

available for 1843 lasses, while for the English databases we had about 100 hours of

data for roughly 4000 lasses. Using λ = 0.4, the trained CD DNN gave a WER of

16.14% on the development set, whih is better than the baseline 16.36%. However on

the test set it ahieved only a small improvement (15.79% vs 15.86%). The reason for

this is probably the small amount of training data, we hypothesis that if the database

had more speeh data we would have seen improvements similar to the English orpora.

To test this, we also applied probabilisti sampling to train the best GMM-free CD DNN
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from the previous experiments using the Wall Street Journal (WSJ) orpus. The orpus

has 81 hour of training data and the DNN had approximately 2400 output neurons.

As a reminder, the best WERs ahieved by us previously were 8.03% and 5.92% on

the development and test sets, respetively. By applying probabilisti sampling, the

new DNN managed to perform signi�antly better, yielding a WER of 7.6% on the

development set and 5.44% on the test set. These results suggest that our hypothesis

was orret and the sampling method works best if the amount of training data is

su�iently large.

5.4.4 Disussion
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Figure 5.6: Averaged auray sores of sorted CD states obtained on the TED-LIUM

development set with and without re-sampling.

To get an insight into why probabilisti sampling helps, we performed an analysis to

learn how the auray of CD state lassi�ation varies as a funtion of state frequeny.

Figure 5.6 shows the average frame-level auray sores of the sorted CD states, and it

ompares the baseline method with the best model trained with re-sampling. The �rst

thing to notie is that probabilisti sampling signi�antly improves the auray sores

of the rare states (Index ≤ 1000), and even the frequent states are reognised more

often. The downside of this improvement is the lower auray of those lasses that
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have the most training data. Interestingly, the auray of lasses having an average

amount of training data (middle part in the �gure) also inreased with probabilisti

sampling; the reason is that they were less likely onfused with the more frequent

states.

As we saw, dividing the DNN outputs by the adjusted priors stabilized the results:

for almost all λ values we got similar WE sores. If the original priors are used then

a delining trend is observed as we move farther from the original distribution. The

stability of this adjustment ould be explained by the fat that it redues the mismath

between the training and test data introdued by the re-sampling proess.

5.5 Solving Paralinguisti Tasks using Probabilis-

ti Sampling

For a long time the main fous of speeh tehnology was Automati Speeh Reognition

(ASR), but reently a new sub-area has emerged alled omputational paralinguistis.

It seeks to extrat and identify phenomena present in the audio signal other than the

words uttered. The fat that sine 2009 the Computational Paralinguistis ChallengE

(ComParE) series takes plae annually at the INTERSPEECH onferene shows the

importane of this new area. ComParE is an open hallenge in the �eld of speeh

tehnology that deals with states and traits of speakers, as manifested in their speeh.

Every year, new highly relevant paralinguisti tasks are introdued in this ompetition

series. Most of these tasks have only a limited amount of training data and a highly

imbalaned lass distribution. Lukily, the limited data is distributed among a few

lasses, so probabilisti sampling is appliable. We managed to apply DRNs, trained

with probabilisti sampling and ahieved good results in many of these hallenges.

• In 2014, we reated a system, whose goal was to detet the intensity of ognitive

and physial load of the speaker [84℄. Our DNN-based method onsistently

managed to outperform the baseline SVMs, yielding an unweighted average reall

(UAR) of 63.05% on the Cognitive Load Challenge, and a UAR of 73.03% on

the Physial Load Challenge [74℄.

• In 2016, we partiipated in the Deeption Sub-Challenge [85℄ with a DRN that

was trained using re-sampling [79℄. The aim of this Sub-Challenge was the

detetion of deeit, using only the speeh of the person in question. With DNNs

alone, we managed to get a higher UAR value than the baseline by a mere 0.3%,

but this is muh less than the 3.6% improvement measured on the development
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set. In our view this an be attributed to the limited amount of training data

and a possible mismath between the training and test data.

