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Prefa
e

Nowadays, spee
h re
ognition te
hnology is built on Deep Neural Networks. These

networks represents the latest dire
tion of ma
hine learning. They are based on the

theory of arti�
ial neural networks, whi
h have been used for de
ades. However, unlike

traditional Neural Networks, all deep networks 
ontain many pro
essing layers, whi
h

allow the hierar
hi
al pro
essing of the input data. While the 
on
ept of deep networks

is not totally new, their e�
ient training required several new a
hievements. These

new networks managed to 
ompletely repla
e the Gaussian Mixture Models in the

state-of-the-art spee
h re
ognition systems.

In this study, I de
ided to fo
us on Deep Neural Network-based re
ognition systems.

First, I 
ompared the performan
e of several new training algorithms with ea
h other,

in order to determine the best one for later use. Then, I turned my attention to the

algorithms that the new spee
h re
ognition systems have inherited from the previous

Gaussian Mixture Model-based approa
hes, as the algorithms might not be optimal for

Deep Neural Networks. I proposed new algorithms for obtaining the initial alignment

of the frame-level state labels and the 
reation of 
ontext-dependent states, and found

that they are better suited for the new a
ousti
 models. Lastly, I also experimented

with a data re-sampling method to improve the a

ura
y of the models.
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Chapter 1

Introdu
tion

Automati
 Spee
h Re
ognition (ASR) is a key topi
 of spee
h te
hnology, where the

goal is to trans
ribe an audio re
ording (an utteran
e) in an automati
 way. For de
ades

the traditional ASR systems used Hidden Markov Models (HMM) with Gaussian Mix-

ture Models (GMM) and, until very re
ently, these HMM/GMM models represented

the state-of-the-art te
hnology in ASR. Nowadays, with the advent of Deep Neural

Networks (DNN) the original HMM/GMM models have been repla
ed by the new

HMM/DNN hybrids.

DNNs are a new type of Arti�
ial Neural Networks, whi
h di�er in one important

aspe
t from the previous ones, namely that they have more than one hidden layer

(usually three or more). This de�nition might seem a little vague and the question

arises of whether this means that we only need to add a few new hidden layers to an

ANN to upgrade it to a DNN. The simple answer of 
ourse is no, as with the addition of

extra hidden layers we 
ome up against several problems that make it hard to train the

nets. So besides adding new hidden layers, we need other modi�
ations like 
hanging

the a
tivation fun
tion of the neurons or the learning algorithm itself.

The new HMM/DNN hybrids are now routinely used in state-of-the-art ASR sys-

tems, but they inherited many of the algorithms from their prede
essors (the standard

HMM/GMM systems). However, the optimality of these algorithms is not guaranteed

with the new models. The main fo
us of this dissertation is to modify some of these

earlier methods in spee
h re
ognition so that they better suit the new DNN-based

a
ousti
 models. Our main goal is to 
reate new solutions that allow the training of

HMM/DNN a
ousti
 models without relying on GMMs during the training pro
ess.

To a
hieve the GMM-free training of a HMM/DNN hybrid, we have to solve two key

problems, namely the initial alignment of the frame-level state labels and the 
reation

of 
ontext-dependent (CD) states. We solved the �rst problem by modifying a standard

sequen
e dis
riminative training method and showed that with the modi�ed algorithm

it is possible to train randomly initialised DNNs without the frame-level alignment

1



2 Chapter 1. Introdu
tion

Figure 1.1: An example ANN stru
ture with one hidden layer.

of the 
ontext independent (CI) labels. For the 
reation of CD states, we proposed

a solution whi
h applies a Kullba
k-Leibler divergen
e-based de
ision 
riterion during

state 
lustering. Quite re
ently, several arti
les have been published about GMM-free

systems, so we also 
ompared the performan
e of our methods with some of these new

approa
hes and found that our algorithms are quite 
ompetitive. Furthermore, we also

addressed a spe
ial problem of the CD states, namely that of the imbalan
ed 
lass

distribution. We showed that a very simple re-sampling method with the adjustment

of the priors 
an signi�
antly improve the a

ura
y of DNN-based a
ousti
 models.

1.1 Arti�
ial Neural Networks

Now, we will give a brief des
ription of Arti�
ial Neural Networks (ANN) [2℄. The


on
ept of ANNs was inspired by biologi
al neural networks, and the basi
 building

blo
k of these networks is the arti�
ial neural model 
alled the per
eptron. In an ANN,

these neurons form layers so that the neurons in one layer are 
onne
ted to neurons

from other layers (the 
onne
tion is dire
ted), and ea
h 
onne
tion has a weight whi
h

represents the strength of the given 
onne
tion. The layers 
an be grouped into three


ategories. The input stimuli are passed to the network through the input layer, and

the response of the ANN is observable in the output layer. The hidden layers are

responsible for extra
ting di�erent features (hidden representations), and this is where

the a
tual pro
essing is done. Figure 1.1 depi
ts a simple ANN stru
ture.

The neurons are very simple pro
essing units. They re
eive the a
tivations of other

neurons (x) through the in
oming 
onne
tions, then they 
al
ulate the weighted sum

of these values using the weights (w). After the sum has been 
al
ulated, bias value (b)

of the neuron is also added. Then, the a
tivation fun
tion (f) is applied to determine
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h Re
ognition 3

the output (o) of a given neuron. Formally,

o(x) = f

(

M
∑

i=1

wixi + b

)

, (1.1)

where M is the number of inputs for the given neuron.

One of the most widely spread a
tivation fun
tions for hidden neurons is the sigmoid

fun
tion,

Sigmoid(x) =
1

1 + e−x
. (1.2)

This fun
tion is still in use mostly in shallow networks, as in deep stru
tures it is

plagued by an e�e
t 
alled the vanishing gradient e�e
t. The output neurons of an

ANN 
lassi�er use a spe
ial a
tivation fun
tion 
alled the softmax fun
tion. It is

de�ned by the relation

Softmax(xi) =
exi

∑N

j=1 e
xj

, (1.3)

where N is the number of output neurons. By applying this type of a
tivation, we 
an

interpret the output of the network as a posterior probability ve
tor, as the values ful�l

all the requirements, sin
e they are guaranteed to be non-negative and add up to one.

The last thing we need to address here is the training algorithm of the ANN.

The ba
kpropagation algorithm o�ers a simple solution to this [2℄. The �rst thing

it requires is an error fun
tion, whi
h determines the error by 
omparing the output

produ
ed by the ANN and the expe
ted output. For 
lassi�
ation tasks, we minimise

the 
ross-entropy (CE) 
ost fun
tion

CE(p, y) = −

N
∑

i=1

yilog(pi), (1.4)

where y is the one-hot expe
ted output ve
tor and the pi values are the a
tivations

of the output neurons. Using CE we 
an easily 
al
ulate the error of ea
h output

neuron, then all we need to do is to propagate this error ba
k to the hidden neurons.

On
e ea
h hidden neuron has an error value, the gradients of the weights and biases


an be 
al
ulated. After the gradient 
omputations, the parameters are updated in an

attempt to minimise the error fun
tion. For more details on how the ba
kpropagation

algorithm works, see [2℄.

1.2 Automati
 Spee
h Re
ognition

Automati
 Spee
h Re
ognition or Spee
h-to-Text systems seek to trans
ribe the audio

input automati
ally, where the trans
ription is usually a sequen
e of words or in some
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Figure 1.2: The standard work�ow of a HMM/DNN-based ASR system.


ases a sequen
e of phonemes. This transformation is not an easy task; it takes humans

years to learn it, and even then we still make mistakes (we mishear words) [3℄.

A standard ASR system 
onsists of three main 
omponents, as shown in Figure 1.2;

namely the feature extra
tor, the a
ousti
 model and the language model. In the fol-

lowing se
tions we will explain the fun
tions of these parts, but before that we need to

address an important question. It is how we 
an determine whi
h methods are better

and whi
h are worse. Many ASR solutions have been proposed over the years so we

need an evaluation metri
 to 
ompare the results of these methods. Perhaps the most

straightforward way of 
omparing di�erent ASR solutions is to evaluate them on the

same test data and 
al
ulate their a

ura
y values. To 
al
ulate the a

ura
y, we need

to 
ompare the trans
riptions produ
ed by the system with the original referen
e tran-

s
riptions. For this, �rst the optimal alignment is found using a dynami
 programming

method, and then the number of substitution (S), deletion (D) and insertion errors

(I) 
an be 
al
ulated. The a

ura
y metri
 is then de�ned as

Accuracy =
N −D − S − I

N
, (1.5)

where N is the total number of words or phonemes in the referen
e trans
riptions.

With this metri
, we 
an easily 
ompare the performan
e of di�erent systems.

1.3 Feature Extra
tion for Spee
h Pro
essing

Next, we will fo
us on the most popular methods that are used to transform the raw

spee
h waveform into a sequen
e of parameter ve
tors. The feature extra
tion step

is an essential part of the spee
h re
ognition pipeline, but we should mention that

very re
ently a new alternative has appeared. Some new networks attempt to use the

raw audio input without any transformation [4℄; however the re
ognition a

ura
ies of

these approa
hes are still far from those of the best systems built on standard feature

extra
tion methods.
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Figure 1.3: Illustration of the triangular �lters on the mel-s
ale (image from the HTK-

Book [1℄)

1.3.1 Filterbanks

It is well known that the human ear resolves frequen
ies non-linearly a
ross the audio

spe
trum, and empiri
al eviden
e also suggests that designing a front-end to operate

in a similar non-linear manner ought to improve re
ognition performan
e. Filterbank

analysis (FBank) o�ers a straight-forward route for obtaining the desired non-linear

frequen
y resolution [1℄. As 
an be seen in Figure 1.3, the �lters used by the FBank

analysis have a triangular form and they are equally spa
ed along the mel-s
ale, whi
h

is de�ned by

Mel(f) = 2595 log10(1 +
f

700
). (1.6)

The FBank extra
tor �rst transforms a window of spee
h data using a Fourier

transform and the magnitude is 
al
ulated. The magnitude 
oe�
ients are then binned

by 
orrelating them with ea
h triangular �lter. These triangular �lters are spread over

the whole frequen
y range from zero up to the Nyquist frequen
y, and binning means

that ea
h Fast Fourier Transformation (FFT) magnitude 
oe�
ient is multiplied by

the 
orresponding �lter gain. After the a

umulation of the results, ea
h bin holds a

weighted sum representing the spe
tral magnitude in that �lterbank 
hannel. For the

last step, we take the logarithm of the bins values to get the �nal FBank features.

The main problem with FBank features is that they are highly 
orrelated, so if we

want to use it as the input of a HMM/GMM based re
ogniser, we will need to apply

a 
epstral transformation �rst.

1.3.2 Mel-Frequen
y Cepstral Coe�
ients

For de
ades the most favoured feature type in spee
h re
ognition was the Mel-Frequen
y

Cepstral Coe�
ients (MFCCs) [1℄. These are 
al
ulated from the FBank amplitudes
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{mj} using the Dis
rete Cosine Transform (DCT)

ci =

√

2

N

N
∑

j=1

mj cos

(

πi

N
(j − 0.5)

)

, (1.7)

where N is the number of �lterbank 
hannels. By taking just the �rst few basis ve
tors

we get a good, data-independent approximation of the prin
ipal dimensions. Doing

this, the features be
omes de
orrelated, hen
e they 
an be used by a GMM.

To further augment the FBank or MFCC feature sets it is 
ommon pra
ti
e to


on
atenate the energy of the spee
h window with the features. The energy in a frame

is 
omputed as the log of the signal energy; that is, for spee
h samples {sn}

E = log

T
∑

n=1

s2n, (1.8)

where T is the number of samples in a given frame.

1.3.3 Feature-spa
e Maximum Likelihood Linear Regression

Nowadays, speaker adapted systems a
hieve the best results on many spee
h re
ogni-

tion tasks. Speaker adaptive training (SAT) 
ould and should be used if the training


orpus 
ontains a su�
ient amount of spee
h from multiple speakers. The main idea of

SAT is to transform every utteran
e in the training 
orpus before we train the a
ousti


model, the goal of this transformation being to redu
e the interspeaker di�eren
es,

while keeping the intraspeaker variations. Feature-spa
e Maximum Likelihood Linear

Regression (fMLLR), also known as 
onstrained MLLR, is a widely used speaker adap-

tation te
hnique, but it 
an only be used if a HMM/GMM system trained on MFCCs

is available. Next, we shall give a brief des
ription of how fMLLR works based on

the arti
le of Povey and Saon [5℄. The fMLLR method applies a very simple a�ne

transformation in the form of

x̂t = W sφt, (1.9)

where φt = [xt

1 ] is the extended input feature ve
tor at time t and W s = [As, bs] is the

transformation matrix of speaker s. The name �
onstrained� 
omes from the fa
t that

only one transformation matrix (A) is used instead of using separate transformations

for the means and the 
ovarian
es. To �nd the best W s
transformations, �rst we

de�ne the auxiliary fun
tion as the sum of log|det(As)| and the likelihood of x̂t
. The

part of the auxiliary fun
tion that 
hanges with the 
urrent transform W s
(ex
luding

the determinant) 
an be written as

−0.5
M
∑

m=1

csmE
(

d
∑

i=1

(µ
(m)
i − wT

i φ
t)2

σ2(m)

i

)sm

, (1.10)
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where csm is a 
onstant, E(.)sm 
al
ulates the average value for speaker s and Gaussian

m, µ(m)
and σ2(m)

are the means and 
ovarian
es of Gaussian m, respe
tively.

To simplify the auxiliary fun
tion, let us de�ne the linear and quadrati
 terms in

wi (the ith row of W s
) as ki and Gi:

ki =

M
∑

m=1

csmµ
(m)
i E(φ)sm

σ2(m)

i

, (1.11)

Gi =
M
∑

m=1

csmE(φφT )sm

σ2(m)

i

. (1.12)

Then the auxiliary fun
tion 
an be expressed as

log(|det(A)|)−

d
∑

i=1

(wT
i ki − 0.5wT

i Giwi). (1.13)

Lastly, the W s
matri
es are estimated by using a row-by-row method that maximises

Equation 1.13. For more details on fMLLR, see [6℄.

To summarise, fMLLR o�ers an easy way to perform SAT, but it has a big drawba
k

as speaker annotations are needed for ea
h utteran
e before adaptation.

1.3.4 Using the ∆ and ∆∆ features

Empiri
al studies demonstrate that the performan
e of a spee
h re
ognition system


an be greatly enhan
ed by adding time derivatives to the basi
 stati
 parameters.

One possible explanation of why this helps is that by doing so we basi
ally extend the

input window of the a
ousti
 model, thus we allow it to use information from a wider

time window. The delta 
oe�
ients 
an be 
omputed using the following regression

formula [1℄

∆t =

∑Θ
θ=1 θ(ct+θ − ct−θ)

2
∑Θ

θ=1 θ
2

, (1.14)

where ∆t is a delta 
oe�
ient at time t 
omputed in terms of the 
orresponding stati



oe�
ients from ct−Θ to ct+Θ. If we apply the same formula to the delta 
oe�
ients,

we get the a

eleration 
oe�
ients (∆∆).

1.4 A
ousti
 modelling with HMMs

After the feature extra
tion step, we 
an train the a
ousti
 model 
omponent of the

re
ogniser. This task is not an easy one as the a
ousti
 model has to learn the relation-

ship between the input features and the words uttered. Traditional systems �rst split
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the trans
ription at the word-level into a phoneme sequen
e, and these phonemes 
an

be de�ned as spee
h segments that possess distin
t physi
al or per
eptual properties.

The phonemes are the basi
 building blo
ks in spee
h re
ognition.

Now we need a method that 
an be trained to produ
e the 
orre
t phoneme se-

quen
e given the input features. Hidden Markov Models (HMMs) are the most popular


hoi
e for this task. A HMM is 
hara
terised by the following:

• S is the �nite set of the states, whi
h are also 
alled hidden states (as they

are not dire
tly observed). In spee
h re
ognition, ea
h state 
orresponds to

a phoneme or part of the phoneme. We shall denote the individual states by

S = s1, s2, . . . , sN , and the state at time t by qt

• O = o1, o2, . . . , oT is the observation sequen
e, and V = v1, v2, . . . , vM is the

set of the individual symbols, whi
h 
an be omitted.

• The a
tual state 
ould be determined using the state transition probability values

A = aij, where

aij = P (qt+1 = sj|qt = si). (1.15)

• The output of the HMM is 
ontrolled by the observation probability distribution

B = {bi(k)}, where

bi(k) = P (ot = vk|qt = si). (1.16)

• Lastly the model needs an initial state distribution, whi
h stores the probability

values of P (q1 = si).

As 
an be seen, HMMs make two key assumptions. First, they assume that the


urrent observation (ot) is only dependent on the a
tual state (qt). The problem with

this is that we expe
t the model to 
orre
tly guess qt using only one input frame, whi
h

is usually a 25 ms-long MFCC or Fbank ve
tor, whi
h represents only a fra
tion of the

average phoneme duration (˜150 ms). A possible solution to over
ome this problem

is to extend the input with a few neighbouring frames, thus allowing the model to

make de
isions using a more appropriate time window. The se
ond assumption that

HMMs make is that st only depends on st−1 and it is 
onditionally independent of the

other pre
eding states. One 
ould 
ompensate for this by further extending the input

window, but empiri
ally a better solution is to use the ∆ and ∆∆ features, as this

allows the system to guess the previous and su

essive values e�
iently.

As we mentioned before, the hidden states usually 
orrespond to a phoneme, but

the problem of 
o-arti
ulation 
ompli
ates this. The most 
ommon way of dealing with


o-arti
ulation is to use a tri-state model. In a tri-state model ea
h phoneme is split

into three parts; namely the beginning, the middle and the ending part. Figure 1.4
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Figure 1.4: The tri-state HMM phoneme model.

shows the tri-state phoneme model. The idea behind this is simple. As 
o-arti
ulation

does not a�e
t the middle part of the phone, by separating the problemati
 parts we

hope to make the learning task easier. The tri-state model has an additional bene�t

that it enfor
es a minimal duration (3 frames at least) on ea
h phoneme as the de
oder

has to go through all three states. Using 
ontext dependent (CD) labels is another

option. In this 
ase, we use three phonemes to label the a
tual observation, namely the

pre
eding, the a
tual and the su

eeding phonemes. Unfortunately the large amount

of possible observations makes it impossible to train the a
ousti
 model, so we need

to 
luster these CD states before training. We will des
ribe state 
lustering in more

detail later on in Chapter 4.

We should mention that Equation 1.16 des
ribes a HMM with dis
rete observa-

tions, but spee
h is represented by a 
ontinuous signal. Of 
ourse, HMMs 
an omit


ontinuous observations with the use of Gaussian Mixture Models (GMMs), the task

of these GMMs being to provide a 
ontinuous estimation for bi(k). These models are


alled HMM/GMM and they were the standard te
hnique in ASR for de
ades, until

the appearan
e of DNNs. In the past few years the GMM part has been repla
ed by

DNN, resulting in the new HMM/DNN hybrid model, whi
h will be explained later.

Now we 
an fo
us on the three basi
 tasks that 
an be handled with an HMM,

namely the evaluation, de
oding and learning problems. Evaluation means that we wish

to �nd the probability of an observation given the HMM parameters, an example of this

in spee
h re
ognition being the task of isolated word re
ognition. The se
ond problem

(de
oding) is essential in 
ontinuous spee
h re
ognition, whi
h seeks to �nd the most

likely sequen
e of hidden states (phonemes) given the HMM and and observation

sequen
e. The Viterbi algorithm is a dynami
 programming method that o�ers a

simple solution to the de
oding problem [7℄.

The Baum-Wel
h algorithm [7℄ is the standard method used to train a HMM. It
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applies the forward-ba
kward algorithm (des
ribed in Chapter 3) to �nd the maximum

likelihood estimates of the parameters given a set of observed feature ve
tors and the

known sequen
e of hidden states.

1.4.1 HMM/DNN model

After having outlined the HMM part of the hybrid model, we will now fo
us on the

DNN part. It is 
lear that the a
ousti
 model requires a 
omponent that 
an estimate

the bi(k) values (the observation probability values). For de
ades GMMs were routinely

used for this task, but we should add that shallow ANNs were also used by s
ientists

but they failed to signi�
antly outperform GMMs. This situation has 
hanged with the

appearan
e of DNNs, whi
h have a superior performan
e in general 
ompared to that

of the GMMs.

The su

ess of the DNNs 
ould be 
redited to several fa
tors. These are:

• DNNs are able to estimate the posterior probabilities of HMM states using any

kind of input, even highly 
orrelated ones, unlike GMMs.

• DNNs 
an be trained e�
iently using a large amount of training data. A
tually,

it is an essential aspe
t of deep learning to use a lot of data.

• DNNs generalise better than GMMs. The explanation for this is the fa
t that

the output of a DNN is sensitive to a lot of weights in the network, hen
e it 
an

learn far more 
omplex relationships between the inputs and the labels.

Of 
ourse, we should mention that it is also harder to train a DNN than it is to

�t a GMM. DNNs have many meta-parameters that need to be �ne-tuned and usually

they have many more parameters than GMMs do. Fortunately, nowadays one 
an train

DNNs on spe
ial hardware 
alled the Graphi
al Pro
essing Unit (GPU) to speed up

the training pro
edure and qui
kly tune the meta-parameters.

When DNNs are trained as a
ousti
 models, they attempt to estimate the proba-

bility values of the hidden states using observations as input. The ith output of the

network at time t 
an be written as

dnni,t = P (qi|ot). (1.17)

The problem is that the HMM requires the estimates of P (ot|qi), so using the

Bayes rule the outputs of the DNNs must be reformulated as

dnni,t = P (qi|ot) =
P (ot|qi)P (qi)

P (ot)
. (1.18)
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After reordering, we get

P (ot|qi) = P (ot)
P (qi|ot)

P (qi)
= P (ot)

dnni,t

P (qi)
, (1.19)

where P (qi) is the prior probability of state i. Sin
e the de
oding pro
ess aims to �nd

the most probable sequen
e of states and P (ot) is 
onstant for ea
h state, it 
an be

ignored.

1.5 Language Model

The purpose of a language model (LM) is to assign probabilities to word sequen
es.