• In 2017, we experimented with the re-sampling method and applied it in the

Addressee and Cold Sub-Challenge [80℄. In the Addressee Sub-Challenge, one

had to determine whether the adult speaks to a hild or to another adult, and

the Cold Sub-Challenge sought to separate healthy speakers from those who

have a old [86℄. We should mention here that the baseline systems of these

sub-hallenges were very ompetitive (the fusion of three approahes). On the

Addressee Sub-Challenge our approah yielded worse results than the baseline,

but on the Cold Sub-Challenge it managed to signi�antly outperform the base-

line. Furthermore, as our outstanding result proved to better than those of our

ompetitors, we won this sub-hallenge.

5.6 Summary

In this hapter, I demonstrated that CD DNN training an be improved by re-sampling

the training data with probabilisti sampling. I also proposed a new method for re-

estimating the lass priors when using this sampling algorithm. The experimental

results proved that this re-estimation is essential for remedying the mismath between

the training and the test data distributions introdued by the re-sampling step. These

adjusted priors made the re-sampling method more robust, and the reognition results

varied only slightly as the lass distribution, with a bigger λ value was shifted towards

a uniform distribution. Our experiments revealed that by using this modi�ation, the

reognition results dramatially improved, it gave relative error redutions between 5%

and 6% on two fair-sized orpora (TED-LIUM and AMI).

In this hapter, the author regards the following as his main ontributions:

• The use of probabilisti sampling during the training of CD DNNs;

• A new way to adjust the priors in the ase of re-sampling;

The methods and results of this hapter were published in [87, 74, 79, 80℄.
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Chapter 6

Summary

In this thesis, we proposed new HMM/DNN aousti modelling tehniques and eval-

uated them on large voabulary speeh reognition tasks. In Chapter 1 we brie�y

introdued the basi omponents of an automati speeh reognition system, suh

as the feature extrator, the HMM/DNN aousti model and the language model.

Here, we also desribed how neural networks work, and how they an be trained. In

later hapters, we examined several training methods for HMM/DNNs and modi�ed

the algorithms it had inherited from the HMM/GMM system to better suit this new

DNN-based model.

6.1 A Comparison of Deep Neural Network Train-

ing Methods for LVSR

The seond hapter foused on omparing the performane of four DNN training al-

gorithms. The �rst one is the original algorithm proposed by Hinton et al.[9℄, and the

seond one is alled disriminative pre-training by Seide et al. [10℄. Both of these meth-

ods apply a pre-training phase before they �netune the DNNs. Deep Reti�er Networks,

our third approah di�ers greatly from the previous two in the sense that it modi�es

the ativation of the hidden neurons instead of the training proess. The fourth train-

ing algorithm that we examined is a regularization method alled Dropout [11℄, whih

simply turns o� neurons during training.

In our experiments we ompared the reognition auraies of these methods on

a large voabulary Hungarian reognition task. Our onlusion was that, although

the four algorithms yielded quite similar reognition performanes, reti�er networks

ahieved better auraies and their training was onsiderably faster. Based on these

fats in the rest of the thesis I just used reti�er networks.

83
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6.2 Sequene Training Methods for Deep Reti-

�er Neural Networks in Speeh Reognition

After determining our preferred hoie of DNN, we turned our attention to the task of

�at start training, whih is the �rst step of training a speeh reognition system. The

goal of �at start is to get time-aligned ontext independent labels for the database.

Our aim here was to ompare two sequene training approahes that ould be used

to train randomly initialised DNNs without fore-aligned labels. The �rst one was the

Connetionist Temporal Classi�ation (CTC) and the seond one was the Maximum

Mutual Information (MMI) method. Both of them were used to train DRNs. We

proposed several modi�ations to the standard MMI method, whih were essential to

make it suitable for the �at start proess.

In the experimental part, we evaluated the two methods on several phone reogni-

tion tasks. For all databases we tested, we found that the sequene training methods

gave better results that those obtained with fore-aligned training labels produed

by an HMM/GMM system. From the experimental results, it was also lear that the

MMI-based approah gave better results than the CTC-based one. Furthermore, DRNs

trained with CTC ould not produe fored-aligned labels. Based on these �ndings we

onluded that MMI was the better algorithm for �at start training.

6.3 A GMM Free Training Method for Deep Neu-

ral Networks

Next, we adapted the state-tying algorithm with the goal of getting rid of its GMM

dependeny. The ontext-dependent states used to train DNNs are usually obtained

using the standard tying algorithm, even though it is based on likelihoods of Gaus-

sians, hene it is more appropriate for HMM/GMMs. Reently, however, several new

re�nements have been published whih seek to adapt the state tying algorithm to the

HMM/DNN hybrid arhiteture.

Some of the new methods hange only the input of the lustering algorithm, feeding

the output or the ativations of the neurons in the last hidden layer to the lustering

method while the whole state tying algorithm remains intat. Other studies proposed

novel deision riteria as well for the lustering method, whih better suit the new

input provided by a DNN.

In this hapter, we proposed a KL-divergene-based approah. We evaluated it

along with three other state-tying methods on the same LVCSR tasks, and ompared

their performane under the same irumstanes. We ombined them with the MMI-
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based �at start method from the previous hapter, and showed that the whole training

proedure of ontext-dependent HMM/DNNs an be arried out without using GMMs.

The experimental results on�rmed that the MMI-based �at star approah is far

better than the proedure of iterative CE DNN training and re-alignment. Furthermore,

we saw that replaing the deision riterion used during state lustering is also bene�ial

for DNN training. Lastly, we examined the best Hungarian HMM/DNN system to see

what type of errors are most ommon. For this, we olleted the word errors and their

loal ontext, then we manually ategorised and analysed them. Our onlusion was

that a new metri is needed to measure the auray of Hungarian ASR systems, sine

the urrent one (WER) treats some errors more seriously than human readers do.

6.4 Training Context-Dependent DNN Aousti

Models using Probabilisti Sampling

In Chapter 5, we turned our attention to the CD training phase of the ASR system. In

the urrent HMM/DNN speeh reognition systems, the purpose of the DNN ompo-

nent is to estimate the posterior probabilities of tied triphone states. It is well known

that the distribution of the CD states is uneven, meaning that we have a markedly

di�erent number of training samples for the various states. This imbalane in the

training data is a soure of suboptimality for most mahine learning algorithms, and

DNNs are no exeption to this.

Here, we experimented with the so-alled probabilisti sampling method that applies

downsampling and upsampling at the same time, to improve the auray of CD

aousti models. This re-sampling method de�nes a new lass distribution for the

training data, whih is a linear ombination of the original and the uniform lass

distributions. As an extension to previous studies, we also proposed a new method to

re-estimate the lass priors, whih is required to remedy the mismath between the

training and the test data distributions introdued by re-sampling.

Using probabilisti sampling we ahieved relative word error rate redutions of

5% and 6%, respetively, on two fair-sized orpora (TED-LIUM and AMI). We also

showed that this re-sampling method an improve our GMM-free system outlined in

the previous hapter. Our experimental results strongly suggest that the re-estimation

of the priors is essential to handle the mismath between the training and the test

data distributions introdued by the re-sampling step. These adjusted priors made the

re-sampling method more robust, and the reognition results varied only slightly as the

lass distribution was shifted towards a uniform distribution.
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6.5 Conlusions and future diretions

In this thesis, we suessfully adapted the standard methods of the HMM/GMM aous-

ti models to better suit the new HMM/DNN hybrid. We revised both the initial

training phase (�at start) and the CD state-tying phase, and introdued new stritly

DNN-based solutions to these problems. By ombining these methods, we reated a

new training method that does not depend on GMMs at all. We also showed that the

�nal training phase ould be improved by employing a simple re-sampling method. On

the Szeged Hungarian Broadast News orpus, a traditional HMM/GMM gave a WER

of 20.07%, the best DNN that relies on GMMs produed a WER of 16.59%; while our

best GMM-free system managed to ahieve a WER of 15.79%.