In spee
h re
ognition it is used to 
onvert the output of the a
ousti
 model into a

word sequen
e, and to a
hieve this it requires a lexi
on (also 
alled the pronun
iation

di
tionary) that 
ontains the pronun
iations for all re
ognizable words. In our study,

we utilised the simplest model 
alled an N-gram. N-grams use the Markov assumption,

meaning that the probability of a word depends only on the previous N word. Thus

the N-gram model approximates the probability of the next word in a senten
e as

P (wn|w
n−1
1 ) ≈ P (wn|w

n−1
1+n−N). (1.20)

Using a 2-gram (also 
alled a bigram model), the probability of the whole sequen
e


an be 
al
ulated by using the 
hain rule

P (wn
1 ) ≈

n
∏

i=1

P (wi|wi−1). (1.21)

Next, we need a way to estimate the N-gram probability values. Lu
kily, we 
an


al
ulate the N-gram probabilities using a very simple method 
alled Maximum Likeli-

hood Estimation (MLE) [7℄. The 
onditional probabilities 
an be 
al
ulated by getting

the number of o

urren
es from a 
orpus and normalising them to a value between 0

and 1. In the 
ase of a bigram model this means that we need to 
ount all appearan
es

of the words x and y, when they are in the 
orre
t order and divide this by the number

of all word pairs, whi
h start with x. Formally,

P (y|x) =
C(xy)

∑

w C(xw)
. (1.22)

Typi
ally, however, the N-gram model probability values are not 
al
ulated dire
tly

from the frequen
y 
ounts, as it gives 0 when 
onfronted with any N-gram that is not

present in the training 
orpus. To over
ome this problem, some form of smoothing is

ne
essary, diverting a portion of the total probability mass to unseen N-grams. Various
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methods are used, ranging from the simple add-one smoothing (assign a 
ount of 1 to

unseen n-grams) to more sophisti
ated methods, like the Good-Turing dis
ounting or

the ba
k-o� models. Here we used the Katz ba
k-o� model [7℄, whi
h simply redu
es

N if the N-gram was not seen enough times in the training data. The new estimate

for PKatz(wi|wi−N+1 . . . wi−1) is






dwi−N+1...wi

C(wi−N+1...wi−1wi)

C(wi−N+1...wi−1)
, ifC(wi−N+1 . . . wi) > k

αwi−N+1...wi−1
PKatz(wi|wi−N+2 . . . wi−1) otherwise,

(1.23)

where α is the ba
k-o� weight, k is a threshold and d is a s
aling fa
tor, whi
h typi
ally

has a value of the amount of dis
ounting found by the Good-Turing estimation.

1.6 The Szeged Broad
ast News Corpus

The Szeged Hungarian Broad
ast News Corpus was the dataset used in all 
hapter. It

was re
orded and trans
ribed at the Resear
h Group on Arti�
ial Intelligen
e, belong-

ing to the Hungarian A
ademy of S
ien
es and the University of Szeged Institute of

Informati
s [8℄. The 
orpus 
ontains 115 news broad
asts whi
h were re
orded from 8

di�erent television 
hannels. These re
ordings were 
ut into short utteran
es, and the

resulting segments were pla
ed into one of the following 
ategories:

• Clean spee
h: utteran
es in this 
ategory 
ontain well-arti
ulated, mostly planned

spee
h, and have a minimal level of ba
kground noise. Most re
ordings in this


ategory were originally �lmed in a studio, and were spoken by professional news-


asters.

• Noisy spee
h: spee
h in this 
ategory is still mostly planned, but it has a higher

level of ba
kground noise. Re
ordings in this 
ategory are typi
ally taken from

on-site reporters speaking in a noisy environment.

The database 
ontains approximately 28 hours of re
ordings, from whi
h 22 hours

were sele
ted for the training set, 2 hours for the development set and 4 hours for the

test set. The 
lean part of the 
orpus was also partitioned, 44 news
asts (altogether

approximately 5.5 hours) were used for training, 9 news
asts (altogether approximately

1 hour) were used for development and validation, while the remaining 17 news
asts

(altogether approximately 2 hours) were used for testing purposes. Both partitionings

of the re
ordings were 
arried out in su
h a way that ea
h set 
ontained re
ordings

from all television stations. All the re
ordings were orthographi
ally typed, and the 
or-

responding phoneti
 trans
ripts were 
reated with a simple phoneti
 trans
riber. The

phoneti
 labels of the database 
onsist of 52 
ategories. In this thesis, we 
ondu
ted

both phoneme and word re
ognition experiments on this 
orpus.
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1.7 Summary by Chapters

The thesis is organised as follows:

• In Chapter 2, we 
ompare the performan
e of four algorithms used to train

DNNs. The �rst two algorithms are two-phase methods as they apply a pre-

training step before �ne-tuning the DNN, the �rst one being the original algo-

rithm proposed by Hinton et al. [9℄. The se
ond algorithm 
reated by Seide et al.

[10℄ is 
alled dis
riminative pre-training. As for the third option, we 
hoose the

Deep Re
ti�er Network (DRN), whi
h di�ers greatly from the above two in the

sense that here it is not the training algorithm that is modi�ed, but the a
tivation

of the hidden neurons. The fourth training algorithm is a regularization method


alled Dropout[11℄, whi
h simply turns o� neurons temporarily during training.

In our experiments, we �rst 
ompared the results got by using these methods

on the English TIMIT database and on a Hungarian audiobook 
orpus [12℄, but

the main goal in this 
ase is to obtain results for a large vo
abulary Hungarian

re
ognition task. For this purpose, we trained a re
ognition system on the 28-

hour spee
h 
orpus of the Szeged Hungarian Broad
ast News [8℄.

• In Chapter 3, we 
ompare two sequen
e training approa
hes, namely the Con-

ne
tionist Temporal Classi�
ation (CTC) and the Maximum Mutual Information

(MMI) method. Our aim here is to �nd a purely DNN-based solution that 
ould

be used to train randomly initialised DNNs without for
e-aligned labels. Although

CTC was originally proposed for the training of re
urrent neural networks, here

we show that it 
an also be employed to train re
ti�er networks as well. We will

also show that with our modi�
ations, MMI is also suitable for this task.

• In Chapter 4, we fo
us on 
reating a GMM-free HMM/DNN system. For this

we have to solve two problems, namely the initial alignment of the frame-level

state labels and the 
reation of 
ontext-dependent states. To 
reate the ini-

tial alignments, we rely on the MMI-based method des
ribed in Chapter 3 and


ompare it with another solution, whi
h iteratively trains and realigns the DNN.

Re
ently, some new methods have been published whi
h o�er a way to 
reate

CD states using only HMM/DNNs. We will 
ompare the performan
e of three

of these new approa
hes with that of our own solution.

• In Chapter 5, we explore a possible way of handling the imbalan
e in the CD

state distribution. This imbalan
e in the 
lass distribution poses a signi�
ant
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hallenge to DNNs. A straightforward solution is to re-sample the training data,

either by upsampling the rarer 
lasses or by dowsampling the more 
ommon


lasses. Here, we experiment with the so-
alled probabilisti
 sampling method

that applies downsampling and upsampling at the same time. We also propose a

new method to re-estimate the 
lass priors, to remedy the mismat
h between the

training and the test data distributions introdu
ed by re-sampling. Our experi-

mental results indi
ate that by applying the probabilisti
 re-sampling algorithm

during the training and properly setting the priors, we 
an markedly improve the

a

ura
y of CD DNNs.

• In Chapter 6, we provide a brief summary of the 
ontributions outlined in the

thesis and dis
uss possible dire
tions for future resear
h.



Chapter 2

A Comparison of Deep Neural

Network Training Methods for

Large Vo
abulary Continuous

Spee
h Re
ognition

In the past few years there has been a renewed interest in applying neural networks to

spee
h re
ognition, thanks to the invention of Deep Neural Networks. As we already

remarked in Chapter 1, DNNs di�er from 
onventional ones in that they 
onsist of

several hidden layers. The appli
ation of a deep stru
ture 
an provide signi�
ant im-

provements in spee
h re
ognition results 
ompared to previously used te
hniques [13℄.

However, modifying the network ar
hite
ture also requires modi�
ations to the training

algorithm, be
ause the 
onventional ba
kpropagation algorithm en
ounters di�
ulties

when training many-layered feedforward networks [14℄. As a solution, Hinton et al.

presented a pre-training algorithm that works in an unsupervised fashion [9℄. After this

pre-training step, the ba
kpropagation algorithm 
an �nd a mu
h better lo
al optimum

of the parameters. The �rst appli
ations of Deep Networks for spee
h re
ognition were

performed on the TIMIT database [15℄, whi
h is mu
h smaller than the 
orpora rou-

tinely used for the training of industrial-s
ale spee
h re
ognizers. Hen
e, sin
e their

invention, a lot of e�ort has been devoted to s
aling up DNNs so that they 
ould be

trained using mu
h larger datasets and large vo
abulary tasks [10, 16, 17℄. The main

problem is that Hinton's pre-training algorithm is quite intensive 
omputation-wise,

even when implemented on graphi
 pro
essors. Several solutions have been proposed

to alleviate or 
ir
umvent the 
omputational burden of pre-training, but the sear
h for

the optimal training te
hnique is still going on.

15
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2.1 Introdu
tion

In this 
hapter, we 
ompare four di�erent te
hnologies used for the training of DNNs.

The �rst one is the original pre-training algorithm of Hinton et al. [9℄. It treats the

network as a deep belief network built out of restri
ted Bolztmann ma
hines, and opti-

mizes an energy-based target fun
tion using the 
ontrastive divergen
e (CD) algorithm.

After pre-training, the network has to be �ne-tuned using some 
onventional training

method like ba
kpropagation.

The se
ond algorithm is 
alled �dis
riminative pre-training� by Seide et al. [10℄.

This method 
onstru
ts a deep network by adding one layer at a time, and trains these

sub-networks after the addition of ea
h layer. Both the pre-training of the partial nets

and the �nal training of the full network 
an be performed using ba
kpropagation, so

no spe
ial training algorithm is required.

As for the third method, it is di�erent from the two above in the sense that in

this 
ase it is not the training algorithm that is modi�ed, but the neurons themselves.

Namely, the usual sigmoid a
tivation fun
tion is repla
ed with the re
ti�er fun
tion

max(0, x). These kinds of neural units were proposed by Glorot et al., and were

su

essfully applied to image re
ognition and NLP tasks [14℄. Re
ti�ed linear units were

also found to improve restri
ted Boltzmann ma
hines [18℄. It has been shown re
ently

that a deep re
ti�er network 
an attain the same phone re
ognition performan
e as

that for the pre-trained nets of Mohamed et al. [15℄, but without the need for any

pre-training [19℄.

The fourth method 
alled Dropout was introdu
ed a few years ago by Hinton et

al. [11℄. Unlike the previous methods, it is a regularisation te
hnique, meaning that

it is just a re�nement of the training algorithm. The term �dropout� refers to the

fa
t that during training, neurons in the network are randomly dropped out. Dropping

neurons from the network 
an be a
hieved by simply zeroing out the a
tivation of the


hosen units. The main advantage of this method is that it helps neural networks to

generalise better, thus it improves their performan
e espe
ially in 
ase of noisy input.

Another advantage of Dropout is the fa
t that it 
an be 
ombined with any training

algorithms, sin
e it is a regularisation method, so we will use it not just with standard

sigmoid networks but with re
ti�er ones too.

In our experiments, we �rst 
ompared the performan
e of the four methods on the

English TIMIT database and on a Hungarian audiobook 
orpus [12℄, but the main goal

of this study is to obtain results for a large vo
abulary Hungarian re
ognition task. For

this purpose, we trained a re
ognition system on a 28-hour spee
h 
orpus of Hungarian

Broad
ast News, presented in Se
tion 1.6.

The re
ogniser is a hybrid HMM/DNN system [20℄ that estimates the state-level
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posterior probability values from the neural net, while the de
oder is the HDe
ode

program, whi
h is a part of the HTK pa
kage [1℄. As Hungarian is an agglutinative

language, our system runs with a relatively large di
tionary of almost �ve hundred

thousand word forms.

2.2 Training Methods for Deep Neural Networks

In the last few years there has been a renewed interest in applying neural networks,

espe
ially Deep Neural Networks, to various tasks. To properly train these multi-layered

feedforward networks, the training algorithm requires modi�
ations as the 
onventional

ba
kpropagation algorithm en
ounters di�
ulties (�vanishing gradient� and �explaining

away� e�e
ts).

In this 
ase the �vanishing gradient� e�e
t means that the error might 
onverge to

zero as it gets propagated ba
k through the hidden layers [21℄. The reason for this

is simple: ea
h weight in the neural network re
eives an update proportional to the

gradient of the error fun
tion with respe
t to the 
urrent weight during ea
h iteration

of training. The most 
ommonly used a
tivation fun
tions like the sigmoid fun
tion

have gradients in the range (0, 1), and ba
kpropagation 
omputes gradients using the


hain rule. This means that if we multiply these small values to 
ompute gradients of a

�deeper� layer in a neural network, the gradient (error signal) de
reases exponentially.

This 
ould 
ause some hidden layers, in parti
ular those that are 
losest to the input

layer, to have gradients 
lose to zero and as a 
onsequen
e the whole network may fail

to learn.

At the same time, in fully 
onne
ted deep networks, the �explaining away� e�e
ts

make inferen
e extremely di�
ult in pra
ti
e [9℄. Explaining away is a well-known

phenomenon in Bayesian networks whi
h has a V shaped stru
ture (two input and

one output node). For DNNs the assumption that hidden neurons are independent

be
omes invalid as they 
ould be
ome anti
orrelated. For example, if an output node


an be a
tivated by two equally rare and independent events (hidden neurons) with

an even smaller 
han
e of o

urring simultaneously, then the a
tivation of one of the

hidden nodes negates (explains away) the o

urren
e of the other in su
h a way that a

negative 
orrelation is obtained between the two neurons. This makes the training of

DNNs using the standard ba
kpropagation di�
ult as it 
ould 
onverge to a suboptimal

model. Several solutions have been proposed to over
ome these problems, and here

we 
ompare four of them empiri
ally.
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H1 H2 H3

V1 V2 V3 V4

Figure 2.1: RBM with 3 hidden and 4 visible neurons.

2.2.1 DBN Pre-Training

This e�
ient unsupervised algorithm, �rst des
ribed in [9℄, 
an be used to learn the


onne
tion weights of a Deep Belief Network (DBN) 
onsisting of several layers of

Restri
ted Boltzmann Ma
hines (RBMs). The RBMs are a variant of Boltzmann

Ma
hines, with the restri
tion that their neurons must form a bipartite graph. They

have an input layer (
alled the visible layer), representing the features of the given

task, and a hidden layer whi
h has to learn some representation of the input. The

restri
tion 
ompared to the simple Boltzmann Ma
hines is that ea
h 
onne
tion in an

RBM must be between a visible unit and a hidden unit, thus forming a bipartite graph.

Figure 2.1 provides a graphi
al depi
tion of an RBM. These RBMs 
an be trained

using the Contrastive Divergen
e (CD) algorithm proposed by Hinton et al. in [9℄.

The main idea behind CD is that the RBM assigns the following energy value to ea
h


on�guration of visible and hidden state ve
tors, denoted by v and h, respe
tively:

E(v, h; Θ) = −

V
∑

i=1

H
∑

j=1

wijvihj −

V
∑

i=1

aivi −

H
∑

j=1

bjhj (2.1)

where the weights of the 
onne
tion between a visible and hidden neuron are stored

in the matrix w, while bi and ai are the hidden and visible biases respe
tively. A key

element of the CD algorithm is Gibbs sampling, whi
h is a Markov 
hain Monte Carlo

algorithm. For RBMs one 
an sample the visible and hidden units using blo
k Gibbs

sampling, as the layers are 
onditionally independent. A sampling step is performed as

follows:

hn = f(Wvn−1 + b) (2.2)

vn = f(W ′hn−1 + a) (2.3)

In theory, ea
h learning epo
h would require Gibbs sampling to be repeated until

full 
onvergen
e is a
hieved. It is 
lear that in pra
ti
e one 
annot run the sampling


hain up to 
onvergen
e, as it would be 
omputationally expensive and extremely time-


onsuming. As a solution, Hinton proposed the one-step 
ontrastive divergen
e (CD-1)
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Figure 2.2: The DPT training pro
ess is shown, the new parts of the network being

shown in red; after a new layer is added we train the whole network not just the newly

added parts.

update rule for the visible-hidden weights:

∆wij ∝ 〈v0i h
0
j〉 − 〈v1i h

1
j〉. (2.4)

Note that CD-1 does not wait for the Markov 
hain to 
onverge, it runs a Gibbs sampler

initialised on the data for one full step.

Although RBMs with the energy fun
tion of Equation (2.1) are appli
able for binary

data, in spee
h re
ognition the a
ousti
 input is typi
ally represented by real-valued

feature ve
tors. For real-valued input ve
tors, the Gaussian-Bernoulli restri
ted Boltz-

mann ma
hine (GRBM) 
an be used, and it requires making only a minor modi�
ation

of Equation (2.1). The GRBM energy fun
tion is given by:

E(v, h|Θ) =
V
∑

i=1

(vi − ai)
2

2
−

V
∑

i=1

H
∑

j=1

wijvihj −
H
∑

j=1

bjhj (2.5)

Hinton et al. showed that the weights resulting from the unsupervised pre-training

algorithm 
an be used to initialise the weights of a deep, but otherwise standard, feed-

forward neural network. After this initialisation step, a softmax output layer needs

to be added to the network, then we simply use the ba
kpropagation algorithm to

�ne-tune the network weights with respe
t to a supervised 
riterion.

2.2.2 Dis
riminative Pre-Training

`Dis
riminative pre-training' (DPT) was proposed in [10℄ as an alternative to DBN

pre-training. It is a simple algorithm where �rst we train a network with one hidden

layer to full 
onvergen
e using ba
kpropagation; then we repla
e the softmax layer by

another randomly initialized hidden layer and a new softmax layer on top, and we train
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Figure 2.3: The re
ti�er a
tivation fun
tion and other 
ommonly used a
tivation fun
-

tions.

the network again; this pro
ess is repeated until we rea
h the desired number of hidden

layers. Figure 2.2 illustrates the general pro
edure.

This training method is very similar to the greedy layer-wise training algorithm of

Bengio et al. [22℄, but di�ers in that Bengio only updates the newly added hidden layers

and the output layer. Seide et al. found that this method gives the best results if one

performs only a few iterations of ba
kpropagation in the pre-training phase (instead of

training to full 
onvergen
e) with an unusually large learn rate. In their arti
le, they


on
luded that this simple training strategy performs just as well as the mu
h more


ompli
ated DBN pre-training method des
ribed above [10℄.

2.2.3 Deep Re
ti�er Networks

Re
ti�ed neural units were re
ently applied with su

ess in standard neural networks,

and they were also found to improve the performan
e of DNNs on tasks like image

re
ognition and spee
h re
ognition [14, 19℄. These re
ti�ed neurons apply the re
ti�er

fun
tion (max(0, x)) as the a
tivation fun
tion instead of the sigmoid or hyperboli


tangent a
tivation. The main advantage of Deep Re
ti�er Networks (DRNs) is that

thanks to their properties, they 
an be trained with the standard ba
kpropagation

algorithm, without any time-
onsuming pre-training. As Figure 2.3 shows, the re
ti�er

fun
tion is one-sided, hen
e it does not enfor
e a sign symmetry or antisymmetry.

Here, we will examine the two key properties of this one-sided fun
tion, namely its

hard saturation at 0 and its linear behaviour for positive input.

The hard saturation for negative input means that only a subset of neurons will

be a
tive in ea
h hidden layer. For example, when we initialize the weights uniformly,

around half of the hidden units output are real zeros. This allows re
ti�ed neurons

to a
hieve truly sparse representations of the data. In theory, this hard saturation

at 0 
ould harm optimization by blo
king gradient ba
k-propagation. Fortunately,
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experimental results do not support this opinion, suggesting that hard zeros 
an a
tually

help supervised training. These results show that the hard non-linearities do no harm

as long as the gradient 
an propagate along some path [14℄.

For a given input, the 
omputation is linear on the subset of a
tive neurons. On
e

the a
tive neurons have been sele
ted, the output is a linear 
ombination of their in-

put. This is why we 
an treat the model as an exponential number of linear models

that share parameters. Based on this linearity, there is no vanishing gradient e�e
t

[14℄, and the gradient 
an propagate via the a
tive neurons. Another advantage of

this linear behaviour is the smaller 
omputational 
ost: there is no need to 
ompute

the exponential fun
tion during the a
tivation, and the sparsity of neuron a
tivity 
an

also be exploited. A disadvantage of the linearity property is the �exploding gradient�

e�e
t, when the gradients 
an grow without limit. To prevent this, one 
ould apply

a regularisation te
hnique 
alled weight normalisation [23℄. Weight normalisation at-

tempts to keep the L1- or L2-norm of the weight matri
es the same as it was after

initialization by s
aling the weights during training. What makes this possible is that

for a given input the subset of a
tive neurons behaves linearly, so a s
aling of the

weights is equivalent to a s
aling of the a
tivations.

2.2.4 Dropout

Dropout di�ers from the previous methods in that it is a regularisation te
hnique.

The name refers to the fa
t that this method drops out neurons during training. In

pra
ti
e, the neuron dropout 
an be performed by applying a random binary mask.

By dropping a neuron out and temporarily removing it from the network, along with

all its in
oming and outgoing 
onne
tions, we basi
ally 
reate a di�erent model for

ea
h training example. The goal of dropout is to prevent over�tting by 
ombining

exponentially many di�erent neural network ar
hite
tures e�
iently. The dropout mask


ould be generated randomly with a λ parameter, and this 
ontrols the per
entage of

the dropped neurons.

During validation or testing, it is not feasible to average the predi
tions from

exponentially many models. However, a very simple approximate averaging method

works well in pra
ti
e. The idea is to use the original neural net stru
ture without

dropout, but the weights of this network need to be a s
aled-down version of the

trained weights. The s
aling-down 
ould be 
arried out in the following way: if a

neuron drops out with probability p during training, then the weights of that unit are

multiplied by 1−p before testing. The main advantage of this regularisation te
hnique

besides its simpli
ity is that it 
an be readily used with other training algorithms and

it 
an provide signi�
ant improvements.
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2.3 Experimental Setup

Here, we report the results of applying the ANN-based re
ognisers on three databases.

The �rst one is the 
lassi
 TIMIT database of English senten
es, while the se
ond is

a 
orpus of a Hungarian audiobook. The third database is 
alled Szeged Broad
ast

News. On TIMIT quite a lot of phone re
ognition results are available, so it is good

for 
omparative purposes. However, TIMIT is quite small and usually only phone-level

results are reported on it. The training set 
onsisted of the standard 3696 'si' and 'sx'

senten
es, while testing was performed on the 
ore test set (192 senten
es). A random

10% of the training set was held out for validation purposes, and this blo
k of data

will be referred to as the 'development set'. The s
ores reported are phone re
ognition

error rates using a phone bigram language model.

As the se
ond database we 
hose an audiobook for whi
h the original novel is so old

that its text is no longer 
opyrighted. Our 
hoi
e fell on the short story 
olle
tion by

Gyula Krúdy entitled 'Sinbad's Voyages', presented by the a
tor Sándor Gáspár. The

total duration of the 
orpus was 212 minutes and it was was 
arefully annotated, and

the di�eren
es between the original text and the sound material were 
orre
ted [12℄.

Ea
h �le in the 
orpus was segmented further into roughly two-minute long parts,

and for training and test purposes the re
ordings were divided into two parts. From

the ten short stories, eight were used for training (186 minutes) and two for testing

(26 minutes). As the training data was limited we only performed phoneme level

re
ognition with a phone bigram. One 
ould say that this task is very di�erent from

a real-life re
ognition task, as there was minimal noise and the training and testing

set are not speaker independent, a
tually the entire database is spoken by one person.

Due to these fa
ts one 
ould say that this task is spee
h re
ognition under optimal


onditions, and the results 
ould provide an empiri
al glass 
eiling for other tasks.

Lastly, in our tests on the Szeged Broad
ast News 
orpus we sought to measure

the large vo
abulary re
ognition performan
e of the methods applied. The language

model was 
reated from texts taken from the Origo news portal (www.origo.hu), from

a 
orpus of about 50 million words. Hungarian is an agglutinative language with a lot of

word forms, hen
e we limited the size of the re
ognition di
tionary to 486982 words by

keeping only those words that o

urred at least twi
e in the 
orpus. The pronun
iations

of these words were obtained from the `Hungarian Pronun
iation Di
tionary' [24℄.

Based on the Origo 
orpus, a trigram language model was built using the language

modelling tools of HTK [1℄.

As for the a
ousti
 features, we applied the standard 39 MFCC 
oe�
ients, ex-

tra
ted from 25 ms frames with 10 ms frame skips. We used MFCC 
oe�
ients

(in
luding the energy), along with the 
orresponding ∆ and ∆∆ values. In ea
h 
ase,
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the neural network was trained on 15 neighbouring frames, so the number of inputs to

the a
ousti
 model was 585.

Neural networks require a frame-level labeling of the training data. For this purpose,

we �rst trained a standard hidden Markov model (HMM) spee
h re
ogniser, again using

the HTK toolkit. For the TIMIT dataset, monophone 3-state models were 
reated,

whi
h resulted in 183 states. For the broad
ast news dataset, triphone models were


onstru
ted, 
onsisting of 2348 tied triphone states in total. The HMM states were

then aligned to the training data using for
ed alignment. These labels served as training

targets for the neural nets.

For the re
ognition pro
ess, we applied the de
oders of the HTK pa
kage. We used

HVite for the phone re
ognition experiments on TIMIT and the Hungarian audiobook,

while the HDe
ode routine was applied for the large vo
abulary re
ognition tests on the

broad
ast news task. In both 
ases, the a
ousti
 modeling module of HTK required a

slight modi�
ation so that it 
ould use the posterior probability values produ
ed by the

neural nets. For the TIMIT and the audiobook dataset, the language model weight and

the insertion penalty fa
tor were set to 1.0 and 0.0, respe
tively. With the broad
ast

news dataset, these meta-parameters were tuned on the development set. Lastly, for

a fairness of 
omparison, the pruning beam width was set to the same value for ea
h

network.

2.3.1 Training Parameters for the Neural Networks

As is standard in ma
hine learning, all hyperparameters of the training methods were

�ne-tuned on the development set. In the 
ase of the DBN-based pre-training method,

we applied sto
hasti
 gradient des
ent (i.e. ba
kpropagation) training with a mini-

bat
h size of 128. For Gaussian-binary RBMs, we ran 50 epo
hs with a �xed learning

rate of 0.002, while for binary-binary RBMs we used 30 epo
hs with a learning rate of

0.02. Then, to �ne-tune the pre-trained nets, again ba
kpropagation was applied with

the same mini-bat
h size as that used for pre-training. The initial learn rate was set

to 0.01, and it was halved after ea
h epo
h when the error on the development set

in
reased.

During both the pre-training and �ne-tuning phases, the learning was a

elerated

by using a momentum of 0.9. Momentum is a well-known regularisation te
hnique

for a

elerating gradient des
ent [25℄, whi
h a

umulates a velo
ity ve
tor of gradient

updates a
ross previous iterations. The momentum update rule in our implementation

is given by:

vt+1 = m ∗∆Wt+1 + (1−m)vt (2.6)

Wt+1 = Wt + ǫvt+1, (2.7)
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Figure 2.4: Phone error rates on the TIMIT dev set as a fun
tion of the number of

hidden layers.

where v is the matrix in whi
h the momentum of the gradient is stored, m is the

momentum 
oe�
ient parameter and ǫ is the learning rate.

Turning to the dis
riminative pre-training method, the initial learn rate was set

to 0.01, and it was halved after ea
h epo
h when the error on the development set

in
reased. The learn rate was restored to its initial value of 0.01 after the addition

of ea
h layer. Furthermore, we found that using 5 epo
hs of ba
kpropagation after

the introdu
tion of ea
h layer gave the best results. For both the pre-training and

�ne-tuning phases, we used a bat
h size of 128 and momentum of 0.8 (ex
ept for the

�rst epo
h). The initial learn rate for the �ne-tuning of the full network was again set

to 0.01.

The training of deep re
ti�er nets did not require any pre-training at all. The

training of the network was performed using ba
kpropagation with an initial learn rate

of 0.001 and a bat
h size of 128. The dropout method was applied with standard

sigmoid networks and with re
ti�ed ones as well. We did not 
ombine dropout with

the pre-training methods sin
e their training already required a lot of time and dropout

would have in
reased it even further. In the 
ase of the sigmoid network 20% of the

neurons were dropped randomly, while the re
ti�er networks required only 10% dropout

to a
hieve the best results.
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Figure 2.5: Phone error rates on the TIMIT 
ore test set as a fun
tion of the number

of hidden layers.

2.4 Results

2.4.1 TIMIT

Figures 2.4 and 2.5 show the phone re
ognition error rates obtained on the TIMIT dev

and 
ore test set, respe
tively, with a varying number of hidden layers, ea
h hidden layer


ontaining 2048 neurons. As 
an be seen, the deep learning methods performed very

similarly, up to 4 hidden layers and in the 
ase of �ve hidden layers, the re
ti�er nets

performed slightly better than the others. Ea
h deep learning method outperformed

the standard ba
kpropagation method (BP) on
e the network had at least two hidden

layers. The best results (21.87% and 21.75%) were obtained with re
ti�er networks,

whi
h had �ve hidden layers. The dropout regularisation improved the deep sigmoid

networks signi�
antly, but it gave only a minor improvement in the 
ase of the re
ti�er

networks. Besides the fa
t that dropout failed to improve the results signi�
antly, the

new hyperparameter, namely the dropout rate noti
eably in
reased the time needed

to tune the hyperparameters. Using similar features, training labels and network sizes,

Mohamed at al. reported a 22.3% error rate with DBN pre-training [15℄, while Tóth

reported a 21.8% �gure with re
ti�er nets [19℄. As our s
ores fall in the same range,

the results also demonstrate the soundness of our methodology.

2.4.2 Hungarian Audiobook

Figure 2.6 shows the results for the Audiobook 
orpus. The standard method a
hieves

its best performan
e with three hidden layers, only slightly better than the one a
hieved
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Figure 2.6: Phone error rates on the Audiobook test set as a fun
tion of the number

of hidden layers.
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Figure 2.7: Word error rates for the broad
ast news 
orpus as a fun
tion of the number

of hidden layers.

with only one hidden layer. It is also interesting that using more than three hidden

layers leads to an in
reasing PER. The Dropout regularisation in
reased the a

ura
y

of the sigmoid networks, but they still followed the same trend. The two pre-training

methods performed in a quite similar way and just like on the TIMIT dataset the

re
ti�er networks proved to be the best models performan
e-wise.
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2.4.3 Hungarian Broad
ast News

Figure 2.7 shows the word error rates got for the large vo
abulary broad
ast news

re
ognition task. Similar to the TIMIT tests, 2048 neurons were used for ea
h hidden

layer, with a varying number of hidden layers. The trends of the re
ognition results

are quite similar to those for the TIMIT database. The error rates seem to saturate at

4-5 hidden layers, and the 
urves for the methods run parallel and have only slightly

di�erent values. The lowest error rate is attained with the �ve-layer re
ti�er network,

both on the development set and the test set.

Although their re
ognition a

ura
y s
ores are quite similar, there is another fa
tor

we need to 
onsider, namely the training times. These methods di�er signi�
antly

in the training times required,and Table 2.1 shows the training times we measured

using a NVIDIA GTX-560 TI graphi
s 
ard. These values tell us how long it took

to train one DNN, after we found the optimal hyperparameters. We should add that

in the 
ase of the DBN pre-training method and the dropout method, we spent far

more time on properly tuning their hyperparameter values than in the 
ase of the

others. Evidently, the DBN pre-training algorithm also has the largest 
omputational

requirements. This algorithm has no 
learly de�ned stopping 
riterion, and various

authors run it with a widely di�ering number of iterations. The iteration 
ount we

applied here (50 for Gaussian RBMs and 30 for binary RBMs) is an average value,

and follows the experiments 
arried out by Seide et al. [10℄. Mohamed applies many

more iterations [15℄, while Jaitly et al. use far fewer iterations [16℄. Dis
riminative pre-

training and dropout regularisation are also mu
h faster than the DBN-based method,

but they are still slower than the training of re
ti�er nets.

Training method Pre-training time Fine-tuning training time

Sigmoid + BP 0 hours 4.5 hours

Sigmoid + Dropout 0 hours 5.5 hours

DBN pre-training 1 hours 4 hours

Dis
r. pre-training 2.5 hours 3 hours

Re
ti�er network 0 hours 4 hours

Re
ti�er network + Dropout 0 hours 4.5 hours

Table 2.1: The training times required by the various methods for one network with

�ve hidden layer.

Lastly, although the main goal here was to 
ompare the four deep neural network

algorithms, let us now 
ompare the large vo
abulary re
ognition s
ores with those of

a 
onventional HMM. The same HMM model that was used to generate the training

labels attained a word error rate of 20.07% (with maximum likelihood training), while
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the best DNN system a
hieved a WER of 16.59%, meaning that by repla
ing the

GMM with a re
ti�er network we got a 17% relative error rate redu
tion. Tuning the

parameters so that the two systems had a similar real-time fa
tor was also out of the

question, as the hybrid model was implemented on a GPU, while the HMM used a

normal CPU.

2.5 Summary

It is perhaps no exaggeration to say that deep neural nets have led to a breakthrough

is spee
h re
ognition. However, they are 
omputationally intensive, and the quest

for the optimal network ar
hite
ture and training method is still 
ontinuing. In this


hapter I presented and 
ompared two training methods, a new type of a
tivation

fun
tion and a regularisation te
hnique for DNNs, and evaluated them on two smaller

phoneme re
ognition tasks and on a Hungarian large vo
abulary re
ognition task. To

the best of my knowledge, I was the �rst to apply HMM/DNN systems to Hungarian

spee
h re
ognition. These deep learning algorithms yielded pretty similar re
ognition

performan
es on a medium-sized 
orpus, yet re
ti�er networks produ
ed better results

and their training was 
onsiderably faster. Based on these fa
ts, in my later experiments

deep re
ti�er networks be
ame my preferred 
hoi
e.

In this 
hapter, the author regards the following as his main 
ontributions:

• Performing an experimental 
omparison of four deep learning methods.

• First results for Hungarian spee
h re
ognition using HMM/DNN hybrids.

And the results presented in this 
hapter were published in [26℄.



Chapter 3

Sequen
e Training Methods for

Deep Re
ti�er Neural Networks

In our pursuit of a stri
tly DNN-based ASR solution, we �rst turned our attention to

the task of �at start training. Most of the 
urrent DNN te
hnologies require frame-

aligned labels, whi
h are usually 
reated by �rst training an HMM/GMM. Obviously,

it would be far more e�
ient to just use DNN-based re
ognisers without the need to


reate an HMM/GMM to do the same task. Although �at start training via iteratively

realigning and retraining the DNN using a frame-level error fun
tion is viable, it is

quite 
umbersome. In this 
hapter, we 
ompare two sequen
e training approa
hes,

namely the Conne
tionist Temporal Classi�
ation (CTC) and the Maximum Mutual

Information (MMI) method. Our aim here is to �nd a purely DNN based �at start

solution, whi
h 
ould be used to train randomly initialised DNNs without using for
e-

aligned labels.

The �rst method (CTC) that we examined was originally proposed for the training

of re
urrent neural networks, but here we will show that it 
an also be used to train

more 
onventional feed-forward networks as well. As our se
ond 
hoi
e, from the wide

variety of sequen
e dis
riminative training methods we opted for MMI training [27℄.

While this is routinely applied only in the �nal phase of model training, here we will

show that with proper modi�
ations it is also suitable for obtaining the alignments of


ontext-independent models.

In the experimental part, we evaluate the two methods on several phone re
ognition

tasks. For ea
h database we tested, we found that the sequen
e training methods give

better results that those obtained with for
e-aligned training labels produ
ed by an

HMM/GMM system. These results suggests that �at start training is possible without

the use of GMMs.

29
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3.1 Problem des
ription and literature overview

For three de
ades now, Hidden Markov Models (HMMs) have been the dominant

te
hnology in spee
h re
ognition. Their su

ess is due to the fa
t that they handle

lo
al (frame-level) likelihood estimation and 
ombine these lo
al estimates to get a

joint global (utteran
e-level) s
ore, in a uni�ed mathemati
al framework. Re
ently,

however, it was shown that DNN-based solutions 
an signi�
antly outperform standard

HMMs [28℄. As des
ribed in Chapter 1, this new te
hnology repla
es the Gaussian

mixtures of the HMM by a DNN, while the utteran
e-level de
oding is still performed

by the HMM. The DNN 
omponent of these hybrid models is usually trained only at

the frame level. That is, we generate frame-level training targets for the network, and

during training we optimise some frame-level training 
riteria. However this frame-

by-frame training has several drawba
ks. Firstly, we have to have frame-level labels

to be able to start the training. For very old and small databases (like the TIMIT

dataset used here), a manual phoneti
 segmentation is available. However, for more

re
ent 
orpora whi
h might be hundreds of hours long, manual segmentation is 
learly

out of the question. Hen
e, the usual solution for obtaining frame-level labels is to

train a standard HMM/GMM system, and then use it in for
ed alignment mode. This

means that, based on the 
urrent te
hnology, the training of a DNN-based re
ogniser

should always be pre
eded by the training of a standard HMM model. This 
learly

makes the 
reation of a DNN-based system mu
h more tedious and time-
onsuming,

and although quite re
ently there have been some attempts at having the standalone

training of DNN systems, these te
hnologies are still far from 
omplete [29℄.

Se
ondly, besides the 
ost of 
reating for
ed aligned labels, the frame-level training

of a neural network has a deeper, more theoreti
al limitation. During this training, we

minimise the frame-level error 
ost, su
h as the frame-level 
ross-entropy (CE) between

the network output and the training targets. These training targets are hard-labeled,

whi
h means that we expe
t the network to give an output of 1 for the 
orre
t 
lass

and 0 for the remaining ones. This is not ne
essarily optimal regarding the de
oding

pro
ess, whi
h 
ombines the frame-level s
ores. A more sophisti
ated method that

derives �soft� training targets from the senten
e-level s
ores 
an be expe
ted to result

in a better performan
e.

Graves et al. proposed a method that provides a solution to both the above-

mentioned problems, and 
alled it the Conne
tionist Temporal Classi�
ation (CTC)

method for Re
urrent Neural Networks (RNNs) [30℄. This method requires just the

trans
ription of the utteran
e, without any further label alignment information. Never-

theless, their ar
hite
ture di�ers fundamentally from the standard HMM/ANN model:

owing to the use of re
urrent neural network 
lassi�ers, they apply the training method
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alled ba
kpropagation through time [31℄, making the training pro
ess mu
h more time-


onsuming and quite 
omplex. The number of model parameters is also quite high.

Furthermore, as frames have to be pro
essed in a stri
tly in
reasing order, de
oding

is mu
h harder to parallelise. When using bidire
tional re
urrent networks (whi
h are

required to a
hieve the best performan
e with this approa
h [32℄), we have to wait for

the end of the utteran
e before we 
an start evaluating the network, making real-time

spee
h pro
essing impossible. Lastly, instead of using a standard language model like

a phoneme n-gram, they use a spe
ial te
hnique 
alled a predi
tion network, whi
h is

also based on an RNN. Thus, their approa
h is quite involved and quite di�erent from

the usual HMM/ANN model.

In this 
hapter we show that the CTC training s
heme is not an inseparable part of

the RNN-based ar
hite
ture, and with a few small modi�
ations it 
an also be applied

to the training of HMM/ANN models. Here, we use it to train standard feed-forward

deep neural nets on a phone re
ognition task over three di�erent databases.

Altough CTC is a viable option for �at start training [33℄, it has a serious drawba
k,

namely that it 
annot be used to generate a

urate for
ed alignments of the phone la-

bels. To over
ome this problem, we also experimented with the MMI training method.

Within the framework of HMM/GMM systems, several sequen
e-dis
riminative train-

ing methods have been developed, and these have now been adapted to HMM/DNN

hybrids as well [27, 34℄. However, most authors apply sequen
e-dis
riminative 
riteria

only in the �nal phase of training, for the re�nement of the DNN model. That is, the

�rst step is always CE-based training, either to initialise the DNN (e.g. [35, 36, 37℄)

or just to provide frame-level state labels (e.g. [27, 34, 38, 39, 40℄). In 
ontrast with

the previous authors, here we propose a training pro
edure that applies sequen
e-

dis
riminative training in the �at start training phase. This requires several small mod-

i�
ations 
ompared to the standard usage of sequen
e-dis
riminative training, whi
h

will be elaborated on later.

3.2 Flat start training of HMM/GMMs

The �at start training �rst initialises a so-
alled �at model, whi
h does this by esti-

mating a uniform GMM from all the training data and then applies it for all initial

distributions. This also implies that during the �rst 
y
le of training, ea
h training

utteran
e will be uniformly segmented.

After the �at initialisation, the Baum-Wel
h algorithm [7℄ 
ould be used to train

the HMM/GMM a
ousti
 model, whi
h makes use of the forward-ba
kward algorithm

des
ribed later in Se
tion 3.3.1. The basi
 assumption of the initialisation is that a

su�
ient number of the phone models align or overlap with the a
tual position of
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that phone, so that during the se
ond and subsequent iterations, the models align as

intended.

3.3 Conne
tionist Temporal Classi�
ation

Following the resear
h work of Graves et al. [30℄, �rst we will outline the Conne
tionist

Temporal Classi�
ation training s
heme. Similar to standard frame-level ba
kpropa-

gation training, it is an iterative method, where we sweep through the whole audio

training data set several times. A spe
ial feature of this training method is that we

pro
ess one whole utteran
e at a time instead of using just �xed-sized bat
hes of it;

furthermore, we only need the 
orre
t trans
ription of the utteran
e, and time-aligned

labels are not required.

The CTC training method is built on the dynami
 sear
h method 
alled forward-

ba
kward sear
h [41℄, whi
h is a standard part of HMM training. The forward-ba
kward

algorithm not only gives the optimal path, but at the same time we also get the

probability of going through the given phoneme of the trans
ription for all the frames

of the utteran
e. Using the forward-ba
kward algorithm, we 
an 
al
ulate a probability

distribution over the possible phonemes, for ea
h frame; then these values 
an be used

as target values when training the a
ousti
 
lassi�er.

3.3.1 The Forward-Ba
kward Algorithm

Let us begin with the formal des
ription of the forward-ba
kward algorithm. First, let

us take the utteran
e with length T , and let its 
orre
t trans
ription be z = z1z2 . . . zn.

We will also use the output ve
tors yt of the neural network trained in the previous

iteration. In the �rst iteration, due to the random initial DNN weights, these will

be pra
ti
ally random values. The forward variable (α(t, u)) 
an be de�ned as the

summed probability of outputting the u-long pre�x of z up to the time index t ≤ T .

The initial 
onditions state that the 
orre
t sequen
e starts with the �rst label in z:

α(1, u) =

{

y1z1 if u = 1,

0 if u ≥ 2.
(3.1)

Thereafter the forward variables at time t 
an be 
al
ulated re
ursively from those at

time t− 1; and we 
an remain in state zu−1, or move on to the next one (zu). Thus,

α(t, u) =

{

ytzuα(t− 1, u) if u = 1,

ytzu
(

α(t− 1, u) + α(t− 1, u− 1)
)

otherwise.

(3.2)

In the ba
kward phase we 
al
ulate the ba
kward variables β(u, t), whi
h represent the

probability of produ
ing the su�x of z having length n − u starting from the frame
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Figure 3.1: The α (left), β (middle) and αβ (right) values for a given utteran
e.

The horizontal axis 
orresponds to the frames of the utteran
e, while the verti
al axis

represents the phonemes.

t+ 1. The ba
kward variables 
an be 
al
ulated re
ursively using the following rules:

β(T, u) =

{

1 if u = n,

0 otherwise,

(3.3)

and for ea
h t < T

β(t, u) =

{

ytzuβ(t+ 1, u) if u = n,

ytzu
(

β(t+ 1, u) + β(t+ 1, u+ 1)
)

otherwise.

(3.4)

Figure 3.1 depi
ts the forward variables, the ba
kward variables and their produ
t for

a short utteran
e.

3.3.2 Using the αβ values for ANN training

The α(t, u)β(t, u) produ
t values express the overall probability of two fa
tors, summed

along all paths: the �rst is that we re
ognise the 
orre
t sequen
e of phonemes, and the

se
ond is that at frame t the system omits the uth phoneme of z. For neural network

training, however, we would need a distribution over the phoneme set for frame t. It

is not hard to see that su
h a distribution over the phonemes of z 
an be obtained by

normalising the α(t, u)β(t, u) produ
ts so that they sum up to one (by whi
h step we

eliminate the probability of re
ognising the 
orre
t sequen
e of phonemes). Then, to

normalise this distribution to one over the whole set of phonemes, we need to sum up

the s
ores belonging to the multiple o

urren
es of the same phonemes in z. That is,

the regression targets for any frame t and phoneme ph 
an be de�ned by the formula

∑

i:zi=ph

α(t, i)β(t, i)

n
∑

i=1

α(t, i)β(t, i)
. (3.5)

We 
an use these values as training targets instead of the standard binary zero-or-one

targets with any gradient-based non-linear optimisation algorithm. In our experiments,

we applied the ba
kpropagation algorithm to train the networks.
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3.3.3 Garbage Label

Although the above training method may work well for the original phoneme set, Graves

et al. introdu
ed a new label (whi
h we will denote by X ), by whi
h the neural network

may 
hoose not to omit any phoneme. This label 
an be inserted between any two

phonemes, but of 
ourse it 
an also be skipped. They 
alled this label �blank�, but

we 
onsider the term �garbage� more reasonable as frames belonging to this 
lass are

thrown away during de
oding.

To interpret the role of this label, let us 
onsider a standard tri-state model. This

divides ea
h phone into three parts. The middle state 
orresponds to the steady-state

part of the given phone, whereas the beginning and end states represent those parts

of the phone that are a�e
ted by 
oarti
ulation with the pre
eding and the subsequent

phones, respe
tively. By introdu
ing the label X , we allow the system to 
on
entrate

on the re
ognition of the 
leanly pronoun
ed middle part of a phone, and it 
an map

the 
oarti
ulated parts to the symbol X . Therefore, we �nd it more logi
al to use

the term garbage label instead of blank, as the latter would suggest that the label X


overs silen
es, but in fa
t this label more likely 
orresponds to the 
oarti
ulated parts

of phones.

Formally, introdu
ing this label means that instead of the phoneme sequen
e z we

will use the sequen
e z′ = X z1X z2X . . .X znX . The forward-ba
kward algorithm also

has to be modi�ed slightly. Namely, the initial α values are set to

α(1, u) =

{

y1
z′1

if u = 1 or u = 2,

0 if u ≥ 3,
(3.6)

while for the latter labels we allow skipping the X states:

α(t, u) =











ytz′uα(t− 1, u) if u = 1,

ytz′u

(

α(t− 1, u) + α(t− 1, u− 1)
)

if z′u = X ,

ytz′u

(

α(t− 1, u) + α(t− 1, u− 1) + α(t− 1, u− 2)
)

otherwise.

(3.7)

The 
al
ulation of the β(t, u) values is performed in a similar way.