Naturally, many experiments have been left for the future, mainly due to lak of

time or beause they lay outside the sope of the present study. The following list

presents some of the possible future researh diretions.

• For one, we should onsider applying a new DNN type, namely the Convolutional

Neural Network (CNN), sine it has provided impressive results both in image

proessing and speeh reognition.

• To extend the results of Chapter 3, it would be worth examining other sequene

learning methods, suh as minimum phone error (MPE) or state-level minimum

Bayes risk (sMBR), and adept them so they are suitable for �at start training.

• It is worth investigating what would happen if we had more CD lusters in our

GMM-free systems. The hypothesis here is that with more states we should get

better results, of ourse, at the ost of the inreased training and evaluation

times.

• It would be interesting to learn how the CD DNNs trained with probabilisti

sampling perform after a �nal sequene disriminative training phase, whih is

nowadays a ommon pratie.

6.6 Key points of the Thesis

In the following a listing of the most important results of the dissertation is given.

Table 6.6. summarises the relation between the theses and the orresponding publia-

tions.

I. The author ompared the performane of four deep learning methods empiri-

ally; two of these methods were pre-training algorithms, the third one applied
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[26℄ [49℄ [50℄ [51℄ [71℄ [87℄ [74℄ [79℄ [80℄

I. •

II/1. •

II/2. • •

III/1. •

III/2. • • •

IV. • • • •

Table 6.1: Correspondene between the thesis points and the publiations.

the reti�er ativation funtion and the fourth was a regularisation tehnique

alled Dropout. The experiments were also arried out using a Hungarian speeh

orpus, and this study was among the �rst to apply a HMM/DNN system to

Hungarian speeh reognition. The results indiated that the new HMM/DNN

systems an outperform the traditional HMM/GMM system signi�antly. The

onlusion of the experiments was that, although the four algorithms yielded

quite similar reognition performanes, reti�er networks onsistently produed

the best results.

II/1. The CTC algorithm was originally proposed for the training of reurrent neural

networks, but here the author showed that it an also be used to train onven-

tional feed-forward networks. Using several orpora, deep reti�er networks were

trained with the CTC method, in order to determine whether this approah was

suitable for the �at start training step. The results led us to onlude that CTC

an be used to train randomly initialised networks without time-aligned labels.

II/2. As a ompetitor, the MMI-based training algorithm was also examined. The

author proposed several modi�ations to the standard MMI, to make it suitable

for the task (�at start training). The experimental results showed that the mod-

i�ed MMI is a far superior alternative to CTC, for training randomly initialised

networks without time-aligned labels.
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III/1. The author reated a new DNN-based state-tying method by hanging the de-

ision riterion used by the standard algorithm during the lustering step. Sine

this new state tying method uses posterior probability vetors produed by DNNs

as input, KL-divergene seemed a logial hoie for deision riterion. The ex-

perimental results also supported this view, as the new method markedly out-

performed the original one.

III/2. By ombining the MMI-based �at start training algorithm with the KL-divergene-

based lustering method, the author built an ASR system that did not rely on

GMMs. He ompared this GMM-free solution with other reently proposed al-

ternatives, and found that it was ompetitive with the other approahes used.

Furthermore, the results demonstrated that the GMM-free systems were apable

of produing better results than those that rely on GMMs.

IV. The author examined the probabilisti sampling method for the training of CD

DNNs. He hypothesised that when the training data is re-sampled, the prior

probability values need to be re-estimated. He justi�ed this experimentally, and

showed that re-sampling with adjusted priors greatly improves the performane

of CD DNNs. This re-sampling algorithm was also applied with great suess in

several paralinguisti tasks.