CTC is a pro
ess with a positive feedba
k: phonemes with generally high y values

will have higher αβ values, resulting in higher target target values, and during the

iterations they typi
ally tend to suppress all other phonemes. When using the label X ,

usually this label dominates during training, and the outputs of a trained CTC network

tend to form a series of spikes, whi
h are separated by the garbage 
lass. Figure 3.2

shows the outputs of a trained network. As 
an be seen, the garbage label permits the


lassi�er to 
hoose that a given frame does not belong to any of the original phoneme

set, similarly to the anti-phoneme model of segment-based spee
h re
ognition [42℄. It
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Figure 3.2: Non-garbage outputs generated by a CTC network for the utteran
e "Ezt

mondja a Semmelweis". The network predi
ts the sequen
e of phones as a series of

spikes, whi
h are separated by the garbage 
lass.

is also possible to use the garbage label with a tri-state model: then X is inserted

between every state of all the phonemes, while still being optional.

3.3.4 De
oding and generating for
ed alignments

When a predi
tor RNN is used for de
oding, it is obvious that we 
annot perform a

standard Viterbi beam sear
h; this is why Graves et al. had to modify the de
oding

algorithm as well. However, when we swit
h to a HMM/DNN that has a feed-forward

DNN ar
hite
ture, this 
onstraint vanishes and we 
an apply any kind of standard

de
oding method.

The only reason why we need to alter the de
oding part is that we need to remove

the garbage label from the resulting phoneme sequen
e. Lu
kily, in other respe
ts the

use of the garbage label does not a�e
t the stri
tly-interpreted de
oding part. This

label of 
ourse has to be ignored during sear
h when we apply a language model like

a phoneme n-gram. In our tests, we used our own implementation of the Viterbi

algorithm [41℄.

Generating time-aligned labels for ea
h frame is important for later steps like the

state 
lustering phase. Stri
tly speaking, it is impossible to generate a

urate align-

ments as most of the frames will be labelled as garbage, and the presen
e of the phones

are represented only by spikes. In [33℄ the authors ta
kle this problem by just using

the frames that 
orrespond to the spikes, however this means that a large portion of

the data will be ignored during state 
lustering.
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3.4 Sequen
e-Dis
riminative Training Using MMI

Several sequen
e-dis
riminative training 
riteria have been developed for the traditional

HMM/GMMs [43℄ � and adapted to HMM/DNNs [27, 34, 39, 44℄ � from whi
h the

maximum mutual information (MMI) 
riterion is the oldest and simplest. The MMI

fun
tion measures the mutual information between the distribution of the observation

and the phoneme sequen
e. Denoting the sequen
e of all observations by Ou =

ou1, . . . , ouTu
, and the label-sequen
e for utteran
e u by Wu, the MMI 
riterion 
an be

de�ned by the formula

FMMI =
∑

u

log
p(Ou|Su)

αp(Wu)
∑

W p(Ou|S)αp(W )
, (3.8)

where Su = su1, . . . , suTu
is the sequen
e of states 
orresponding to Wu, and α is

the a
ousti
 s
aling fa
tor. The sum in the denominator is taken over all phoneme

sequen
es in the de
oded spee
h latti
e for u. Di�erentiating Equation (3.8) with

respe
t to the log-likelihood log p(out|r) for state r at time t, we get

∂FMMI

∂ log p(out|r)
= αδr;sut −

α
∑

W :st=r p(Ou|S)
αp(W )

∑

W p(Ou|S)αp(W )
(3.9)

= α
(

δr;sut − γDEN
ut (r)

)

,

where γDEN
ut (r) is the posterior probability of being in state r at time t, 
omputed over

the denominator latti
es for utteran
e u using the forward-ba
kward algorithm, and

δr;sut is the Krone
ker delta fun
tion (the one-hot frame-level phoneti
 target ve
tor).

3.5 Performing MMI training without frame align-

ments

Sequen
e training 
riteria like the MMI error fun
tion are now widely used for DNN

training. However, almost all authors initialise their networks using CE training, and

apply the sequen
e-dis
riminative 
riterion only in the �nal phase of the training pro
e-

dure, to �ne-tune their models [34, 39℄. This makes it ne
essary to use some method

(like HMM/GMM or iterative CE training) to provide frame-level state targets. In


ontrast with these authors, here we propose to apply MMI training in the �at start

phase. In order to be able to perform �at start of randomly initialised DNNs using

MMI training, we made some slight 
hanges in the standard pro
ess, whi
h we will

des
ribe next.

Firstly, we use the numerator o

upan
ies γNUM
ut (r) in Eq. (3.9) instead of the

δr;sut values. This way we 
an work with smoother targets instead of the 
rude binary



3.5. Performing MMI training without frame alignments 37

ones usually employed during DNN training. Another advantage of eliminating the

δr;sut values is that it allows us to skip the pre
eding (usually GMM-based) label

alignment step, responsible for generating the frame-level training targets. We applied

the forward-ba
kward algorithm to obtain the γNUM
ut (r) values, this solution has been

mentioned in some studies (e.g. [34, 44℄); but we only found Zhou et al. [35℄ a
tually

doing this. However, they pre-trained their DNN with the CE 
riterion �rst, while we

apply MMI training from the beginning, starting with randomly initialised weights.

The se
ond di�eren
e is that sequen
e training is 
onventionally applied only to

re�ne a fully trained system. Therefore, the MMI training 
riterion is 
al
ulated with

CD phone models and a word-level language model. This makes the de
oding pro
ess

slow, and hen
e the numerator and denominator latti
es are 
al
ulated only on
e,

before starting MMI training. In 
ontrast to this, we exe
ute sequen
e DNN training

using only phone-level trans
ripts and CI phone models. This allows very fast de
oding,

so we 
an re
al
ulate the latti
es after ea
h senten
e. This di�eren
e is 
ru
ial for

the fast 
onvergen
e of our pro
edure. For 
onverting the orthographi
 trans
ripts to

phone sequen
es, one 
an follow the strategy of HTK. That is, in the very �rst step we

get the phoneti
 trans
ripts from the di
tionary, with no silen
es between the words.

Pronun
iation alternatives and the optional short pause at word endings 
an be added

later on, when realignment 
an be performed with a su�
iently well-trained model [1℄.

A further di�eren
e is that we use no state priors or language model, whi
h makes

the α s
aling fa
tor in Eq. (3.9) unne
essary as well. Next, to redu
e the 
omputational

requirements of the algorithm, we estimated γDEN
ut (r) using just the most probable

de
oded path instead of summing over all possible paths in the latti
e (denoted by

γ̂DEN
ut (r)).

With these modi�
ations, the gradient with respe
t to the output a
tivations (aut)

of the DNN is found using

∂FMMI

∂aut(s)
=
∑

r

∂FMMI

∂ log p(out|r)

∂ log p(out|r)

∂aut(s)
(3.10)

= γNUM
ut (s)− γ̂DEN

ut (s),

whi
h 
an be applied dire
tly for DNN training. A standard te
hnique in DNN training

is to separate a hold-out set from the training data (see [45℄). If the error in
reases on

this hold-out set after a training iteration, then the DNN weights are restored from a

ba
kup and the training 
ontinues with a smaller learning rate. This strategy 
an be

readily adapted to sequen
e DNN training [27℄, and we found it to be essential for the

stability of our �at start MMI training method.
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In summary, the modi�
ations that we propose in order to make MMI training

suitable for DNN �at start are:

1. Frame-level phoneti
 targets (γNUM
ut (r)) are determined by a forward-ba
kward

sear
h.

2. We employ only phoneme-level trans
ripts and CI phoneme states.

3. We do not apply state priors or language model.

4. We estimate γDEN
ut (r) by just using the most probable de
oded path (γ̂DEN

ut (r)).

5. We measure training error on a hold-out set; when the error in
reases after a

training iteration, we restore the weights and de
rease the learning rate.

Note that steps (1) to (4) seek to simplify the pro
edure both to speed it up and to

make it more robust. Step (2) also helps us to perform sequen
e-dis
riminative DNN

training before CD state tying, whi
h is essential for applying it in �at start. Step

(5), however, is applied in our general DNN training pro
ess, but we found it 
ru
ial

to avoid the �runaway silen
e model� issue [46℄, whi
h is a 
ommon side-e�e
t that

haunts sequen
e-dis
riminative DNN training. The �runaway silen
e model� is 
aused

by the poor latti
e quality, meaning that the number of silen
e frames after de
oding

in
reases as the training epo
h in
reases leading to a high number of deletion errors.

Our solution simply monitors the performan
e of the network, and on
e the de
oding

result deteriorates the weights of the DNN are reverted to their previous values and

the training is 
ontinued with a lower learning rate.

3.6 Experiments and Comparison

3.6.1 Databases

We tested the CTC and MMI training methods on three di�erent databases. The

�rst was the well-known TIMIT set [47℄, whi
h is frequently used for evaluating the

phoneme re
ognition a

ura
y of a new method. Although it is a small dataset by

today's standards, a lot of experimental results have been published for it; also, due to

its relatively small size, it is ideal for experimentation purposes. We used the standard

(
ore) test set, and withheld a small part of the training set for development purposes.

The standard phoneme set 
onsists of 61 phonemes, whi
h is frequently redu
ed to a

set of 39 labels when evaluating the models; we experimented with training on these

61 phonemes and also on the restri
ted set of 39 phonemes.
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The se
ond database was a Hungarian audiobook, the same one des
ribed in the

previous 
hapter. Lastly, for the third database, the 
lean part of the Szeged Hungarian

Broad
ast News Corpus was 
hosen.

3.6.2 Experimental Setup

In our experiments, we 
ompared only the phoneme error rates of the algorithms, sin
e

our aim was to develop a method 
apable of performing �at start training. Although it

is standard pra
ti
e to use a phoneme bigram, we 
hose to fo
us only on the a
ousti


models and we did not utilize any language model. The reason for this is that the

following steps in the ASR training pro
ess rely heavily on the quality of the initial

a
ousti
 models. Furthermore, due to the introdu
tion of the garbage symbol in the

phoneme set in the 
ase of CTC, in
luding a phoneme n-gram in the dynami
 sear
h

method seems overly 
ompli
ated.

As the frame-level 
lassi�er we utilised Deep Re
ti�er Neural Networks (DRN) [14,

19℄, whi
h have been shown to a
hieve state-of-the-art performan
e on TIMIT [48℄.

DRN di�er from traditional deep neural networks in that they use re
ti�ed linear units

in the hidden layers; these units di�er from standard neurons only in their a
tivation

fun
tion, where they apply the re
ti�er fun
tion (max(0, x)) instead of the sigmoid or

hyperboli
 tangent a
tivation. Due to the better behaviour of this a
tivation fun
tion,

we 
an build deep networks with many hidden layers without the need for 
ompli
ated

pre-training methods, just by applying standard ba
kpropagation training. Neverthe-

less, to keep the weights from growing without limit, we have to use some kind of

regularisation te
hnique; here, we applied the method 
alled L2 normalisation. Our

DRN 
onsisted of 5 hidden layers, with 1000 re
ti�er neurons in ea
h layer. The initial

learn rate was set to 0.2 and held �xed while the error on the development set kept

de
reasing. Afterwards, if the error rate did not de
rease for a given iteration, the

learn rate was subsequently halved. The learning was a

elerated by using a momen-

tum value of 0.9. We used the well-known MFCC+∆+∆∆ feature set as a
ousti


features. In ea
h 
ase, the neural network was trained on 15 neighbouring frames.

3.6.3 Results

First we evaluated the CTC and MMI training methods on the TIMIT database, the

results of whi
h 
an be seen in Table 3.1. In this data set a manual segmentation is

also available, so we de
ided to use the results obtained by training using the manually

given boundaries as baseline. As a further 
omparison, the training was repeated in the

usual way, where the training labels are obtained using for
ed alignment. We found

that the results obtained using the hand-labeled set of labels were noti
eably worse
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Database Method Dev. set Test set

TIMIT

Monostate (39)

CTC + DRN 26.69% 28.60%

MMI + DRN 27.70% 30.94%

Hand-labeled 27.26% 29.35%

For
ed Alignment 27.10% 28.92%

Monostate (61)

CTC + DRN 26.07% 27.34%

MMI + DRN 25.16% 27.89%

Hand-labeled 26.42% 27.94%

For
ed Alignment 25.92% 27.55%

Tristate (183)

CTC + DRN 23.20% 24.41%

MMI + DRN 20.32% 22.76%

Hand-labeled 22.75% 24.7%

For
ed Alignment 22.78% 24.48%

Table 3.1: The phoneme error rates got for the di�erent DRN training methods.

than those we got when we used for
ed-aligned labels got by a HMM/GMM. This

re�e
ts the fa
t that the manually pla
ed phone boundaries are suboptimal 
ompared

to the 
ase, where the algorithm is allowed to re-align the boundaries a

ording to its

needs. On all three databases, the results obtained using tri-state models were always

better than those got with monostate ones.

Furthermore, the CTC+DRN training model 
onsistently outperformed the other

two non-sequen
e-based training s
hemes (although sometimes only slightly), when

evaluated on the test set. On the development set usually the standard training strate-

gies were better than the CTC method, whi
h 
an probably be attributed to over�tting.

The MMI+DRN networks performed poorly with monostate labels, mostly be
ause

of the runaway silen
e problem. By using tristate labels we enfor
e ea
h phone to have

a minimal length, hen
e it is harder for the silen
e to suppress the other phones. As


an be seen in Table 3.1 and Table 3.2 the tri-phone MMI+DRN models signi�
antly

outperformed all other methods.

Comparing the training times of the MMI and CTC we noti
ed that they were

slightly slower than the baseline 
ases: 
al
ulating the α and β values in
reased the

exe
ution times only by a very small amount, but it took a few more iterations to

make the weights 
onverge. On TIMIT, CTC used all training ve
tors 24-25 times and

MMI performed 21-24 training iterations, whereas the baseline required only 18-19.

This is probably due to the fa
t that the sequen
e-based methods strongly rely on the

a
ousti
 
lassi�er trained in the previous iteration, so it takes a few iterations before



3.7. Summary 41

Database Method Dev. set Test set

Audiobook

Monostate (52)

CTC + DRN 17.85% 16.55%

MMI + DRN 16.95% 16.12%

For
ed Alignment 17.76% 16.98%

Tristate (156)

CTC + DRN 12.58% 11.67%

MMI + DRN 10.08% 9.67%

For
ed Alignment 12.53% 11.96%

Broad
ast news

Monostate (52)

CTC + DRN 25.96% 25.58%

MMI + DRN 35.66% 65.26%

For
ed Alignment 25.82% 25.64%

Tristate (156)

CTC + DRN 21.62% 21.23%

MMI + DRN 20.74% 20.42%

For
ed Alignment 22.13% 21.74%

Table 3.2: The phoneme error rates got for the two di�erent DRN training methods.

the training starts to 
onverge. We think these values are not high, espe
ially as Graves

et al. reported mu
h higher values for CTC (frequently over 100 iteration) [32℄.

Another interesting point is that besides the similar a

ura
y s
ores, standard non-

sequen
e-based method leads to a relatively high number of phoneme insertions, while

when performing sequen
e training it is 
ommon to have a lot of deletion errors. The

reason is that the 
orre
t phonemes are often suppressed by X s (in the 
ase of the

CTC) or by the silen
e model (in the 
ase of the MMI). During de
oding, the X labels

are deleted from the output before the a

ura
y s
ore is 
al
ulated. This behaviour,

fortunately, does not a�e
t the overall quality of the result.

3.7 Summary

In this 
hapter, I adapted two sequen
e learning method to a standard HMM/DNN

ar
hite
ture. The CTC method was originally developed for RNNs, but here I showed

that it 
an be used with DRNs as well. The CTC method relies on the blank or garbage

label, whi
h makes the de
oding pro
ess problemati
. Furthermore, the DRNs trained

with CTC 
annot be used to generate proper for
ed alignment of the labels.

The other method des
ribed here (MMI) is widely used in DNN training, but it

usually requires some initialisation before training. To 
ir
umvent this 
onstraint, I

proposed several modi�
ations to the original method, to make it suitable for �at start

training.
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Compared to standard zero-or-one frame-level ba
kpropagation DNN training, I

found that networks trained with these sequen
e learning method always produ
ed

higher a

ura
y s
ores than the baseline ones. From the results it was also 
lear that

MMI with tristate labels works best, so it is well suited for �at start training.

In this 
hapter, the author regards the following as his main 
ontributions:

• The use of CTC with feedforward DRNs;

• Modi�
ations to MMI training algorithm, to make it appli
able to �at start

training;

The methods and results presented in this 
hapter were published in [49℄ and [50℄.



Chapter 4

A GMM Free Training Method for

Deep Neural Networks

Today, deep neural network based spee
h re
ognizers have 
ompletely repla
ed Gaus-

sian mixture-based systems as the state-of-the-art. While some of the modeling

te
hniques developed for the GMM-based framework may dire
tly be applied to the

HMM/DNN systems, others may be inappropriate. One su
h example is the 
reation

of 
ontext-dependent tied states, for whi
h an e�
ient de
ision tree state tying method

exists. The tied states used to train DNNs are usually obtained using the same tying

algorithm, even though it is based on likelihoods of Gaussians, hen
e it is more appro-

priate for HMM/GMMs. Re
ently, however, several re�nements have been published

whi
h seek to adapt the state tying algorithm to the HMM/DNN hybrid ar
hite
ture.

Unfortunately, these studies reported results on di�erent (and sometimes very small)

datasets, whi
h does not allow their dire
t 
omparison.

Some of the new state tying methods 
hange only the input of the 
lustering

algorithm, while the whole state tying algorithm remained inta
t. These methods feed

the output or the a
tivations of the neurons in the last hidden layer to the 
lustering

method and use the same standard Gaussian-based de
ision tree 
lustering method.

Other studies proposed novel de
ision 
riteria as well for the standard state tying

method, whi
h better suit the new input.

In this 
hapter, we present a new state tying 
riterion, and evaluate it by 
omparing

its performan
e to three other methods on the same LVCSR tasks, under the same 
ir-


umstan
es. We found that, besides 
hanging the input of the 
ontext-dependent state

tying algorithm, it is worth adjusting the tying 
riterion as well. The methods whi
h

utilised a de
ision 
riterion designed spe
i�
ally for neural networks 
onsistently, and

markedly outperformed those whi
h employed the standard Gaussian-based algorithm.

43
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4.1 Problem des
ription and literature overview

While deep neural network-based spee
h re
ognizers have re
ently repla
ed Gaus-

sian mixture-based systems as the state-of-the-art in ASR, the training pro
ess of

HMM/DNN hybrids still relies on the HMM/GMM framework. Re
ently, however,

attempts have been made to remove GMMs from the training pro
ess of deep neural

network-based hidden Markov models (HMM/DNN). For the GMM-free training of a

HMM/DNN hybrid we have to solve two problems, namely the initial alignment of the

frame-level state labels and the 
reation of 
ontext-dependent states. Conventionally,

we start the training of a HMM/DNN by 
onstru
ting a HMM/GMM system, whi
h is

then applied to get an alignment for the frame-level state labels. These labels are then

used as the training targets for the DNN. The se
ond task that requires GMMs is the

state-tying algorithm utilised for the 
onstru
tion of 
ontext-dependent (CD) phone

models. We propose a GMM-free solution for state 
lustering here [51℄, and we will


ombine it with DNN-based methods, whi
h 
an generate an initial state alignment.

The most 
onvenient way of training the DNN 
omponent of a HMM/DNN hybrid

is to apply a frame-level error 
riterion, whi
h is usually the 
ross-entropy (CE) fun
tion.

This solution, however, requires frame-aligned training labels, while the training dataset


ontains just orthographi
 trans
ripts in most 
ases. Of 
ourse, one 
ould train a

HMM/GMM system to get aligned labels, but this is 
learly a waste of resour
es.

The pro
edure for training HMM/GMM systems without alignment information

is 
ommonly known as '�at start training' [1℄. This 
onsists of initialising all phone

models with the same parameters, whi
h would result in a uniform alignment of phone

boundaries in the �rst iteration of Baum-Wel
h training. It is possible to 
onstru
t a

�at start-like training pro
edure for CE-trained DNNs as well, by iteratively training

and realigning the DNN. For example, Senior et al. randomly initialised their neural

network [52℄, while Zhang et al. trained their �rst model on equal-sized segments for

ea
h state [53℄. As these solutions have a slow 
onvergen
e rate, they require a lot of

training-realignment loops.

Although training the DNN at the frame level is straightforward, it is 
learly not

optimal, as the re
ognition is performed and evaluated at the senten
e level. Within the

framework of HMM/GMM systems, several sequen
e-dis
riminative training methods

have been developed, and these have now been adapted to HMM/DNN hybrids as

well [27, 34, 49℄. However, most authors apply sequen
e-dis
riminative 
riteria only in

the �nal phase of training, for the re�nement of the DNN model. That is, the �rst

step is always CE-based training, either to initialize the DNN (e.g. [35, 36, 37℄) or just

to provide frame-level state labels (e.g. [27, 34, 38, 39, 40℄).

The CTC approa
h has re
ently be
ome very popular for training DNNs without
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an initial time alignment being available [32℄. Rao et al. proposed a �at start training

pro
edure whi
h is built on CTC [33℄. However as we explained earlier, CTC has several

drawba
ks 
ompared to MMI. First, it introdu
es blank labels, whi
h require spe
ial


are in the later steps (e.g. CD state-tying) of the training pro
ess. Nevertheless,

the CTC algorithm is not a sequen
e-dis
riminative training method, so for the best

performan
e it has to be 
ombined with te
hniques like sMBR training [32, 33℄. After

performing �at-start training with CTC, however, it is not 
lear how to revert to the

standard phoneme set for CD state-tying or standard CE CD DNN training. Therefore

integrating the CTC �at start method into the standard DNN training framework does

not appear to be a suitable option. Still, MMI with proper modi�
ations is suitable for

�at start training a DNN.

While hybrid models applied only 
ontext-independent (CI) phone models for a

long time [20℄, there is now 
ommon agreement that HMM/DNN systems also greatly

bene�t from using 
ontext-dependent tied states [54, 17℄. Thus, it is ne
essary to

�nd an approa
h for e�
iently 
reating 
ontext-dependent tied states for systems built

on DNNs. Currently, the dominant solution is the de
ision tree-based state tying

method of Young et al. [55℄. This te
hnique �ts Gaussians on the distribution of

the states, and uses the likelihood gain to govern a de
ision tree-based state-splitting

pro
ess. Thanks to the Gaussian assumption and the de
ision tree representation, this

approa
h is 
omputationally very e�
ient. However, as we have already mentioned,

it may be inappropriate to just impose the 
ommon HMM/GMM-based te
hniques on

the HMM/DNN training pro
edure, and this may hold for this state-tying algorithm

as well.

GMM-based methods assume that the Gaussian 
omponents have diagonal 
o-

varian
e matri
es, and hen
e require de
orrelated features like 
epstral 
oe�
ients

(MFCCs). However, HMM/DNN hybrids tend to work better on more primitive fea-

tures like mel �lter bank energies (Fbank) [15℄. Sin
e 
onventional HMM/GMM sys-

tems 
annot be e�
iently trained on these features, the usual approa
h is to build

a HMM/GMM system on a standard feature set like MFCCs, 
reate the tied-state

inventory and alignment, and then throw away the feature set and the whole model.

This pro
ess, besides wasting resour
es, also implies that state tying is done on an

mismat
hed feature set. Furthermore, intuitively, the state 
lustering algorithm should

split those states where the splitting would be bene�
ial for the respe
tive 
lassi�er.