Chapter 7

Summary in Hungarian

Ebben a dolgozatban az új, mély neuronhálós akusztikus modelleket vizsgáltuk és

alkalmaztuk nagy szótáras beszédfelismerési feladatokban. Az els® fejezetben röv-

iden bemutattuk az automatikus beszédfelismer®k alap komponenseit; a különböz®

jellemz®kinyerési módszereket, az új HMM/DNN hibridet alkalmazó akusztikus mod-

ellt és a nyelvi modellt. Szintén a bevezet® fejezetben bemutattuk a mesterséges

neuronhálók m¶ködését, illetve tanulási algoritmusukat. Az ezt követ® fejezetekben

megvizsgáltunk több mély neuronhálós tanítási módszert, majd megmutattuk, hogyan

lehet a HMM/GMM modellt®l örökölt algoritmusokat úgy módosítani, hogy azok job-

ban illeszkedjenek az új DNN alapú modellhez.

7.1 Mély neuronhálós tanítási módszerek össze-

hasonlítása nagyszótáras beszédfelismerésben

A második fejezetben négy mély neuronhálós tanítási módszert hasonlítunk össze. Az

els® módszer a Hinton és társai által kidolgozott eredeti el®tanító algoritmus [9℄, a má-

sodik módszer pedig az úgynevezett diszkriminatív el®tanítás, amelyet Seide és társai

publikáltak [10℄. Ezen két algoritmusban közös, hogy két fontos fázisból állnak; az el®-

tanítás során iniializálják a neuronhálót, majd a második lépésben �nomhangolják azt.

A mély egyenirányított hálók, a harmadik módszer, amit megvizsgáltunk, jelent®sen

eltérnek a korábbiaktól, hiszen ebben az esetben nem a tanítási algoritmus módosul,

hanem a rejtett neuronok aktiváiós függvénye. A negyedik módszerként egy regu-

larizáiós tehnikát választottunk, az úgynevezett Dropout [11℄ algoritmust, melynek

lényege, hogy tanítás során véletlenszer¶en kikapsolunk neuronokat a hálózatban. Ez

a módszer nem egy önálló algoritmus, hanem más módszerekkel (bármelyik korábbival)

kombinálva használható.

Kísérleteinkben ezen módszereket hasonlítottuk össze egy magyar nyelv¶ nagy
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szótáras beszédfelismerési feladaton. Konklúzióként azt kaptuk, hogy mind a négy

módszer elég hasonló eredményeket tudott elérni, de a legjobbnak az egyenirányított

hálózatok bizonyultak, tekintve, hogy ezek érték el a legjobb felismerési pontosságokat

és betanításuk is kevesebb id®t igényelt. Ezen eredményekre alapozva, a dolgozatom

további részében sak egyenirányított neuronhálókat alkalmaztam.

7.2 Mély egyenirányított neurális hálók tanítása

szekveniatanuló módszerekkel

Miután kiválasztottuk a legjobb mély tanítási módszert, a �at start nev¶ feladatra

fordítottuk �gyelmünket. Ezen feladat megoldása az els® lépés minden beszédfelis-

mer® rendszer létrehozása során. Ezen lépés lényege, hogy meghatározzuk a kontex-

tusfüggetlen ímkék id®beli illesztését. A hosszútávú élunk egy teljesen mély hálókon

alapuló módszer kidolgozása volt, ezért ebben a fejezetben két szekveniatanuló mód-

szert hasonlítottunk össze, amelyek alkalmasnak t¶ntek a kezdeti kontextusfüggetlen

modellek tanítására. A konnekiós temporális osztályozás (CTC) algoritmust vettettük

össze a maximális kölsönös informáión (MMI) alapulóval. Mindkét vizsgált módszert

mély egyenirányított hálók tanítására használtuk. Az alap MMI algoritmushoz több mó-

dosítást is javasoltunk, melyek lehet®vé tették, hogy véletlenszer¶en iniializált hálók

tanítására használjuk ezt a módszert id®ben illesztett ímkék nélkül.

A kísérleteink során különböz® fonémafelismerési feladatokon hasonlítottuk össze a

két módszert. Mindegyik adatbázis esetén azt találtuk, hogy a szekveniatanuló módsz-

erek jobban m¶ködtek mint a hagyományos rendszerek, amelyeket egy HMM/GMM ál-

tal generált id®ben illesztett ímkékkel tanítottunk. Az eredményekb®l az is egyértelm¶-

en kiderült, hogy az MMI módszer jobb eredményeket képes elérni mint a CTC algorit-

mus. A CTC algoritmus egy további hátránya, hogy a betanított hálók nem használ-

hatók a ímkék kényszerített illesztésére. Mindezeket �gyelembe véve megállapítható,

hogy az MMI módszer a legjobb választás a �at start lépés megoldására.

7.3 GMM-mentes mély neuronhálós beszédfelis-

mer®k

A 4. fejezetben az állapotkapsolási algoritmust adaptáltuk, élunk a GMM függ®ségek

eltávolítása volt. A környezetfügg® állapotokat általában a standard algoritmussal ál-

lítják el®, annak ellenére, hogy az algoritmus speiálisan a Gauss-görbék illeszkedését

használja ki, így optimalitása egy mély hálós rendszerben megkérd®jelezhet®. Az



7.4. Kontextusfügg® mély neuronhálós akusztikus modellek tanítása valószín¶ségi

mintavételezéssel 91

utóbbi id®ben azonban több olyan állapotklaszterez® algoritmust is publikáltak, ame-

lyek megkísérlik a korábbi eljárást a mély neuronhálós modellezéshez igazítani.

Néhány új módszer sak a klaszterez® algoritmus bemenetén változtat, azaz a

klaszterezést a DNN kimenetén futtatják le, magát az algoritmust pedig egyáltalán

nem módosítják. Más szerz®k a bemenet kiserélésén túl a klaszterez® eljárás dön-

tési kritériumát is módosítják oly módon, hogy az jobban illeszkedjen a neuronhálós

eloszlás-modellezéshez.

Ebben a fejezetben három különböz® módszert hasonlítottunk össze a saját KL

divergenián alapuló módszerünkkel, ugyan azon a nagy szótáras beszédfelismerési fe-

ladaton. Kombinálva ezen módszereket az el®z® fejezetben bemutatott MMI-alapú

�at start módszerrel megmutattuk, hogy lehetséges HMM/DNN beszédfelismer®ket

tanítani GMM használata nélkül is.

A kísérleti eredményeink azt mutatták, hogy az MMI-alapú módszer sokkal jobban

m¶ködik, mint a keresztentrópiás tanítást és újraillesztést iteráló módszer. Továbbá azt

is láttuk, hogy élszer¶ a döntési kritériumot is leserélni a klaszterez® algoritmusban.

Mindezeken túl azt is megvizsgáltuk, hogy a legjobb magyar beszédfelismer®nk milyen

típusú hibákat vét leggyakrabban. Ehhez a teszthalmaz egy részén el®forduló szószint¶

hibákat kigy¶jtöttük, majd manuálisan kategorizáltuk és elemeztük. A vizsgálatok ered-

ményeképpen megállapítottuk, hogy egy új hibametrikára lenne szükség magyar nyelv¶

beszédfelismer® rendszerek értékeléséhez, mivel a jelenleg használt metrika (WER) több

hibát sokkal súlyosabbként kezel, mint az emberi annotátorok.

7.4 Kontextusfügg® mély neuronhálós akusztikus

modellek tanítása valószín¶ségi mintavétele-

zéssel

A 5. fejezetben a környezetfügg® akusztikus modellek tanítására fókuszáltunk. A

manapság használatban lév® beszédfelismer®kben a DNN komponensek feladata, hogy

állapotkapsolt trifónok posterior valószín¶ségét besüljék. A problémát az jelenti,

hogy a ímkék eloszlása nem egyenletes, így a gyakorlatban az egyes osztályokhoz tar-

tozó tanítópéldák száma jelent®sen eltér. A tanító adat egyenl®tlen eloszlása problémát

jelent a legtöbb gépi tanuló algoritmusnak, ez alól a mély hálók sem kivételek.