Sin
e the obje
tive fun
tions during GMM and DNN training are di�erent, measuring

how a Gaussian �ts a given 
lass may be unrelated to the di�
ulty of modeling that


lass by a DNN. This suggests that if we perform the CD state-tying by following the

standard approa
h, we do it on a mismat
hed feature set and using a mismat
hed

similarity metri
.
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Not so long ago, a number of arti
les were published on CD state tying for

HMM/DNNs. The issue of the �inappropriate feature set� 
an be handled by perform-

ing the state 
lustering pro
ess on the output of a DNN instead of the raw features.

This idea was investigated in a 
ouple of studies (e.g. [56, 53, 52, 57℄). In those

studies, however, only the input of the 
lustering algorithm was modi�ed, while the

whole state-tying algorithm remained inta
t. Other studies proposed novel de
ision


riteria for the standard state-tying method, whi
h better suit neural networks. Here,

we propose the use of the Kullba
k-Leibler divergen
e-based de
ision 
riterion, orig-

inally developed for KL-HMMs by Imseng et al. [58℄. Zhu et al. [59℄ 
onstru
ted a


riterion that relied on entropy. Lastly, Wang et al. [60℄ trained a spe
ial network that

optimised for Deep Canoni
al Correlation Analysis, and 
lustered the output of this

network via k-means 
lustering.

All these studies experien
ed a drop in the word error rate (WER) 
ompared to

the baseline that uses the standard Gaussian likelihood-based state-tying method with

the MFCC ve
tors. Yet, none of these studies 
ompared their results with other neu-

ral network-based state-tying approa
hes, whi
h makes these methods quite hard to


ompare. Furthermore, the datasets used di�ered to a huge extent as well: we used a

Hungarian database, Zhu et al. used a German one, while Wang et al. used the quite

small TIMIT 
orpus, where only phoneme error rates 
an be reported. In this 
hapter

we 
ompare four su
h approa
hes on the same LVCSR task, where the same 
ontext-

independent neural network will provide the input ve
tors for the state 
lustering. Note

that, sin
e we obtain the frame-level CI labels by purely DNN-based �at-start meth-

ods, the CI models have no inherent GMM dependen
y. Therefore those state-tying

methods that have a de
ision 
riterion designed for DNNs are 
ompletely GMM-free.

In the experimental part we 
ompare the two �at start methods, namely the one that

applies MMI with the CE-based iterative retraining realignment pro
edure of Zhang et

al. [53℄. We found that our method is not only faster, but it a
hieves lower word error

rates as well. Furthermore, we 
ombine the �at start training with various DNN-based

state 
lustering methods to eliminate all dependen
ies from a HMM/GMM system,

making the whole training pro
edure of 
ontext-dependent HMM/DNNs GMM-free.

4.2 Flat Start

The �rst step of training a spee
h re
ognition system is to get time-aligned labels for

the trans
ription. Traditionally this is a
hieved by using the Baum Wel
h algorithm

to train a HMM/GMM, as des
ribed in the previous 
hapter. Here, we 
ompare two

approa
hes that seek to eliminate GMMs from this pro
ess. As the baseline method,

we apply a simple solution that iterates the loop of CE DNN training and realignment.
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Afterwards, we 
ompare it with an approa
h that 
reates time-aligned trans
riptions

for the training data by training a DNN with a sequen
e training 
riterion. From the

wide variety of sequen
e training methods, we opted for MMI training [27℄. Applying

sequen
e training to �at start requires some slight modi�
ations, whi
h we will now

dis
uss.

4.2.1 Iterative Flat Start

For 
omparison we will also test what is perhaps the most straightforward solution for

�at start DNN training, namely just using the CE training 
riterion and iterating DNN

training and realignment. Here, we used the following algorithm that was based on

the des
ription by Zhang et al. [53℄:

1. Train a DNN using sound �les uniformly segmented into phones.

2. Use the 
urrent DNN to realign the labels.

3. Train a randomly initialised DNN using the new alignments.

4. Repeat steps 2�3 several times.

The �nal DNN was utilised to 
reate time-aligned labels for the training set.

The main advantage of this method is that it requires only an implementation

of CE training for the DNN, and the realignment step 
an also be readily performed

by using standard ASR toolkits. The drawba
k is that the pro
edure of retraining

and realignment tends to be rather time-
onsuming, whi
h was also 
on�rmed by our

experiments.

4.2.2 Sequen
e Training Based Flat Start

As an alternative to the iterative method we also used the MMI-based method des
ribed

in Chapter 3). For the MMI training we 
ommen
ed with a randomly initialised CI

DNN and with the modi�
ations of the original method the networks were su

essfully

trained. As a further re�nement we also tried to improve the segmentation by training

another CI DNN with CE training, where the training labels were obtained by for
ed

aligning the labels using the MMI trained DNN.

4.3 State Clustering

Nowadays, state-of-the-art ASR systems are trained with CD labels. Usually these

labels 
onsist of three phonemes, namely the a
tual phone, the one before and the one
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after. With the triphone labels, one 
an a
hieve better re
ognition a

ura
ies than

with CI labels, simply be
ause the a
ousti
 model 
an handle 
o-arti
ulation better

in this way. Still, swit
hing to triphone a
ousti
 models 
reates a serious problem,

namely the data insu�
ien
y problem. This problem is 
aused by the fa
t that the

number of possible triphones is quite large and we have only a limited amount of

training data. For instan
e, there are almost 14,000 triphones in the training data of

the Szeged Broad
ast News 
orpus. Furthermore, the data is usually unevenly spread,

meaning that some of the triphones o

ur only on
e or twi
e, while other labels are

quite 
ommon. Additionally, it is possible for some triphones to appear only in the test

data, and understandably we 
annot expe
t the a
ousti
 model to learn to re
ognise

these.

Traditionally, the state-tying algorithm is used to handle these problems, whi
h is

basi
ally a 
lustering method that aims to 
luster the triphones derived from the same

monophone. This way, we 
an use a shared label for the triphones whi
h are similar

and have the same 
entral phoneme, thus solving the data sparsity problem.

The de
ision tree-based state-tying algorithm was introdu
ed by Young et al. [55℄,

and it evolved into a vital 
omponent of training large vo
abulary spee
h re
ognisers.

The main idea is to pool all 
ontext variants of a state, and then build a de
ision tree by

su

essively splitting this set into two. For ea
h step, the algorithm 
hooses one of the

pre-de�ned a
ousti
 questions in su
h a way that the resulting two non-overlapping

sub-sets of the original state set S di�er maximally. The algorithm measures this

di�eren
e by using a likelihood-based de
ision 
riterion. The tree-based 
lustering has

the important advantage of providing a mapping for unseen triphones as well. Although

minor improvements to the algorithm like the automati
 generation of the questions

via 
lustering were proposed [61℄, the main s
heme of the method proved so su

essful

that it has remained unaltered ever sin
e.

4.3.1 GMM-Based State Tying

Suppose that we have a set of states S that need to be tied, using the de
ision tree-

based method of Young et al. [55℄. Here, at ea
h node, we have a set of questions, and

ea
h question 
an split S into two non-overlapping sub-sets depending on the answer to

the question. Odell formulated a maximum likelihood-based de
ision 
riteria [62℄ and

proposed a 
omputationally e�
ient algorithm by approximating the splitting 
riterion

as

L(S) ≃ −
1

2

(

log[(2π)K |Σ(S)|] +K
)

∑

s∈S

N(s), (4.1)

where s ∈ S are the individual states, Σ(S) is the varian
e of data in S, K is the

dimension of the data and N(s) is the number of examples (frames) in the training
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data whi
h belong to state s. Using this formula, we should 
hoose the question q

whi
h maximizes the likelihood di�eren
e ∆L(q|S)

∆L(q|S) =
(

L(Sy(q)) + L(Sn(q))
)

− L(S), (4.2)

where Sy(q) and Sn(q) are the two subsets of S formed based on the answer to the

question q. It 
an be seen that the likelihood values do not depend on the training

observations themselves, but only on the varian
e over the training data 
orresponding

to the states, and the raw number of frames belonging to ea
h state. Although this

assumption (regarding the varian
e of the feature ve
tors) �ts in well with a system

employing GMMs, in a HMM/DNN hybrid spee
h re
ogniser framework some other

de
ision 
riterion might result in a more suitable set of tied states.

4.3.2 Clustering the CI DNN output

This approa
h, proposed by Senior et al. [52℄, is quite straightforward. They simply

use the frame-level outputs of the auxiliary neural network as input for the state-tying

pro
edure. The whole 
lustering pro
ess remains the same in every other respe
t.

Senior et al. reported a slight improvement in the WER and, naturally, with this

approa
h they were able to avoid the feature set mismat
h among CD DNN training

and the CD state-tying pro
ess. Despite this, as they used the original state-tying

method of Odell [62℄, whi
h relies on likelihoods of Gaussians, in our opinion their

method 
an hardly be regarded as 
ompletely GMM-free.

4.3.3 Clustering the DNN hidden a
tivations

In a parallel study Ba

hiani and Ryba
h [57℄ proposed performing the 
lustering on the

a
tivations of the last hidden layer of the auxiliary CI NN. Although one 
annot expe
t

the a
tivation ve
tors to be de
orrelated (or to follow any prede�ned distribution),

Ba

hiani and Ryba
h were able to use them as inputs for the CD state-tying method

of Young et al. The WERs they got were reported to be lower for smaller CD state sizes

than by using the standard approa
h, but for larger state 
ounts it was the other way

around. They explained this by re
alling that the frame-level CI labels were obtained

by HMM/GMMs, 
ausing a mismat
h in the frame-level targets. Sin
e we used a

DNN-based �at start, there will be no su
h mismat
h.

4.3.4 KL-divergen
e Based State Tying

This de
ision 
riterion was introdu
ed by Imseng et al., who su

essfully applied it in

their KL-HMM framework [58℄. Here, we propose to use it during the CD state-tying
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step. Next, we will give a brief des
ription of this algorithm, based on arti
les [63℄

and [64℄.

Although the Kullba
k-Leibler divergen
e is known to be asymmetri
, unfortunately

there is no 
losed form of the symmetri
 KL-divergen
e-based 
ost fun
tion. Therefore

we will apply the asymmetri
 KL-divergen
e between two posterior ve
tors zt and ys,

de�ned as

DKL(ys|zt) =

K
∑

k=1

ys(k) log
ys(k)

zt(k)
, (4.3)

where k ∈ {1, . . . , K} is the dimensionality index of the posterior distribution ve
-

tor [65℄. The KL-divergen
e is always non-negative and zero if and only if the two

posterior ve
tors are equal. So instead of maximizing the likelihood, we will minimize

the KL-divergen
e

DKL(S) =
∑

s∈S

∑

f∈F (s)

K
∑

k=1

yS(k) log
yS(k)

zf (k)
, (4.4)

where S is a set of states s, and F (s) is the set of input ve
tors 
orresponding to

state s. The posterior ve
tor asso
iated with the set S (yS) 
an be 
al
ulated as the

normalised geometri
al mean of the example ve
tors belonging to the elements of S.

That is,

ỹS(k) =

(

∏

s∈S

∏

f∈F (s) zf (k)
)

1
N(S)

∑K

k=1 yS(k)
. (4.5)

After expanding and simplifying, we get [63℄

DKL(S) = −
∑

s∈S

N(s) log
K
∑

k=1

ỹS(k), (4.6)

so the KL divergen
e of a set of states S 
an be 
al
ulated based on the statisti
s ys

and N(s) of the individual states.

For the splitting of a set of states S, the straightforward option is to 
hoose the

question that maximizes the KL-divergen
e di�eren
e ∆DKL(q|S):

∆DKL(q|S) = DKL(S)−
(

DKL(Sy(q)) +DKL(Sn(q))
)

.

4.3.5 Entropy-based de
ision 
riterion

The fourth approa
h we tested was proposed by Zhu et al. [59℄. They also repla
ed

the de
ision 
riterion of Eq. (4.1) with another formula that has no impli
it GMM

dependen
y. The key idea was to measure the inter-similarity of ea
h merged 
luster
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by 
al
ulating the entropy of the examples belonging to it. The entropy of a K-

dimensional probability distribution 
an be 
al
ulated as

H(p) =

K
∑

i=1

p(i) log p(i). (4.7)

The probability distributions asso
iated with ea
h initial state (i.e. the ys ve
tors) were

estimated via the mean of the DNN outputs for all the frames asso
iated with a given

state. Then, for a set of states S, the prototype probability ve
tor (yS) was 
al
ulated

as the arithmeti
 mean of the prototype (ys) of the member states, weighted by the

number of state o

urren
es (N(s)); from these values, the de
ision 
riterion used

during state-tying 
an be 
al
ulated by using the entropy fun
tion, i.e.

DE(S) = −
∑

s∈S

N(s)
K
∑

k=1

yS(k) log yS(k). (4.8)

4.4 Experimental Setup

In our experiments we employed DNNs with 5 hidden layers, ea
h 
ontaining 1000

re
ti�ed neurons [14℄, while the softmax a
tivation fun
tion was applied in the output

layer. As input, FBank features were presented to the networks along with their �rst

and se
ond order derivatives. De
oding and evaluation was performed by a modi�ed

version of HTK [1℄.

The methods des
ribed in this 
hapter were tested on two databases. Firstly, the

81-hour long Wall Street Journal (WSJ) English read spee
h 
orpus [66℄ (spe
i�
ally,

the si-284 set) was 
hosen to test the algorithms as it is a well known and widely

used 
orpus. The re
ognisers were evaluated on the eval92 and eval93 test sets in

the �open-vo
abulary� (60K word vo
abulary) test 
ondition, using a pruned version

of the standard trigram language model. We used the eval93 set as our development

set; i.e. we tuned the language model weight and the insertion penalty on it, and

also 
hose the optimal number of tied states for ea
h state-tying method based on the

WER a
hieved on this set. Then, at the very end, we evaluated the models using the

optimal meta-parameters on the eval92 set as the test set.

We also used the 28 hour-long spee
h 
orpus of Hungarian Broad
ast News [8℄, just

like in the previous 
hapters. The whole 
orpus was utilised with the same partitioning

as before: the training set was about 22 hours long, a small part (2 hours) was used

for validation purposes, and a 4-hour part was used for testing.

We tested three approa
hes for �at start training (i.e. to get the frame-level

phoneti
 targets for CD state-tying and CE DNN training). Sin
e our goal was to


reate a GMM-free system, we evaluated the two algorithms presented in se
tions
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4.2.1 and 4.2.2 and their 
ombination for �at starting with DNNs. In these tests we

always used �ve-hidden-layer CI DNNs. For the �at start method with iterative CE

training (�Iterative CE�) we performed nine training-aligning iterations on the WSJ and

four on the Hungarian database. DNN-based CD state tying was performed using the

output and the alignments 
reated by the �nal DNN. For MMI training (�MMI�) we

also 
ommen
ed with a randomly initialised CI DNN. After applying the dis
riminative

sequen
e training method, the resulting DNN was used to 
reate for
ed aligned labels

and also to provide the input posterior estimates for KL 
lustering. In the last �at start

approa
h tested, we �rst applied the sequen
e-dis
riminative method (i.e. �MMI�).

Afterwards, we 
ombined the two approa
hes; �rst we produ
ed the alignments using

the MMI network, then we trained another DNN with the CE 
riterion to supply both

the �nal frame labels and the likelihoods for CD state-tying (�MMI + CE�). After the

CI DNN training phase we tested the state-tying methods des
ribed in this 
hapter.

To see how well the state 
lustering methods perform we also 
reated CD states with

the original GMM based method (�MFCC + Likelihood �). Keep in mind that in this


ase the frame alignments were still produ
ed by a DNN.

In the 
ase of the Hungarian 
orpus we also applied the standard GMM-based �at

start training to produ
e initial time-aligned labels. To further improve the segmen-

tation, we trained a shallow CI ANN using the CE 
riterion and re-aligned the frame

labels based on the outputs of this ANN (we will refer to this approa
h as the �GMM +

ANN� method). (In our early study we found that using a deep neural network for this

re-alignment setup did not bring about any improvement [51℄.) After the realignment,

only the KL-based state-tying algorithm was exe
uted on the output of the CI ANN.

The main aim of this 
hapter is to 
ompare various �at start strategies and state-

tying methods. This is why, after obtaining the CD labels, the �nal DNN models

were trained starting from randomly initialised weights and using just the CE 
riterion.

Of 
ourse, it is possible to extend the training with a �nal re�nement step using CD

sequen
e-dis
riminative training, but it is out of the s
ope of this study.

4.5 English results

First, let us 
ompare the three �at start strategies, Table 4.1 shows the WERs of the

CI DNNs. It is 
lear that the iterative method, whi
h optimised the frame level CE

performed worst of all. Besides providing inferior WER, it also required far more time

than the other two approa
hes. In total nine training and re-aligning iterations were

required, afterwards the WER on the development set started to de
rease. Surprisingly,

the DNN trained with MMI yielded quite a

eptable results, despite the fa
t that it

was only a CI a
ousti
 model. The 
ombination of the two methods (MMI+CE)
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Method Dev. Test

Iterative CE 28.63% 20.47%

MMI 15.78% 10.07%

MMI+CE 15.43% 9.64%

Table 4.1: WERs got by using di�erent �at start methods on the WSJ.
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Figure 4.1: The number of training frames for the di�erent state-tying methods for

the 
ase of about 2400 CD states.

o�ered some improvements on both the development and test set, but almost doubled

the training time. The inferior performan
e of the iterative method 
an be explained

by the �run-away silen
e model� e�e
t, meaning that these networks be
ame greatly

biased towards the silen
e label, this 
aused a lot of deletion errors.

Figure 4.1 shows the distribution of the training 
lasses after state-tying (using the

MMI+CE �at-start strategy) for the 
ase of roughly 2400 CD states. Besides noti
ing

that the distribution produ
ed by the di�erent state-tying methods is quite similar, we

should also note that using the original de
ision 
riterion with the DNN outputs as

input (proposed by Senior et al.) resulted in the best balan
ed 
lass distribution.

First, we would like to mention that a purely GMM based system a
hieves 12.74%

and 9.46% on the development and test sets, respe
tively [67℄. Table 4.2 lists the best

WER s
ores got on the development set and the 
orresponding WER values obtained

on the test set. All GMM-free state-tying methods a
hieved the best results with an

MMI-trained DNN. We 
an also see that the Iterative CE strategy led to the worst

results and interestingly the MMI+CE approa
h yielded worse results than the MMI

based �at start.
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Flat start strategy Clustering method Development Test

Iterative CE

MFCC + Likelihood 11.02% 8.20%

DNN + Likelihood 11.48% 7.64%

DNN (hidden) + Likelihood 11.05% 7.81%

Kullba
k-Leibler 10.47% 7.27%

Entropy 10.24% 7.27%

MMI

MFCC + Likelihood 8.58% 6.13%

DNN + Likelihood 8.7% 6.47%

DNN (hidden) + Likelihood 8.85% 6.04%

Kullba
k-Leibler 8.06% 5.72%

Entropy 8.03% 5.92%

MMI + CE

MFCC + Likelihood 8.79% 5.97%

DNN + Likelihood 9.14% 6.45%

DNN (hidden) + Likelihood 9.43% 6.77%

Kullba
k-Leibler 8.5% 6.15%

Entropy 8.09% 6.20%

Table 4.2: WER values on the development and test sets got by using the di�erent

�at-start and CD state-tying methods.

Upon examining the results it 
an be seen that all GMM-free methods markedly

outperformed the HMM/GMM system. Noti
e that on the development set the highest

WER is around 11.48%, while it is 8.2% for the test set, so the same relative WER

improvement 
orresponds to a smaller absolute improvement for the latter set. The

two most basi
 approa
hes worked the worst of all: using the CI DNN outputs or

the hidden a
tivations with the standard state-tying de
ision 
riterion. While using

MMI-based �at start and the outputs of the last hidden layer with the original state-

tying method (proposed by Ba

hiani and Ryba
h) led to slightly worse s
ores on

the development set, it greatly outperformed the �rst approa
h on the test set. This

approa
h is also justi�ed by the fa
t that the a
tivation ve
tors of a DNN are 
ommonly

used as features in several tasks su
h as speaker identi�
ation [68℄ and various image

pro
essing appli
ations [69℄. The standard state-tying method (MFCC + Likelihood)

was quite 
ompetitive with those that did not 
hange the de
ision 
riteria, meaning

that the alignments produ
ed by a DNN were better than those got by using a GMM.

The remaining two methods utilised some novel de
ision 
riteria instead of the
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Gaussian-based, standard one; and this fa
t is 
learly re�e
ted in their performan
e.

On the development set they a
hieved pra
ti
ally identi
al WER s
ores (8.06% vs.

8.03% for the Kullba
k-Leibler and the entropy-based de
ision 
riteria, respe
tively);

they di�ered somewhat on the test set, but the di�eren
e is not statisti
ally signi�
ant.

Overall, by relying on the Kullba
k-Leibler-based de
ision 
riterion the WER s
ores

were redu
ed by 0.8% 
ompared to the basi
 approa
h of Senior et al., meaning a 12%

improvement in terms of relative error redu
tion.
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Figure 4.2: WER for the di�erent state-tying approa
hes on the development set using

the iterative �at start method.

Taking a 
loser look at �gures 4.2-4.7, we 
an see the WER s
ores obtained as

a fun
tion of the number of CD states. It 
an be observed that the two solutions

that used the original state-tying algorithm, and the two whi
h utilised a de
ision


riterion designed for DNN outputs, are well separated, with the latter group produ
ing


onsistently lower WER s
ores for both sets regardless of the number of tied states. The

results of the MFCC + Likelihood method are a little hard to interpret as the 
urves of

the development and test sets do not 
orrelate, and sometimes behave quite di�erently.

The most probable explanation for this is the inappropriate feature set issue: the CI

DNN was trained using FBank features, but the state-tying algorithm used MFCC

features. These results, in our opinion, 
on�rm our hypothesis that besides 
hanging

the input of the CD state-tying algorithm, its behaviour should also be adapted to

better suit DNNs, allowing them to a
hieve better results.
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Figure 4.3: WER for the di�erent state-tying approa
hes on the test set using the

iterative �at start method.
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Figure 4.4: WER for the di�erent state-tying approa
hes on the development set using

MMI for �at start.
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Figure 4.5: WER for the di�erent state-tying approa
hes on the test set using MMI

for �at start.
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Figure 4.6: WER for the di�erent state-tying approa
hes on the development set using

MMI-CE for �at start.
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Figure 4.7: WER for the di�erent state-tying approa
hes on the test set using MMI-CE

for �at start.

As a further note, in
reasing the number of CD states helps those approa
hes

that use the original, likelihood-based 
riterion; for the other two methods, however,

optimality is a
hieved by having about 2400 states. On the test set, all four approa
hes

seem to be quite insensitive to the number of tied states. Note that these inventory

sizes appear to be smaller than those 
ommonly used on the WSJ 
orpus, whi
h, due

to the lower 
omputational requirements, is an improvement by itself.