A probléma megoldására a valószín¶ségi mintavételezés módszerét használtuk, ame-

lynek el®nye, hogy egyszerre alkalmazza az alul- és a felül-mintavételezést. Az adat-

bázis újramintavételezéséhez egy új osztályeloszlást de�niál a módszer, ez az új elos-

zlás az eredeti és az egyenletes eloszlás lineáris kombináiójaként áll el®. A korábbi

tanulmányokhoz képest mi a prior valószín¶ségek újraszámlálására is javasoltunk egy
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módszert. Erre azért volt szükség, mert az adat újramintavételezése révén jelent®sen

eltért a tanító és a teszt adatbázis egymástól.

A valószín¶ségi mintavételezés segítségével 5% és 6% szószint¶ hibaarány reduk-

iót sikerült elérnünk két nagy méret¶ adatbázison (TED-LIUM és AMI). Megmutattuk

azt is, hogy ezzel a módszerrel a korábbi fejezetben bemutatott GMM-mentes rend-

szer is jobb eredményeket képes elérni. A kísérleti eredményeink alátámasztották azon

sejtésünket is, hogy a prior valószín¶ségek újrabeslése kritikus az újramintavételezés

miatt a tanító és teszt adat között fellép® különbség kezelése szempontjából. Ezek az

újrabesült priorok robusztusabbá tették a módszerünket, hatásukra a felismerési pon-

tosságok sak sekély mértékben változtak, ahogy az egyenletes eloszlás felé mozgattuk

az osztályok eloszlását a mintavételezés során.

7.5 Konklúzió és jöv®beli kutatási irányok

A dolgozatban bemutattuk, hogy a standard HMM/GMM rendszerhez kidolgozott

módszerek hogyan adaptálhatóak az új HMM/DNN hibrid modellhez. Ehhez kidol-

goztunk új, tisztán DNN alapú módszereket a kezdeti tanítási fázis (�at start) és az

állapotkapsolási lépés megoldására. Ezek összekapsolásával sikeresen létrehoztunk

egy új tanítási módszert, amely során nins szükség GMM-ek használatára. Végül

megmutattuk, hogy a végs® tanítási lépés javítható egy egyszer¶ újramintavételez® al-

goritmussal. A kísérleteink során felhasznált magyar nyelv¶ Szeged Híradós korpuszon

egy hagyományos HMM/GMM 20.07%-os szószint¶ hibaarányt képes elérni. Az új hi-

brid módszer esetében, ami még változatlanul használja a megörökölt algoritmusokat,

a szószint¶ hibaarány 16.59%-ra sökkent, míg a legjobb GMM-mentes módszerünk

még ennél is jobb eredményt (15.79%) ért el.

Természetesen rengeteg további kísérletet lehetne még elvégezni, ezeket sajnos

id®hiányában a jöv®beli munkáink közé soroljuk. A következ®kben felsorolunk néhány

lehetséges jöv®beli kutatási irányt.

• Az elmúlt pár évben megjelent egy új típusú neuronháló, a konvolúiós neu-

ronháló (CNN), amely jelent®s sikereket ért el képfeldolgozásban és beszédfe-

lismerésben. A kidolgozott módszereinket élszer¶ lenne kipróbálni ilyen típusú

hálókkal is.

• A 3. fejezet kib®vítése éljából más szekveniatanuló algoritmusokat, például a

minimális fonéma hiba (MPE) vagy minimális Bayes kokázat (sMBR) módszert

is tervezzünk megvizsgálni.

• Érdekes kérdés, hogy vajon hogyan alakulna a GMM-mentes modelljeink pon-

tossága, amennyiben a mostaninál több klaszter létrejöttét is engednénk. A
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[26℄ [49℄ [50℄ [51℄ [71℄ [87℄ [74℄ [79℄ [80℄

I. •

II/1. •

II/2. • •

III/1. •

III/2. • • •

IV. • • • •

Table 7.1: A tézispontok és a szerz® publikáióinak viszonya.

hipotézisünk, hogy több kontextus-függ® állapot esetén jobb eredményeket tudná-

nak elérni a hálók, természetesen ennek az ára a megnövekedett tanítási és

kiértékelési id®k lennének.