4.6 Hungarian results

Figures 4.8 and 4.9 show the resulting WER s
ores as a fun
tion of the number of

CD tied states on the Szeged Hungarian Broad
ast News dataset. As 
an be seen,

the MMI-based �at start strategy gave 
onsistently better results than the iterative

method in every 
ase, just like before. We also observed that the �nal CD models

whi
h got their training labels from the MMI-trained DNN were more stable with

respe
t to varying the number of CD states. Fine-tuning the labels of the MMI-trained

DNN with a CE-trained DNN (�MMI� vs. �MMI+CE�) again seems unne
essary, as

it was not able to notably improve the results. This strongly suggests that sequen
e

training yields both �ne alignments and good posterior estimates.
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Flat start state-tying WER % No. of

method method Dev. Test epo
hs

GMM + ANN GMM 18.83% 17.27% �

GMM + ANN KL 17.12% 16.54% �

Iterative CE

KL

16.81% 16.50% 48

MMI 16.50% 15.96% 13

MMI + CE 16.36% 15.86% 29

Table 4.3: Word error rates (WER) for the di�erent �at start strategies and the KL

state-tying method.
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Figure 4.8: WER as a fun
tion of the number of KL-
lustered tied states on the

Hungarian development set.

Table 4.3 summarises the best WER values obtained on the development set, and

the 
orresponding s
ores on the test set for the Hungarian 
orpus. The KL 
luster-

ing method 
learly outperformed the GMM-based state-tying te
hnique. Comparing

the alignment methods, we 
an see that relying on the alignments produ
ed by the

HMM/GMM resulted in the lowest a

ura
y s
ore, in spite of the �ne-tuning step that

used an ANN. After setting the parameter 
on�gurations, the Iterative CE training

method performed slightly worse than the MMI-based strategies. Unfortunately, for
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Figure 4.9: WER as a fun
tion of the number of KL-
lustered tied states on the

Hungarian test set.

the Iterative CE method the right number of training-aligning steps is hard to tune.

For example, Zhang et al. performed 20 su
h iterations [53℄, while we employed only

4 iterations. In this respe
t, it is more informative to 
ompare the training times,

whi
h are shown in the rightmost 
olumn of Table 4.3. We did not in
lude the number

of epo
hs for the �GMM + ANN� method, as the training pro
edure was radi
ally

di�erent in that 
ase. For our 28-hour dataset, 48 epo
hs were required by the four

iterations of iterative CE �at start strategy, while MMI required only one-fourth of

it. Although performing the forward-ba
kward sear
h adds a slight overhead to the

MMI training pro
ess, it is 
lear that it was still mu
h faster, even when the �nal CE

re-alignment step was also involved (MMI+CE).

Measuring the training times in CPU/GPU time gives even larger di�eren
es in

favour of the MMI method (3 hours vs. 16 hours). The reason is that for iterative

CE �at start training we used a mini-bat
h of 100 frames (whi
h we found optimal

previously [51℄), while for MMI whole utteran
es (usually more than 1000 frames) were

used to update the weights, and this allowed better parallelisation on the GPU.

In our view, two modi�
ations are 
ru
ial for the speed and stability of the proposed

algorithm. The �rst one is that we use only CI phone models without phone language

model, so we 
an very qui
kly update the numerator and denominator latti
es after

the pro
essing of ea
h senten
e. This 
ontinuous re�nement of the frame-level soft
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targets obviously leads to a faster 
onvergen
e. The only study we know of, whi
h does

not perform the re-alignment of the frame-level targets immediately after a training

iteration, is that of Ba

hiani et al. [70℄. Their study fo
uses on des
ribing their

massively parallelised online neural network optimisation system, where a separate

thread is responsible for the alignment of the phoneti
 targets, while DNN training is

performed by the 
lient ma
hines. Besides the fa
t that in their model there is no

guarantee that the alignment of phoneti
 targets are up-to-date, it is easy to see that

their ar
hite
ture is quite di�erent from a standard DNN training ar
hite
ture, making

their te
hniques pretty hard to adapt. In 
ontrast, our slight modi�
ations 
an be

applied relatively easily.

As regards stability, a known drawba
k of sequen
e training methods is that the

same pro
ess is responsible both for aligning and training the DNN, whi
h often leads

to the �run-away silen
e model� issue [46℄. That is, after a few iterations, only one

model (usually the silen
e model) dominates most parts of the utteran
es, whi
h is even

reinfor
ed with the next training step. To prevent the o

urren
e of this phenomenon,

we monitored the error rate on a hold-out set during training. If the error in
reased

after an iteration, we restored the weights of the network to their previous values and

the learning rate was halved. In our experien
e, restoring the weights to their previous

values and 
ontinuing the training using a lower learning rate 
an su

essfully handle

this issue.

4.7 Word-Level Error Analysis of a Hungarian Au-

tomati
 Spee
h Re
ognizer

Next, we will take a 
loser look at the typi
al word-level errors of our best GMM-

free Hungarian spee
h re
ognition system. To a
hieve this, we sele
ted one hundred

utteran
es from the test set and the errors produ
ed by the ASR system were manually

annotated, then analysed. The word-level error rate in Automati
 Spee
h Re
ognition

(ASR) is traditionally measured by a metri
 based on edit distan
e, whi
h relies on

the exa
t mat
h of word forms. Like most 
ommon te
hniques in ASR, this approa
h

works well with the English language, but as we will see, for other languages su
h as

agglutinative ones (like the Hungarian language) it may be suboptimal.

4.7.1 Analysing the Errors

To analyse the error types, we manually 
ompared the ASR output and the 
orre
t

trans
ription for a subset of the test set. First we automati
ally lo
ated the errors in

the ASR output, and displayed them in a form along with one neighbouring word on
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ea
h side to provide a 
ontext for the human annotators. Error 
ategories were set

up by linguists, and ea
h error o

urren
e was 
ategorised manually by two human

annotators.

Errors were �rst 
ategorised based on linguisti
 
riteria. For instan
e, when the

only di�eren
e between the gold standard text and the output of the ASR system was

just a spa
e, 
ausing only a slight 
hange in meaning (if any) we regarded this as a

Compounding error. Two examples of this are:

• a két százmilliárdos tétel [O ke:t sa:zmillia:rdoS te:tEl℄ (the two one.hundred.billion

item) �the two items worth one hundred billions� vs. a kétszáz milliárdos tétel

[O ke:tsa:z millia:rdoS te:tEl℄ (the two.hundred.billion item) �the item worth two

hundred billions�;

• az exportdinamikája is [OzEksportdinOmika:jO iS℄ (the export.dynami
s-3SGPOSS

too) �its export dynami
s too� vs. az export dinamikája is [Oz Eksport dinOmika:jO

iS℄ (the export dynami
s-3SGPOSS too) �the dynami
s of the export too�).

Another frequent error was that a sound was followed by another one of the same

quality, whi
h was treated as a long phoneme by the system. We 
reated two subtypes

for this 
ategory, one for the 
onsonants (Conse
. 
onsonants), and the other for the

vowels. Sin
e the most 
ommon sour
e of error with vowels was that a word ending in

-a was followed by the de�nite arti
le a, we 
alled this type the Two "a" sounds. (e.g.

mondja bankszövetség [monéO O bOnksøvEtSe:g℄ (say-3SGOBJ bank.federation) �bank

federation says� vs. mondja a bankszövetség [monéO bOnksøvEtSe:g℄ (say-3SGOBJ the

bank.federation) �the bank federation says�).

In many 
ases, the stem of the word was 
orre
tly re
ognised but its su�xes were

not (In
orre
t su�x): either the in�e
tional su�x was missing (e.g. a possessive su�x

in Mez®túr polgármester [mezø:tu:r polga:rmEStEr℄ (Mez®túr mayor) �Mez®túr mayor�

vs.Mez®túr polgármestere [mezø:tu:r polga:rmEStErE℄ (Mez®túr mayor-3SGPOSS) �the

mayor of Mez®túr�), or an in
orre
t one was assigned to the word (present vs. past

tense in szétdarabolják [se:ddOrOboj:a:k℄ (
ut.into.pie
es-3PLOBJ) �they are 
utting it

into pie
es� vs. szétdarabolták [se:ddOrObolta:k℄ (
ut.into.pie
es-PAST-3PLOBJ) �they

were 
utting it into pie
es�).

In other 
ases, one word was absent from the ASR output (Omitted word 
ate-

gory) (terén er®sítik [tEre:n Erø:Si:tik℄ (aspe
t-3SGPOSS-SUP improve-3PLOBJ) �they

improve this in this aspe
t� vs. terén ha er®sítik [tEre:n hO Erø:Si:tik℄ (aspe
t-3SGPOSS-

SUP if improve-3PLOBJ) �if they improve this in this aspe
t�).

In two spe
ial 
ases the ASR output was 
orre
t, but it di�ered from the trans
rip-

tion. First, the gold standard may have 
ontained an error (a szennyezetett vízt®l [O

sEñ:EzEtEtt vi:stø:l℄ (the polluted-TYPO water-ABL) �from the polluted water� vs. a
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Error type NE NUM OOV Annot. Total

Compounding 3 25 25 14 61

Two �a� sounds 0 0 0 0 11

Be/de 
hange 0 0 9 0 9

Conse
. 
onsonants 0 0 0 0 5

Gold standard 0 0 1 1 1

Spelling 7 0 6 0 7

Is/és 
hange 0 0 0 0 19

Omitted word 0 0 0 0 12

In
orre
t su�x 7 3 20 0 91

Other error 96 6 114 0 185

Total 113 34 175 15 401

Table 4.4: Total number of ea
h error type and ea
h annotated word type

szennyezett vízt®l [O sEñ:EzEtt vi:stø:l℄ (the polluted water-ABL) �from the polluted

water�). Se
ond, the errors in the Spelling 
ategory were 
aused by the fa
t that the

linguisti
 prin
iples behind the 
reation of the trans
ript had some spe
ial aspe
ts.

For instan
e, named entities with irregular pronun
iation were en
oded a

ording to

the Hungarian orthographi
al norms but the ASR system provided the original spelling

for them (Magyar Helszinki Bizottság [mOéOr hElsinki bizottSa:g℄ �Hungarian Helsinki

Committee� vs. Magyar Helsinki Bizottság, the 
orre
t spelling, where the digraph sz

denotes the phoneme [s℄).

We found two other very 
ommon error types, both types being 
aused by repla
ing

a word with a similar sounding one. In the 
ase of the �rst 
ategory (be/de 
hange),

the ASR system repla
ed the word be [bE℄ �in� with the word de[dE℄ �but�. The se
ond


ategory (Is/és 
hange) 
ontained errors when the two word is [iS℄ �too� and és [e:s℄

�and� were inter
hanged.

Apart from the error type 
ategories, we also examined whi
h error types were

related to 
ertain word types. We examined four word 
ategories; namely the named

entities (NE ), the numbers (NUM), the out-of-vo
abulary words(OOV ) and words

with annotation errors (Annot.). If any of the words in the lo
al 
ontext of the a
tual

error belonged to the given word 
ategory (e.g. one of the three words was OOV ), we

marked the given error o

urren
e as one related to the given word 
ategory.

Firstly, we examined whether the 
orre
t trans
ript 
ontained a named entity

(e.g. Balogh [bOlog℄ (a Hungarian surname), Fidesz [�dEs℄ (the name of a politi-


al party), tálibok [ta:libok℄ �Taliban�). Se
ondly, we 
he
ked whether it 
ontained

any numerals (e.g. ezeréves [EzEre:vES℄ �a thousand years old�, kétmilliós [ke:tmillio:S℄
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Figure 4.10: Distribution of errors among the error 
ategories, expressed in error (left)

and word error (right) per
entages.

�(worth) two million�, ezerkilen
százötvenhatos [EzErkilEntssa:zøtvEnhOtoS℄ �of/from

1956�). Thirdly, we 
he
ked to see if any of the word forms was OOV. Lastly, we

examined whether the trans
ript was 
orre
t, or if it 
ontained some error (e.g. 
om-

pounding error or typo).

Note that in the above approa
h, an error may a�e
t several 
onse
utive word

o

urren
es, whi
h are treated as one error instan
e. Naturally, as we use WER to

measure the word-level error, these errors in�uen
e the �nal WER more than those

whi
h only a�e
ts one word. Furthermore, as ea
h word type was treated independently

of the others, in theory an error o

urren
e 
an be related to multiple word 
ategories.

4.7.2 Results of the analysis

Figure 4.10 shows the distribution of error 
ategories, expressed in terms of the ratio of

errors and the ratio of word errors. The distribution of the error 
ategories and the given

word 
ategories 
an be seen in tables 4.4 and 4.5. We 
an see that only slightly more

that half of the error o

urren
es 
an be assigned to one of the meaningful 
ategories,

while about 46% of them fell into the �Other error� 
ategory. When measured in

word errors, �Other errors� represent a slightly larger part � almost 50%; this 
an be

tra
ed ba
k to the fa
t that for 
ertain error types (e.g. be/de 
hange, is/és 
hange,

two 
onse
utive �a� sounds, omitted word, di�eren
e in spelling), one error o

urren
e

typi
ally a�e
ts only one word, while on average this value is around 1.5. At the same

time, the ratio of 
ompounding errors in
reased, as this error type leads to at least two

word errors for ea
h error o

urren
e.

Evidently, among the errors a�e
ting named entities, a very 
ommon error type was

that of spelling di�eren
es, and many errors were 
aused by in
orre
t su�
es. This is

quite logi
al, as the named entities appear quite rarely in the training text 
orpus, and

their in�e
ted forms are even less frequent. Still, most errors related to named entities
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Error type NE NUM OOV Annot. Total

Compounding 6 52 52 28 124

Two �a� sounds 0 0 0 0 11

Be/de 
hange 0 0 9 0 9

Conse
. 
onsonants 0 0 0 0 5

Gold standard 0 0 1 1 1

Spelling 7 0 6 0 7

Is/és 
hange 0 0 0 0 19

Omitted word 0 0 0 0 12

In
orre
t su�x 11 5 32 0 116

Other error 157 11 188 0 299

Total 181 68 288 29 603

Table 4.5: Total number of ea
h word error type and ea
h annotated word type

fell into the error 
ategory of Other.

Error o

urren
es related to numerals mostly belonged to the 
ompounding error


ategory. A straightforward explanation would be that there are just too many (nu-

meral) word forms possible whi
h 
annot be listed in the vo
abulary, but surprisingly

out of the 25 
ases only 5 were OOV ones at the same time. The high frequen
y of


ompounding errors for numerals was probably be
ause the language model allowed

both versions (e.g. for the word kétszázharmin
ezer [ke:tsa:zhOrmintsEzEr℄ �two hun-

dred thirty thousand� both the word kétszázharmin
 [ke:tsa:zhOrmints℄ �two hundred

thirty� and the word ezer [EzEr℄ �thousand� were present in the vo
abulary). Interest-

ingly, in 11 
ases the 
ompounding errors related to numerals were annotation errors

at the same time.

Examining the error 
ategories related to OOV words, 
ompounding errors and

using in
orre
t su�
es altogether formed only one-fourth of the error o

urren
es,

while the vast majority of these errors belonged to the 
ategory Other. The reason for

this is probably that for these two kinds of errors at least a variation of the OOV word

with a di�erent su�x has to be present in the vo
abulary. Annotation errors usually

led to 
ompounding errors, and in one 
ase there was a typo in the trans
ription

(szennyezetett instead of szennyezett �polluted�).

Fo
using on the error 
ategories we 
an see that, for a large portion of 
ompound-

ing errors, some of the marked word types also o

ur; these form roughly 80% of


ompounding errors. The errors �be/de 
hange� are always OOV errors, simply be-


ause the word �be� was missing from the vo
abulary. Spelling errors a�e
t only named

entities, but it is surprising that in one 
ase it was not an OOV error. The reason for
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Category NE NUM OOV Annot. Total

Named entity 113 0 99 0 113

Numeral 0 34 10 11 34

OOV 99 10 175 1 175

Annotation 0 11 1 15 15

Total 113 34 175 15 216

Table 4.6: Total number of errors 
on
erning ea
h annotated type and their 
ombina-

tions
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Figure 4.11: Frequen
y of word 
ategories, expressed in a�e
ted error o

urren
es and

word errors.

this is that besides the most 
ommon word form Attilának (Attila-DAT) �for Attila�,

an alternative form Atillának was also present in the vo
abulary.

More than half of the error o

urren
es 
lassed as Other error 
ontained a named

entity, and two-thirds of them had at least one OOV word. Examining all the errors

we 
an see a similarly high ratio for these two word types; overall, 46% of the error

o

urren
es 
ontained at least one of the examined word types, although these gave

60% of the WER.

Figure 4.11 shows what proportion of the given word types were present in the error

o

urren
es and word errors. As expe
ted, a large part (almost 50%) of the errors were

OOV; yet, there were many named entities (28-30%) and numerals (8-11%) present

in the error o

urren
es as well. Tables 4.6 and 4.7 show the 
o-o

urren
e of the

marked word 
ategories. (Evidently, diagonal elements are the same as those in the

Total row and 
olumn.) It 
an be seen that the vast majority (87%) of the error

o

urren
es 
ontaining named entities are OOV errors as well; evidently, this ratio

is mu
h smaller (53%) than the other way around, as many other word forms (e.g.

su�xed forms) may be frequently missing from the vo
abulary. Roughly one-third of

the error o

urren
es of numerals are also OOV or annotation errors. Also, noti
e

how frequent the numerals are among annotation errors. This is probably due to the
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Category NE NUM OOV Annot. Total

Named entity 181 0 161 0 181

Numeral 0 68 22 22 68

OOV 161 22 288 1 288

Annotation 0 22 1 29 29

Total 181 68 288 29 360

Table 4.7: Total number of word errors 
on
erning ea
h annotated type and their


ombinations


ompli
ated spelling of Hungarian numerals (as the words with dashes were split in the

trans
riptions, hen
e hyphenation errors appear as 
ompounding ones).

Overall, a great amount of re
ognition errors simply represented a mismat
h be-

tween the vo
abulary and the trans
riptions. Using the orthographi
 trans
ription for

proper names helped us when 
reating the phoneti
 trans
ripts (and thus, in training

the a
ousti
 model), but these words were present in the vo
abulary using a di�erent

spelling. Furthermore, there may have been a mismat
h between the origo 
orpus

that was used to build the language model, and the pronun
iation di
tionary (the

Hungarian Pronun
iation Di
tionary), whi
h led to a number of abbreviations (mostly

names of politi
al parties, being present quite frequently in broad
ast news) missing

from the vo
abulary. And, for some mysterious reason, some 
ommon words (e.g. be

�in�, legalább �at least�) were missing from the vo
abulary.

Nevertheless, these errors might be responsible for at most 10% of WER, sin
e 90%


ame from 
ompounding errors, those of in
orre
t su�x, and of 
ourse the �Other�


ategory. From this, perhaps the more interesting 
ase is the high number of 
om-

pounding errors, espe
ially in the 
ase of numerals, where the language model usually

allows both versions. In su
h 
ases the ASR output is �pra
ti
ally� 
orre
t, so it 
an

be read and understood very well, 
ontaining �only� some spelling error. This phe-

nomenon is not a frequent one in English ASR, but as we have seen, in Hungarian

(and probably for several other languages) it a�e
ts the WER to a notable extent. Of


ourse, word sequen
es 
ontaining 
ompounding errors 
annot be regarded as 
orre
t

ones; still, it would be sensible to treat them as less serious mistakes instead of omit-

ting a word with an entirely di�erent meaning. What WER does in pra
ti
e, however,

happens to be the opposite: 
ompounding errors, by their nature, result in at least two

word errors (e.g. one substitution and one insertion). In our opinion this highlights a

language-dependent weakness of the de-fa
to standard WER metri
.
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4.8 Summary

In this 
hapter, I introdu
ed a GMM-free method to train DNN based spee
h re
-

ognizers. In the previous 
hapter I proposed several modi�
ations to the standard

MMI sequen
e training method, whi
h made it possible to train randomly initialised

CI DNNs without for
ed aligned labels. After the �at start step I also 
ompared the

performan
e of four state 
lustering approa
hes (in
luding the KL-divergen
e-based

one, whi
h was proposed by us) to 
reate 
ontext-dependent tied states for DNN

a
ousti
 models. What was 
ommon in the four approa
hes is that they utilized the

output of a 
ontext-independent neural network as their input. The experimental re-

sults showed that repla
ing the de
ision 
riterion used during state 
lustering is also

bene�
ial. The results indi
ated that, 
ompared to the standard pro
edure of iterative

CE DNN training and re-alignment, the MMI based one was not only able to produ
e

better WER s
ores, but also a
hieved a signi�
ant redu
tion in training times. By also

utilising several new DNN-based state-tying methods, the whole training pro
edure of


ontext-dependent HMM/DNNs be
ame GMM-free.

Furthermore, we also examined the word error types that are 
ommon in the output

of a standard ASR system built for the Hungarian language. For this, we 
olle
ted the

word errors and their lo
al 
ontext, then we manually 
ategorised and analysed them.

We found that a large amount of word errors 
an be tra
ed to OOV word forms, whi
h

is just what we expe
ted. Nevertheless, 
ompounding errors were surprisingly 
ommon.

We found that the main reason for this is that the language model allows both word

forms, and the a
ousti
 model simply 
annot de
ide whi
h form is the 
orre
t one (as

both solutions have the same phoneti
 trans
ript). This kind of error is judged to be a

minor one by human readers, yet WER, whi
h is based on the 
on
ept of exa
t word

mat
hing, treats these errors as more serious ones than substituting just one word with

a 
ompletely di�erent meaning. We found this issue quite 
ommon in Hungarian ASR,

hen
e in the future we would like to have a new metri
 to measure the a

ura
y of

Hungarian ASR systems.

In this 
hapter, the author regards the following as his main 
ontributions:

• The introdu
tion of a novel KL-divergen
e based state-tying algorithm;

• The appli
ation of the MMI-based training for the �at start training of CI DNNs;

• An experimental 
omparison of multiple GMM-free ASR soulutions.

The methods and results of this 
hapter were published in [51, 50, 71℄.



Chapter 5

Training Context-Dependent

DNN A
ousti
 Models using

Probabilisti
 Sampling

After exploring possible improvements in the �at start and state 
lustering phase, we

now turn our attention to the CD training phase. In 
urrent HMM/DNN spee
h

re
ognition systems, the purpose of the DNN 
omponent is to estimate the posterior

probabilities of tied triphone states. In most 
ases the distribution of these states is

uneven, meaning that we have a markedly di�erent number of training samples for the

various states. This imbalan
e in the training data is a sour
e of suboptimality for most

ma
hine learning algorithms, and DNNs are no ex
eption. A straightforward solution

is to re-sample the data, either by upsampling the rarer 
lasses or by dowsampling the

more 
ommon 
lasses.

In this 
hapter, we experiment with the so-
alled probabilisti
 sampling method

that applies downsampling and upsampling at the same time, to improve the a

ura
y

of CD a
ousti
 models. For this, we de�ne a new 
lass distribution for the training

data, whi
h is a linear 
ombination of the original and the uniform 
lass distributions.

As an extension to previous studies, we also propose a new method to re-estimate the


lass priors, whi
h is required to redu
e the mismat
h between the training and the

test data distributions introdu
ed by re-sampling.

Using probabilisti
 sampling and the proposed modi�
ation we a
hieved relative

word error rate redu
tions of 5% and 6% on the TED-LIUM and on the AMI 
orpora,

respe
tively. We will also show that this re-sampling method 
an improve our GMM-

free system.

69
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5.1 Introdu
tion

The imbalan
e in the 
lass distribution poses a signi�
ant 
hallenge to most ma
hine

learning algorithms [72℄, and DNNs are no ex
eption. It is known that neural networks

tend to be
ome biased towards 
lasses with more training examples, underestimating

the posterior probabilities of the rarer 
lasses [73℄. Class imbalan
e is a typi
al problem

in dete
tion tasks, where usually only a small per
entage of the training samples belong

to the positive 
lass [74℄. The situation is even more di�
ult when the total amount

of training data is already very low in itself.

In this 
hapter, we fo
us on the e�e
t of 
lass imbalan
e on the training of CD DNN

a
ousti
 models. At �rst glan
e, 
lass imbalan
e is not an issue in spee
h re
ognition,

as the frequen
y of the phones is quite balan
ed, and we have tremendous amounts of

training data 
ompared to some other ma
hine learning tasks. However, we typi
ally

use 
ontext dependent (CD) phone models, and the number of tied states is allowed

to in
rease when the size of the training 
orpus in
reases. We will show that the

distribution of these CD target labels is far from uniform, meaning that many of the

training samples belong to only a few 
lasses, while many of the CD state 
lasses are

represented by just a few examples. While one would think that this 
auses problems

only in low-resour
e s
enarios, our experiments will show that the te
hnique we propose

may signi�
antly improve the re
ognition results even in the 
ase of fair-sized 
orpora.

The problem of 
lass imbalan
e is typi
ally ta
kled by applying re-sampling algo-

rithms to the training data. In the simplest approa
h, the 
lass-balan
e of the data is

a
hieved by either redu
ing the number of the examples of the most 
ommon 
lasses

(downsampling) [75℄ or by presenting the rare examples more frequently (upsampling).

In this 
hapter, we des
ribe a more sophisti
ated algorithm 
alled probabilisti
 sam-

pling [76℄. Probabilisti
 sampling o�ers a way of downsampling and upsampling at

the same time by applying a two-step sampling pro
ess. For this, we de�ne a new

probability distribution over the 
lasses, whi
h determines how frequently the 
lasses

are 
hosen during re-sampling. The �rst step of the sampling pro
ess 
hooses a 
lass

based on this distribution. For the se
ond step, a sample from the training ve
tors

of the 
hosen 
lass is sele
ted following a uniform distribution. A simple solution to


reate a probability distribution over the 
lasses is to take the linear 
ombination of the

original 
lass distribution and the uniform distribution. This will result in a re-sampling

pro
ess that has one free parameter, the weight λ of this linear interpolation. With

λ = 0, we retain the original 
lass distribution, while λ = 1 results in a uniform 
lass

sampling.

Tóth and Ko
sor applied the probabilisti
 sampling method to a very small spee
h

re
ognition task in 2005 in the framework of HMM/ANN hybrids, and they reported
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improvements in the results [77℄. As they worked only with monophone 
lass labels,

the main problem they tried to handle by probabilisti
 sampling was data s
ar
ity. In

2015, Song et al. applied probabilisti
 sampling in the training of DNN a
ousti
 models

with 
ontext-dependent targets, and they obtained a signi�
ant redu
tion in the word

error rate [78℄. However, they performed their experiments on a low-resour
e task,

using a 
orpus of only 4.5 hours of spee
h.

When dis
ussing re-sampling methods in the framework of spee
h re
ognition, we

should also mention the in-depth study of Gar
ía-Moral et al., who applied a simple

downsampling approa
h by dis
arding examples belonging to the more 
ommon 
lasses.

Although this made the ANN training pro
ess mu
h faster, they experien
ed a slight

drop in the a

ura
y s
ores [75℄. Lastly, we should mention that over the past few years

we have su

essfully used probabilisti
 sampling in dete
tion-oriented paralinguisti


tasks su
h as dete
ting the intensity of 
ognitive and physi
al load [74, 79, 80℄.

In Chapter 1, we mentioned the 
lassi
 mathemati
al formulation of HMM/DNN

hybrids states. To put it simply, the neural network outputs estimate the posterior

distribution of the training labels, and the they 
an be in
orporated in the HMM

framework after a division by the 
lass priors [20℄. When probabilisti
 sampling is

applied with uniform 
lass sampling, Tóth and Ko
sor [77℄ proved that there was no

need to divide by the priors, as the network will approximate the 
lass-
onditional

probabilities within a s
aling fa
tor.

Unfortunately, neither the authors of [77℄ nor [78℄ addressed the problem of in-

termediate distributions; that is, when the interpolation fa
tor λ is between 0 and 1.

Gar
ía-Moral emphasizes that in su
h 
ases the posterior estimates require a proper

s
aling [75℄ after re-sampling the training data. To a
hieve this, here we propose to

re-estimate the priors from the re-sampled training data, and divide the DNN outputs

by these adjusted priors. Besides examining the e�e
t of s
aling by the various esti-

mates of the 
lass priors, we will also 
ompare two di�erent strategies for the random

sele
tion of the samples within a given 
lass.

Our experiments show that with the proposed minor modi�
ations probabilisti


sampling 
an be used to improve the results of training CD DNN a
ousti
 models, even

in 
ases where large amounts of data are available. In the experiments we evaluated

our method on the publi
ly available TED-LIUM 
orpus (release 1), whi
h 
ontains

118 hours of training data [81℄, and the publi
 AMI 
orpus, whi
h has a training set

of 100 hours [82℄. With the best λ we managed to a
hieve relative word error rate

redu
tions between 5% and 6% on these 
orpora.
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5.2 Probabilisti
 Sampling

The 
lass distribution of CD state labels is a heavy-tailed distribution, meaning that the

number of examples for ea
h state di�ers signi�
antly. Figure 5.1 shows the empiri
al

distribution of the CD states on a logarithmi
 s
ale for the TED-LIUM 
orpus (the

CD states were obtained using the Kaldi re
ipe [83℄). As 
an be seen, a subset of

the 
lasses is signi�
antly over- and under-represented, whi
h might bias the DNN to

favour 
ertain 
lasses and negle
t some others. As a result, it generates impre
ise

posterior estimates for these 
lasses, whi
h usually leads to a higher word error rate

(WER). One possible way to avoid this is to arti�
ially balan
e the 
lass distribution
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Figure 5.1: The distribution of tied CD states on a logarithmi
 s
ale in des
ending

order (TED-LIUM 
orpus, Kaldi re
ipe)

by re-sampling the training set. Usually, we have no way of generating additional

samples from a rare 
lass, so balan
ing 
an be a
hieved by either redu
ing the number

of examples belonging to the most 
ommon 
lasses (downsampling) or by presenting

the rare examples more frequently (upsampling).

Probabilisti
 sampling o�ers a third option by 
ombining the two previous sampling

approa
hes [76℄. It applies a simple two-step sampling s
heme; namely, �rst we sele
t

a 
lass, then we pi
k a training sample belonging to this 
lass. The �rst step requires

us to assign a probability to ea
h 
lass, whi
h determines how frequently it is sele
ted.

Here, we will use the following formula to de�ne the sampling probability of the 
lasses:
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P (ck) = λ
1

K
+ (1− λ)Prior(ck), (5.1)

where Prior(ck) is the prior probability of 
lass ck, K is the number of 
lasses and

λ ∈ [0, 1] is a parameter. For λ = 1, we get a uniform distribution over the 
lasses;

and with λ = 0 we retain the original 
lass distribution. Using intermediate λ values

leads to a linear 
ombination of these two distributions.

5.2.1 Sele
ting samples within the 
lasses

Having 
hosen a 
lass based on Eq. (5.1), we need to sele
t a sample belonging to

that 
lass. During re-sampling our main goal is to modify the 
lass distribution of

the training data and leave the distribution of the training examples belonging to the

same 
lass un
hanged (uniform). The simplest way to do this is to pi
k a random

training ve
tor within the 
lass. However, as we perform only a few iterations on the

training data, this strategy 
ould have an undesired side-e�e
t that it 
ould 
hange

the distribution of the examples within the same 
lass. The reason for this is that for

some 
lasses the re-sampling method may present the training ve
tors to the DNN

unevenly, meaning that some examples might not be sele
ted at all during the whole

training pro
ess. We propose a very simple solution to remedy the problem. First, we

de�ne a random ordering of the examples belonging to the given 
lass. Then, during

training, we always sele
t the next sample a

ording to this ordering. This strategy

ensures that the examples of the given 
lass are presented evenly.

5.2.2 Adjusting the prior probability estimates

The standard pra
ti
e for HMM/ANN hybrids is to divide the outputs of the DNN

a
ousti
 model by the 
lass priors, in order to 
onvert the posterior estimates into

likelihood estimates. When applying probabilisti
 sampling, in theory, the division by

the priors is required when λ = 0 (there is no re-sampling), and there is no need

to divide with the priors when λ = 1 (uniform 
lass sampling). The key theoreti
al

question here is what to do in the intermediate 
ases (0 < λ < 1). La
king theoreti
al

results, Tóth and Song performed their evaluations by dividing the posterior estimates

by the 
lass priors or by using the neural network outputs dire
tly, and found the

optimal λ value experimentally [77, 78℄. Here, we argue that the re-sampling of the

training database requires us to properly adjust the prior probabilities. The reason

is that by balan
ing the data we 
reate a mismat
h between the distribution of the

training and the test sets. A simple and intuitive solution for the adjustment is to apply

the 
lass sele
tion probabilities 
al
ulated using Equation (5.1) as 
lass prior estimates.
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This way, we 
an ensure that the adjusted priors estimate the 
lass distribution of the

re-sampled training data. In our experiments we evaluate our models with both the

original and the adjusted prior estimates to empiri
ally justify the signi�
an
e of this

adjustment.

5.3 Experimental Setup

Two large English spee
h databases were used to train the CD DNNs, namely the

TED-LIUM and AMI 
orpus. The TED-LIUM 
orpus [81℄ is 
omposed of 774 TED

talks, 
ontaining 118 hours of spee
h overall: 82 hours of male and 36 hours of

female spee
h. All re
ordings and their 
losed 
aptions in this 
orpus were extra
ted

from the TED website. The training data was automati
ally trans
ribed and only the

development and test sets were trans
ribed manually (for more details, see [81℄). As

training targets we used 3933 CD labels, and the 
lass distribution 
an be seen in

Figure 5.1. We evaluated the trained DNN-based a
ousti
 models using a 3-gram and

a 4-gram language model as well.

AMI is a multi-modal 
orpus, whi
h 
ontains re
ordings of meetings [82℄. All

parti
ipants of the meetings speak in English, but only some of them are native English

speakers, whi
h leads to a high degree of variability in spee
h patterns. Here we

used only the audio part of the 
orpus, spe
i�
ally the re
ordings 
aptured with the

independent headset mi
rophone (IHM). Following the Kaldi [83℄ re
ipe, the DNNs

predi
ted the posterior s
ores of 3973 CD states, whi
h had a similar 
lass distribution

to that of the TED-LIUM 
orpus.

We also used the Hungarian Broad
ast News 
orpus [8℄. For this database we made

use of the best CD system (MMI-CE + KL) from the previous 
hapter to show that

probabilisti
 sampling 
ould also improve a GMM-free re
ogniser.

The a
ousti
 model in our experiments was a DNN with 5 hidden layers, ea
h


ontaining 1000 re
ti�ed neurons [14℄, while we applied the softmax a
tivation fun
tion

in the output layer. The DNNs were trained using frame aligned labels and no sequen
e

training was applied. As input, we used the 40-dimensional fMLLR features in the 
ase

of the TED-LIUM and AMI databases. We extra
ted the features by following the

Kaldi re
ipe and the DNNs were trained on 11 neighbouring frames. The Hungarian

re
ogniser used 15 neighbouring frames of FBank features as input, just like that

des
ribed in the previous 
hapter. To train the DNNs we used our own deep learning

framework [8℄, while the de
oding and evaluation of the English 
orpora was performed

with Kaldi.

To determine the e�e
tiveness of the probabilisti
 sampling method, we tested λ

values between 0.1 and 1.0 with a step size of 0.1. For ea
h training iteration, we
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Figure 5.2: Word error rates got for the development set of the TED-LIUM 
orpus

using a 3-gram language model and probabilisti
 sampling.

re-sampled the same amount of training ve
tors as that in the original data. All DNN

models were evaluated with the division by the original or the adjusted priors to see

the e�e
tiveness of the adjustment.

5.4 Results

First, we 
ompared the two sample sele
tion approa
hes des
ribed in Se
tion 5.2.1. We

found that sele
ting training ve
tors within the 
lasses with uniform sampling led to

suboptimal models for some rare triphones. In our preliminary experiments we observed

that this strategy led to a 1% in
rease in the frame error rates 
ompared to that for the

other sele
tion method, and also resulted in a higher WER. As the sele
tion method

that applies a random ordering performed 
onsistently better, we de
ided to apply it

in all our experiments.

5.4.1 TED-LIUM

Figures 5.2 and 5.3 show the results we got with probabilisti
 sampling on the TED-

LIUM 
orpus. Clearly, dividing the DNN outputs by the original priors gives worse
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Figure 5.3: Word error rates got for the test set of the TED-LIUM 
orpus using a

3-gram language model and probabilisti
 sampling.

LM Method Dev WER Test WER

original adjusted original adjusted

priors priors priors priors

3-gram

baseline 16.9 � 15.0 �

λ = 0.4 16.3 15.9 14.4 14.1

4-gram

baseline 15.2 � 13.7 �

λ = 0.4 14.7 14.4 13.0 12.9

Table 5.1: Best word error rates got with and without probabilisti
 sampling and

dividing by the original and the adjusted priors.

results as λ in
reases, and we found that small λ values (here 0.4) work best. For small

λ values, i.e. when the original distribution remains dominant in the 
lass distribution

of the new training data, both prior estimation strategies performed similarly, but as

we in
rease λ above 0.5, the mismat
h between the training and test sets 
aused a

signi�
ant drop in re
ognition a

ura
y (even below the baseline).

When we adjusted the priors, the models be
ame more robust and we got better

results than the baseline for all λ values. The best result on the development set was

attained using the adjusted priors and λ = 0.4; this network a
hieved a 14.1% WER
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on the test set, whi
h means a 6% relative error redu
tion 
ompared to the baseline.

Table 5.1 summarises the best results on the TED-LIUM database. As 
an be

seen, probabilisti
 sampling always yielded better results and with the prior adjustment

we managed to improve the performan
e further. Using the 4-gram language model

produ
ed similar results to those a
hieved with the 3-gram model. The optimal value

for the re-sampling parameter was 0.4, just like when the 3-gram language model was

used.

5.4.2 AMI
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Figure 5.4: Word error rates got for the development set of the AMI 
orpus using

probabilisti
 sampling.

On the AMI 
orpus the results follow a similar trend; the best results were a
hieved

with the adjusted priors, and the division by the original priors resulted in a de
lining

re
ognition a

ura
y for in
reasing λ. All DNNs trained with λ ≤ 0.7 performed better

than the baseline model both on the development and the test sets. The optimal value

of λ was 0.1 when we divided by the original prior (26.7% WER on the development set

and 27.4% on the test) and 0.1 or 0.4 when the adjusted priors were used. Both DNNs

a
hieved a WER of 26.6% on the development and 27.3% on the test set. On the test

set the best WER was 27.3%, whi
h is far better than the baseline (28.6%), yielding
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Figure 5.5: Word error rates got for the test set of the AMI 
orpus using probabilisti


sampling.

a relative error redu
tion of 5%. We should mention that using uniform re-sampling

with the original priors resulted in re
ognition results far below the baseline.

5.4.3 Improving GMM-free systems using probabilisti
 sam-

pling

In the 
ase of the Hungarian Broad
ast News 
orpus we employed our previous best

GMM-free CD system that made use of the MMI-based algorithm followed by one

iteration of CE training for �at start. To 
reate the CD targets the KL-divergen
e

based 
lustering method was applied. The number of CD states was 1843, meaning

that this 
orpus was less imbalan
ed than the other two; 22 hours of training data was

available for 1843 
lasses, while for the English databases we had about 100 hours of

data for roughly 4000 
lasses. Using λ = 0.4, the trained CD DNN gave a WER of

16.14% on the development set, whi
h is better than the baseline 16.36%. However on

the test set it a
hieved only a small improvement (15.79% vs 15.86%). The reason for

this is probably the small amount of training data, we hypothesis that if the database

had more spee
h data we would have seen improvements similar to the English 
orpora.

To test this, we also applied probabilisti
 sampling to train the best GMM-free CD DNN
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from the previous experiments using the Wall Street Journal (WSJ) 
orpus. The 
orpus

has 81 hour of training data and the DNN had approximately 2400 output neurons.

As a reminder, the best WERs a
hieved by us previously were 8.03% and 5.92% on

the development and test sets, respe
tively. By applying probabilisti
 sampling, the

new DNN managed to perform signi�
antly better, yielding a WER of 7.6% on the

development set and 5.44% on the test set. These results suggest that our hypothesis

was 
orre
t and the sampling method works best if the amount of training data is

su�
iently large.

5.4.4 Dis
ussion
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Figure 5.6: Averaged a

ura
y s
ores of sorted CD states obtained on the TED-LIUM

development set with and without re-sampling.

To get an insight into why probabilisti
 sampling helps, we performed an analysis to

learn how the a

ura
y of CD state 
lassi�
ation varies as a fun
tion of state frequen
y.

Figure 5.6 shows the average frame-level a

ura
y s
ores of the sorted CD states, and it


ompares the baseline method with the best model trained with re-sampling. The �rst

thing to noti
e is that probabilisti
 sampling signi�
antly improves the a

ura
y s
ores

of the rare states (Index ≤ 1000), and even the frequent states are re
ognised more

often. The downside of this improvement is the lower a

ura
y of those 
lasses that
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have the most training data. Interestingly, the a

ura
y of 
lasses having an average

amount of training data (middle part in the �gure) also in
reased with probabilisti


sampling; the reason is that they were less likely 
onfused with the more frequent

states.

As we saw, dividing the DNN outputs by the adjusted priors stabilized the results:

for almost all λ values we got similar WE s
ores. If the original priors are used then

a de
lining trend is observed as we move farther from the original distribution. The

stability of this adjustment 
ould be explained by the fa
t that it redu
es the mismat
h

between the training and test data introdu
ed by the re-sampling pro
ess.

5.5 Solving Paralinguisti
 Tasks using Probabilis-

ti
 Sampling

For a long time the main fo
us of spee
h te
hnology was Automati
 Spee
h Re
ognition

(ASR), but re
ently a new sub-area has emerged 
alled 
omputational paralinguisti
s.

It seeks to extra
t and identify phenomena present in the audio signal other than the

words uttered. The fa
t that sin
e 2009 the Computational Paralinguisti
s ChallengE

(ComParE) series takes pla
e annually at the INTERSPEECH 
onferen
e shows the

importan
e of this new area. ComParE is an open 
hallenge in the �eld of spee
h

te
hnology that deals with states and traits of speakers, as manifested in their spee
h.

Every year, new highly relevant paralinguisti
 tasks are introdu
ed in this 
ompetition

series. Most of these tasks have only a limited amount of training data and a highly

imbalan
ed 
lass distribution. Lu
kily, the limited data is distributed among a few


lasses, so probabilisti
 sampling is appli
able. We managed to apply DRNs, trained

with probabilisti
 sampling and a
hieved good results in many of these 
hallenges.

• In 2014, we 
reated a system, whose goal was to dete
t the intensity of 
ognitive

and physi
al load of the speaker [84℄. Our DNN-based method 
onsistently

managed to outperform the baseline SVMs, yielding an unweighted average re
all

(UAR) of 63.05% on the Cognitive Load Challenge, and a UAR of 73.03% on

the Physi
al Load Challenge [74℄.

• In 2016, we parti
ipated in the De
eption Sub-Challenge [85℄ with a DRN that

was trained using re-sampling [79℄. The aim of this Sub-Challenge was the

dete
tion of de
eit, using only the spee
h of the person in question. With DNNs

alone, we managed to get a higher UAR value than the baseline by a mere 0.3%,

but this is mu
h less than the 3.6% improvement measured on the development
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set. In our view this 
an be attributed to the limited amount of training data

and a possible mismat
h between the training and test data.

• In 2017, we experimented with the re-sampling method and applied it in the

Addressee and Cold Sub-Challenge [80℄. In the Addressee Sub-Challenge, one

had to determine whether the adult speaks to a 
hild or to another adult, and

the Cold Sub-Challenge sought to separate healthy speakers from those who

have a 
old [86℄. We should mention here that the baseline systems of these

sub-
hallenges were very 
ompetitive (the fusion of three approa
hes). On the

Addressee Sub-Challenge our approa
h yielded worse results than the baseline,

but on the Cold Sub-Challenge it managed to signi�
antly outperform the base-

line. Furthermore, as our outstanding result proved to better than those of our


ompetitors, we won this sub-
hallenge.

5.6 Summary

In this 
hapter, I demonstrated that CD DNN training 
an be improved by re-sampling

the training data with probabilisti
 sampling. I also proposed a new method for re-

estimating the 
lass priors when using this sampling algorithm. The experimental

results proved that this re-estimation is essential for remedying the mismat
h between

the training and the test data distributions introdu
ed by the re-sampling step. These

adjusted priors made the re-sampling method more robust, and the re
ognition results

varied only slightly as the 
lass distribution, with a bigger λ value was shifted towards

a uniform distribution. Our experiments revealed that by using this modi�
ation, the

re
ognition results dramati
ally improved, it gave relative error redu
tions between 5%

and 6% on two fair-sized 
orpora (TED-LIUM and AMI).

In this 
hapter, the author regards the following as his main 
ontributions:

• The use of probabilisti
 sampling during the training of CD DNNs;

• A new way to adjust the priors in the 
ase of re-sampling;

The methods and results of this 
hapter were published in [87, 74, 79, 80℄.
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Chapter 6

Summary

In this thesis, we proposed new HMM/DNN a
ousti
 modelling te
hniques and eval-

uated them on large vo
abulary spee
h re
ognition tasks. In Chapter 1 we brie�y

introdu
ed the basi
 
omponents of an automati
 spee
h re
ognition system, su
h

as the feature extra
tor, the HMM/DNN a
ousti
 model and the language model.

Here, we also des
ribed how neural networks work, and how they 
an be trained. In

later 
hapters, we examined several training methods for HMM/DNNs and modi�ed

the algorithms it had inherited from the HMM/GMM system to better suit this new

DNN-based model.

6.1 A Comparison of Deep Neural Network Train-

ing Methods for LVSR

The se
ond 
hapter fo
used on 
omparing the performan
e of four DNN training al-

gorithms. The �rst one is the original algorithm proposed by Hinton et al.[9℄, and the

se
ond one is 
alled dis
riminative pre-training by Seide et al. [10℄. Both of these meth-

ods apply a pre-training phase before they �netune the DNNs. Deep Re
ti�er Networks,

our third approa
h di�ers greatly from the previous two in the sense that it modi�es

the a
tivation of the hidden neurons instead of the training pro
ess. The fourth train-

ing algorithm that we examined is a regularization method 
alled Dropout [11℄, whi
h

simply turns o� neurons during training.

In our experiments we 
ompared the re
ognition a

ura
ies of these methods on

a large vo
abulary Hungarian re
ognition task. Our 
on
lusion was that, although

the four algorithms yielded quite similar re
ognition performan
es, re
ti�er networks

a
hieved better a

ura
ies and their training was 
onsiderably faster. Based on these

fa
ts in the rest of the thesis I just used re
ti�er networks.

83
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6.2 Sequen
e Training Methods for Deep Re
ti-

�er Neural Networks in Spee
h Re
ognition

After determining our preferred 
hoi
e of DNN, we turned our attention to the task of

�at start training, whi
h is the �rst step of training a spee
h re
ognition system. The

goal of �at start is to get time-aligned 
ontext independent labels for the database.