• Szintén megérné megvizsgálni, hogy a mintavételezéssel tanított hálók hogyan

viselkednének, egy végs® szekvenia-diszkriminatív tanítási lépés végrehajtása

után.

7.6 Az eredmények tézisszer¶ összefoglalása

Az alábbiakban tézispontokba rendezve összegezzük a szerz® kutatási eredményeit. A

7.6. táblázat összegzi a kutatásokból származó publikáiók és az egyes tézispontok

viszonyát.

I. A szerz® kísérleti úton összehasonlított négy mély tanulásos módszert: két el®-

tanításos algoritmust, az egyenirányított aktiváiós függvényt és a Dropout nev¶

regularizáiós tehnikát. A kiértékeléseket egy magyar nyelv¶ adatbázison is

elvégeztük, az itt közölt eredmények, legjobb tudomásunk szerint, a legels® mély

neuronhálós eredmények magyar nyelv¶ beszédfelismerésben. Az eredmények

alapján megállapíthatjuk, hogy a HMM/DNN hibrid szigni�kánsan jobban tel-

jesít mint a hagyományos HMM/GMM. A végs® konklúziója a kísérleteknek az

volt, hogy mind a négy módszer elég hasonló eredményeket tudott elérni, de az

egyenirányított hálók konzisztensen jobbnak bizonyultak a többi módszernél.

II/1. A szerz® megmutatta, hogy a CTC algoritmust, amit eredetileg rekurens neu-

ronhálók tanítására készítettek, fel lehet használni el®resatolt hálók tanítására

is. A kísérletek élja annak megállapítása volt, hogy ez a módszer alkalmas-e a

�at start tanítási lépés elvégzésére, ezért mély egyenirányított neuronhálók let-

tek tanítva CTC algoritmussal, különböz® adatbázisokon. Az eredmények azt
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mutatták, hogy a CTC módszer alkalmas véletlenszer¶en iniializált neuronhálók

�at start tanítására.

II/2. A CTC algoritmus versenytársaként megvizsgálásra került az MMI algoritmus is.

A szerz® több módosítást is javasolt, hogy ezt a módszert alkalmassá tegye a �at

start tanításra. Az összehasonlítás során egyértelm¶vé vált, hogy az MMI sokkal

jobb megoldás mint a CTC algoritmus véletlenszer¶en iniializált neuronhálók

tanítására id®ben illesztett ímkék nélkül.

III/1. A szerz® kidolgozott egy új, mély neuronhálós állapotkapsolási algoritmust, a

standard algoritmus döntési kritériumának leserélésével. Tekintve, hogy a mód-

szer bemenetként DNN által predikált posterior valószín¶ségi vektorokat kap,

ezért döntési kritériumnak a KL-divergenia t¶nt logikus választásnak. Ezt a

kísérleti eredmények is alátámasztották, az új algoritmus lényegesen jobban tel-

jesített, mint az eredeti módszer.

III/2. Az MMI-alapú �at start módszer és a KL-divergeniát alkalmazó állapot klasztere-

zési algoritmus kombinálásával a szerz® egy teljesen GMM-mentes eljárást ho-

zott létre. Ezt az új eljárást más, közelmúltban javasolt módszerrel hasonlította

össze. A kísérletek során kiderült, hogy az új GMM-mentes módszerek jobb ered-

ményeket képesek elérni mint azok, amelyek felhasználnak GMM-eket tanításuk

során.

IV. A szerz® megvizsgálta a valószín¶ségi mintavételez® algoritmust és alkalmazta

azt kontextusfügg® DNN tanításra. A hipotézise az volt, hogy a tanítóadat

újramintavételezésével a prior valószín¶ségek újrabeslése szükségessé válik. Kísér-

leti úton igazolta ezt a sejtést és megmutatta, hogy újramintavételezéssel és a

priorok helyes beállításával szigni�kánsan javítható a mély hálók pontossága. A

mintavételez® algoritmust paralingvisztikus feladatokon is sikeresen alkalmazta.
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