Our aim here was to 
ompare two sequen
e training approa
hes that 
ould be used

to train randomly initialised DNNs without for
e-aligned labels. The �rst one was the

Conne
tionist Temporal Classi�
ation (CTC) and the se
ond one was the Maximum

Mutual Information (MMI) method. Both of them were used to train DRNs. We

proposed several modi�
ations to the standard MMI method, whi
h were essential to

make it suitable for the �at start pro
ess.

In the experimental part, we evaluated the two methods on several phone re
ogni-

tion tasks. For all databases we tested, we found that the sequen
e training methods

gave better results that those obtained with for
e-aligned training labels produ
ed

by an HMM/GMM system. From the experimental results, it was also 
lear that the

MMI-based approa
h gave better results than the CTC-based one. Furthermore, DRNs

trained with CTC 
ould not produ
e for
ed-aligned labels. Based on these �ndings we


on
luded that MMI was the better algorithm for �at start training.

6.3 A GMM Free Training Method for Deep Neu-

ral Networks

Next, we adapted the state-tying algorithm with the goal of getting rid of its GMM

dependen
y. The 
ontext-dependent states used to train DNNs are usually obtained

using the standard tying algorithm, even though it is based on likelihoods of Gaus-

sians, hen
e it is more appropriate for HMM/GMMs. Re
ently, however, several new

re�nements have been published whi
h seek to adapt the state tying algorithm to the

HMM/DNN hybrid ar
hite
ture.

Some of the new methods 
hange only the input of the 
lustering algorithm, feeding

the output or the a
tivations of the neurons in the last hidden layer to the 
lustering

method while the whole state tying algorithm remains inta
t. Other studies proposed

novel de
ision 
riteria as well for the 
lustering method, whi
h better suit the new

input provided by a DNN.

In this 
hapter, we proposed a KL-divergen
e-based approa
h. We evaluated it

along with three other state-tying methods on the same LVCSR tasks, and 
ompared

their performan
e under the same 
ir
umstan
es. We 
ombined them with the MMI-
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based �at start method from the previous 
hapter, and showed that the whole training

pro
edure of 
ontext-dependent HMM/DNNs 
an be 
arried out without using GMMs.

The experimental results 
on�rmed that the MMI-based �at star approa
h is far

better than the pro
edure of iterative CE DNN training and re-alignment. Furthermore,

we saw that repla
ing the de
ision 
riterion used during state 
lustering is also bene�
ial

for DNN training. Lastly, we examined the best Hungarian HMM/DNN system to see

what type of errors are most 
ommon. For this, we 
olle
ted the word errors and their

lo
al 
ontext, then we manually 
ategorised and analysed them. Our 
on
lusion was

that a new metri
 is needed to measure the a

ura
y of Hungarian ASR systems, sin
e

the 
urrent one (WER) treats some errors more seriously than human readers do.

6.4 Training Context-Dependent DNN A
ousti


Models using Probabilisti
 Sampling

In Chapter 5, we turned our attention to the CD training phase of the ASR system. In

the 
urrent HMM/DNN spee
h re
ognition systems, the purpose of the DNN 
ompo-

nent is to estimate the posterior probabilities of tied triphone states. It is well known

that the distribution of the CD states is uneven, meaning that we have a markedly

di�erent number of training samples for the various states. This imbalan
e in the

training data is a sour
e of suboptimality for most ma
hine learning algorithms, and

DNNs are no ex
eption to this.

Here, we experimented with the so-
alled probabilisti
 sampling method that applies

downsampling and upsampling at the same time, to improve the a

ura
y of CD

a
ousti
 models. This re-sampling method de�nes a new 
lass distribution for the

training data, whi
h is a linear 
ombination of the original and the uniform 
lass

distributions. As an extension to previous studies, we also proposed a new method to

re-estimate the 
lass priors, whi
h is required to remedy the mismat
h between the

training and the test data distributions introdu
ed by re-sampling.

Using probabilisti
 sampling we a
hieved relative word error rate redu
tions of

5% and 6%, respe
tively, on two fair-sized 
orpora (TED-LIUM and AMI). We also

showed that this re-sampling method 
an improve our GMM-free system outlined in

the previous 
hapter. Our experimental results strongly suggest that the re-estimation

of the priors is essential to handle the mismat
h between the training and the test

data distributions introdu
ed by the re-sampling step. These adjusted priors made the

re-sampling method more robust, and the re
ognition results varied only slightly as the


lass distribution was shifted towards a uniform distribution.
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6.5 Con
lusions and future dire
tions

In this thesis, we su

essfully adapted the standard methods of the HMM/GMM a
ous-

ti
 models to better suit the new HMM/DNN hybrid. We revised both the initial

training phase (�at start) and the CD state-tying phase, and introdu
ed new stri
tly

DNN-based solutions to these problems. By 
ombining these methods, we 
reated a

new training method that does not depend on GMMs at all. We also showed that the

�nal training phase 
ould be improved by employing a simple re-sampling method. On

the Szeged Hungarian Broad
ast News 
orpus, a traditional HMM/GMM gave a WER

of 20.07%, the best DNN that relies on GMMs produ
ed a WER of 16.59%; while our

best GMM-free system managed to a
hieve a WER of 15.79%.

Naturally, many experiments have been left for the future, mainly due to la
k of

time or be
ause they lay outside the s
ope of the present study. The following list

presents some of the possible future resear
h dire
tions.

• For one, we should 
onsider applying a new DNN type, namely the Convolutional

Neural Network (CNN), sin
e it has provided impressive results both in image

pro
essing and spee
h re
ognition.

• To extend the results of Chapter 3, it would be worth examining other sequen
e

learning methods, su
h as minimum phone error (MPE) or state-level minimum

Bayes risk (sMBR), and adept them so they are suitable for �at start training.

• It is worth investigating what would happen if we had more CD 
lusters in our

GMM-free systems. The hypothesis here is that with more states we should get

better results, of 
ourse, at the 
ost of the in
reased training and evaluation

times.

• It would be interesting to learn how the CD DNNs trained with probabilisti


sampling perform after a �nal sequen
e dis
riminative training phase, whi
h is

nowadays a 
ommon pra
ti
e.

6.6 Key points of the Thesis

In the following a listing of the most important results of the dissertation is given.

Table 6.6. summarises the relation between the theses and the 
orresponding publi
a-

tions.

I. The author 
ompared the performan
e of four deep learning methods empiri-


ally; two of these methods were pre-training algorithms, the third one applied
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[26℄ [49℄ [50℄ [51℄ [71℄ [87℄ [74℄ [79℄ [80℄

I. •

II/1. •

II/2. • •

III/1. •

III/2. • • •

IV. • • • •

Table 6.1: Corresponden
e between the thesis points and the publi
ations.

the re
ti�er a
tivation fun
tion and the fourth was a regularisation te
hnique


alled Dropout. The experiments were also 
arried out using a Hungarian spee
h


orpus, and this study was among the �rst to apply a HMM/DNN system to

Hungarian spee
h re
ognition. The results indi
ated that the new HMM/DNN

systems 
an outperform the traditional HMM/GMM system signi�
antly. The


on
lusion of the experiments was that, although the four algorithms yielded

quite similar re
ognition performan
es, re
ti�er networks 
onsistently produ
ed

the best results.

II/1. The CTC algorithm was originally proposed for the training of re
urrent neural

networks, but here the author showed that it 
an also be used to train 
onven-

tional feed-forward networks. Using several 
orpora, deep re
ti�er networks were

trained with the CTC method, in order to determine whether this approa
h was

suitable for the �at start training step. The results led us to 
on
lude that CTC


an be used to train randomly initialised networks without time-aligned labels.

II/2. As a 
ompetitor, the MMI-based training algorithm was also examined. The

author proposed several modi�
ations to the standard MMI, to make it suitable

for the task (�at start training). The experimental results showed that the mod-

i�ed MMI is a far superior alternative to CTC, for training randomly initialised

networks without time-aligned labels.
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III/1. The author 
reated a new DNN-based state-tying method by 
hanging the de-


ision 
riterion used by the standard algorithm during the 
lustering step. Sin
e

this new state tying method uses posterior probability ve
tors produ
ed by DNNs

as input, KL-divergen
e seemed a logi
al 
hoi
e for de
ision 
riterion. The ex-

perimental results also supported this view, as the new method markedly out-

performed the original one.

III/2. By 
ombining the MMI-based �at start training algorithm with the KL-divergen
e-

based 
lustering method, the author built an ASR system that did not rely on

GMMs. He 
ompared this GMM-free solution with other re
ently proposed al-

ternatives, and found that it was 
ompetitive with the other approa
hes used.

Furthermore, the results demonstrated that the GMM-free systems were 
apable

of produ
ing better results than those that rely on GMMs.

IV. The author examined the probabilisti
 sampling method for the training of CD

DNNs. He hypothesised that when the training data is re-sampled, the prior

probability values need to be re-estimated. He justi�ed this experimentally, and

showed that re-sampling with adjusted priors greatly improves the performan
e

of CD DNNs. This re-sampling algorithm was also applied with great su

ess in

several paralinguisti
 tasks.



Chapter 7

Summary in Hungarian

Ebben a dolgozatban az új, mély neuronhálós akusztikus modelleket vizsgáltuk és

alkalmaztuk nagy szótáras beszédfelismerési feladatokban. Az els® fejezetben röv-

iden bemutattuk az automatikus beszédfelismer®k alap komponenseit; a különböz®

jellemz®kinyerési módszereket, az új HMM/DNN hibridet alkalmazó akusztikus mod-

ellt és a nyelvi modellt. Szintén a bevezet® fejezetben bemutattuk a mesterséges

neuronhálók m¶ködését, illetve tanulási algoritmusukat. Az ezt követ® fejezetekben

megvizsgáltunk több mély neuronhálós tanítási módszert, majd megmutattuk, hogyan

lehet a HMM/GMM modellt®l örökölt algoritmusokat úgy módosítani, hogy azok job-

ban illeszkedjenek az új DNN alapú modellhez.

7.1 Mély neuronhálós tanítási módszerek össze-

hasonlítása nagyszótáras beszédfelismerésben

A második fejezetben négy mély neuronhálós tanítási módszert hasonlítunk össze. Az

els® módszer a Hinton és társai által kidolgozott eredeti el®tanító algoritmus [9℄, a má-

sodik módszer pedig az úgynevezett diszkriminatív el®tanítás, amelyet Seide és társai

publikáltak [10℄. Ezen két algoritmusban közös, hogy két fontos fázisból állnak; az el®-

tanítás során ini
ializálják a neuronhálót, majd a második lépésben �nomhangolják azt.

A mély egyenirányított hálók, a harmadik módszer, amit megvizsgáltunk, jelent®sen

eltérnek a korábbiaktól, hiszen ebben az esetben nem a tanítási algoritmus módosul,

hanem a rejtett neuronok aktivá
iós függvénye. A negyedik módszerként egy regu-

larizá
iós te
hnikát választottunk, az úgynevezett Dropout [11℄ algoritmust, melynek

lényege, hogy tanítás során véletlenszer¶en kikap
solunk neuronokat a hálózatban. Ez

a módszer nem egy önálló algoritmus, hanem más módszerekkel (bármelyik korábbival)

kombinálva használható.

Kísérleteinkben ezen módszereket hasonlítottuk össze egy magyar nyelv¶ nagy

89
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szótáras beszédfelismerési feladaton. Konklúzióként azt kaptuk, hogy mind a négy

módszer elég hasonló eredményeket tudott elérni, de a legjobbnak az egyenirányított

hálózatok bizonyultak, tekintve, hogy ezek érték el a legjobb felismerési pontosságokat

és betanításuk is kevesebb id®t igényelt. Ezen eredményekre alapozva, a dolgozatom

további részében 
sak egyenirányított neuronhálókat alkalmaztam.

7.2 Mély egyenirányított neurális hálók tanítása

szekven
iatanuló módszerekkel

Miután kiválasztottuk a legjobb mély tanítási módszert, a �at start nev¶ feladatra

fordítottuk �gyelmünket. Ezen feladat megoldása az els® lépés minden beszédfelis-

mer® rendszer létrehozása során. Ezen lépés lényege, hogy meghatározzuk a kontex-

tusfüggetlen 
ímkék id®beli illesztését. A hosszútávú 
élunk egy teljesen mély hálókon

alapuló módszer kidolgozása volt, ezért ebben a fejezetben két szekven
iatanuló mód-

szert hasonlítottunk össze, amelyek alkalmasnak t¶ntek a kezdeti kontextusfüggetlen

modellek tanítására. A konnek
iós temporális osztályozás (CTC) algoritmust vettettük

össze a maximális köl
sönös informá
ión (MMI) alapulóval. Mindkét vizsgált módszert

mély egyenirányított hálók tanítására használtuk. Az alap MMI algoritmushoz több mó-

dosítást is javasoltunk, melyek lehet®vé tették, hogy véletlenszer¶en ini
ializált hálók

tanítására használjuk ezt a módszert id®ben illesztett 
ímkék nélkül.

A kísérleteink során különböz® fonémafelismerési feladatokon hasonlítottuk össze a

két módszert. Mindegyik adatbázis esetén azt találtuk, hogy a szekven
iatanuló módsz-

erek jobban m¶ködtek mint a hagyományos rendszerek, amelyeket egy HMM/GMM ál-

tal generált id®ben illesztett 
ímkékkel tanítottunk. Az eredményekb®l az is egyértelm¶-

en kiderült, hogy az MMI módszer jobb eredményeket képes elérni mint a CTC algorit-

mus. A CTC algoritmus egy további hátránya, hogy a betanított hálók nem használ-

hatók a 
ímkék kényszerített illesztésére. Mindezeket �gyelembe véve megállapítható,

hogy az MMI módszer a legjobb választás a �at start lépés megoldására.

7.3 GMM-mentes mély neuronhálós beszédfelis-

mer®k

A 4. fejezetben az állapotkap
solási algoritmust adaptáltuk, 
élunk a GMM függ®ségek

eltávolítása volt. A környezetfügg® állapotokat általában a standard algoritmussal ál-

lítják el®, annak ellenére, hogy az algoritmus spe
iálisan a Gauss-görbék illeszkedését

használja ki, így optimalitása egy mély hálós rendszerben megkérd®jelezhet®. Az
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utóbbi id®ben azonban több olyan állapotklaszterez® algoritmust is publikáltak, ame-

lyek megkísérlik a korábbi eljárást a mély neuronhálós modellezéshez igazítani.

Néhány új módszer 
sak a klaszterez® algoritmus bemenetén változtat, azaz a

klaszterezést a DNN kimenetén futtatják le, magát az algoritmust pedig egyáltalán

nem módosítják. Más szerz®k a bemenet ki
serélésén túl a klaszterez® eljárás dön-

tési kritériumát is módosítják oly módon, hogy az jobban illeszkedjen a neuronhálós

eloszlás-modellezéshez.

Ebben a fejezetben három különböz® módszert hasonlítottunk össze a saját KL

divergen
ián alapuló módszerünkkel, ugyan azon a nagy szótáras beszédfelismerési fe-

ladaton. Kombinálva ezen módszereket az el®z® fejezetben bemutatott MMI-alapú

�at start módszerrel megmutattuk, hogy lehetséges HMM/DNN beszédfelismer®ket

tanítani GMM használata nélkül is.

A kísérleti eredményeink azt mutatták, hogy az MMI-alapú módszer sokkal jobban

m¶ködik, mint a keresztentrópiás tanítást és újraillesztést iteráló módszer. Továbbá azt

is láttuk, hogy 
élszer¶ a döntési kritériumot is le
serélni a klaszterez® algoritmusban.

Mindezeken túl azt is megvizsgáltuk, hogy a legjobb magyar beszédfelismer®nk milyen

típusú hibákat vét leggyakrabban. Ehhez a teszthalmaz egy részén el®forduló szószint¶

hibákat kigy¶jtöttük, majd manuálisan kategorizáltuk és elemeztük. A vizsgálatok ered-

ményeképpen megállapítottuk, hogy egy új hibametrikára lenne szükség magyar nyelv¶

beszédfelismer® rendszerek értékeléséhez, mivel a jelenleg használt metrika (WER) több

hibát sokkal súlyosabbként kezel, mint az emberi annotátorok.

7.4 Kontextusfügg® mély neuronhálós akusztikus

modellek tanítása valószín¶ségi mintavétele-

zéssel

A 5. fejezetben a környezetfügg® akusztikus modellek tanítására fókuszáltunk. A

manapság használatban lév® beszédfelismer®kben a DNN komponensek feladata, hogy

állapotkap
solt trifónok posterior valószín¶ségét be
süljék. A problémát az jelenti,

hogy a 
ímkék eloszlása nem egyenletes, így a gyakorlatban az egyes osztályokhoz tar-

tozó tanítópéldák száma jelent®sen eltér. A tanító adat egyenl®tlen eloszlása problémát

jelent a legtöbb gépi tanuló algoritmusnak, ez alól a mély hálók sem kivételek.

A probléma megoldására a valószín¶ségi mintavételezés módszerét használtuk, ame-

lynek el®nye, hogy egyszerre alkalmazza az alul- és a felül-mintavételezést. Az adat-

bázis újramintavételezéséhez egy új osztályeloszlást de�niál a módszer, ez az új elos-

zlás az eredeti és az egyenletes eloszlás lineáris kombiná
iójaként áll el®. A korábbi

tanulmányokhoz képest mi a prior valószín¶ségek újraszámlálására is javasoltunk egy
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módszert. Erre azért volt szükség, mert az adat újramintavételezése révén jelent®sen

eltért a tanító és a teszt adatbázis egymástól.

A valószín¶ségi mintavételezés segítségével 5% és 6% szószint¶ hibaarány reduk-


iót sikerült elérnünk két nagy méret¶ adatbázison (TED-LIUM és AMI). Megmutattuk

azt is, hogy ezzel a módszerrel a korábbi fejezetben bemutatott GMM-mentes rend-

szer is jobb eredményeket képes elérni. A kísérleti eredményeink alátámasztották azon

sejtésünket is, hogy a prior valószín¶ségek újrabe
slése kritikus az újramintavételezés

miatt a tanító és teszt adat között fellép® különbség kezelése szempontjából. Ezek az

újrabe
sült priorok robusztusabbá tették a módszerünket, hatásukra a felismerési pon-

tosságok 
sak 
sekély mértékben változtak, ahogy az egyenletes eloszlás felé mozgattuk

az osztályok eloszlását a mintavételezés során.

7.5 Konklúzió és jöv®beli kutatási irányok

A dolgozatban bemutattuk, hogy a standard HMM/GMM rendszerhez kidolgozott

módszerek hogyan adaptálhatóak az új HMM/DNN hibrid modellhez. Ehhez kidol-

goztunk új, tisztán DNN alapú módszereket a kezdeti tanítási fázis (�at start) és az

állapotkap
solási lépés megoldására. Ezek összekap
solásával sikeresen létrehoztunk

egy új tanítási módszert, amely során nin
s szükség GMM-ek használatára. Végül

megmutattuk, hogy a végs® tanítási lépés javítható egy egyszer¶ újramintavételez® al-

goritmussal. A kísérleteink során felhasznált magyar nyelv¶ Szeged Híradós korpuszon

egy hagyományos HMM/GMM 20.07%-os szószint¶ hibaarányt képes elérni. Az új hi-

brid módszer esetében, ami még változatlanul használja a megörökölt algoritmusokat,

a szószint¶ hibaarány 16.59%-ra 
sökkent, míg a legjobb GMM-mentes módszerünk

még ennél is jobb eredményt (15.79%) ért el.

Természetesen rengeteg további kísérletet lehetne még elvégezni, ezeket sajnos

id®hiányában a jöv®beli munkáink közé soroljuk. A következ®kben felsorolunk néhány

lehetséges jöv®beli kutatási irányt.

• Az elmúlt pár évben megjelent egy új típusú neuronháló, a konvolú
iós neu-

ronháló (CNN), amely jelent®s sikereket ért el képfeldolgozásban és beszédfe-

lismerésben. A kidolgozott módszereinket 
élszer¶ lenne kipróbálni ilyen típusú

hálókkal is.

• A 3. fejezet kib®vítése 
éljából más szekven
iatanuló algoritmusokat, például a

minimális fonéma hiba (MPE) vagy minimális Bayes ko
kázat (sMBR) módszert

is tervezzünk megvizsgálni.

• Érdekes kérdés, hogy vajon hogyan alakulna a GMM-mentes modelljeink pon-

tossága, amennyiben a mostaninál több klaszter létrejöttét is engednénk. A
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[26℄ [49℄ [50℄ [51℄ [71℄ [87℄ [74℄ [79℄ [80℄

I. •

II/1. •

II/2. • •

III/1. •

III/2. • • •

IV. • • • •

Table 7.1: A tézispontok és a szerz® publiká
ióinak viszonya.

hipotézisünk, hogy több kontextus-függ® állapot esetén jobb eredményeket tudná-

nak elérni a hálók, természetesen ennek az ára a megnövekedett tanítási és

kiértékelési id®k lennének.

• Szintén megérné megvizsgálni, hogy a mintavételezéssel tanított hálók hogyan

viselkednének, egy végs® szekven
ia-diszkriminatív tanítási lépés végrehajtása

után.

7.6 Az eredmények tézisszer¶ összefoglalása

Az alábbiakban tézispontokba rendezve összegezzük a szerz® kutatási eredményeit. A

7.6. táblázat összegzi a kutatásokból származó publiká
iók és az egyes tézispontok

viszonyát.

I. A szerz® kísérleti úton összehasonlított négy mély tanulásos módszert: két el®-

tanításos algoritmust, az egyenirányított aktivá
iós függvényt és a Dropout nev¶

regularizá
iós te
hnikát. A kiértékeléseket egy magyar nyelv¶ adatbázison is

elvégeztük, az itt közölt eredmények, legjobb tudomásunk szerint, a legels® mély

neuronhálós eredmények magyar nyelv¶ beszédfelismerésben. Az eredmények

alapján megállapíthatjuk, hogy a HMM/DNN hibrid szigni�kánsan jobban tel-

jesít mint a hagyományos HMM/GMM. A végs® konklúziója a kísérleteknek az

volt, hogy mind a négy módszer elég hasonló eredményeket tudott elérni, de az

egyenirányított hálók konzisztensen jobbnak bizonyultak a többi módszernél.

II/1. A szerz® megmutatta, hogy a CTC algoritmust, amit eredetileg rekurens neu-

ronhálók tanítására készítettek, fel lehet használni el®re
satolt hálók tanítására

is. A kísérletek 
élja annak megállapítása volt, hogy ez a módszer alkalmas-e a

�at start tanítási lépés elvégzésére, ezért mély egyenirányított neuronhálók let-

tek tanítva CTC algoritmussal, különböz® adatbázisokon. Az eredmények azt
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mutatták, hogy a CTC módszer alkalmas véletlenszer¶en ini
ializált neuronhálók

�at start tanítására.

II/2. A CTC algoritmus versenytársaként megvizsgálásra került az MMI algoritmus is.

A szerz® több módosítást is javasolt, hogy ezt a módszert alkalmassá tegye a �at

start tanításra. Az összehasonlítás során egyértelm¶vé vált, hogy az MMI sokkal

jobb megoldás mint a CTC algoritmus véletlenszer¶en ini
ializált neuronhálók

tanítására id®ben illesztett 
ímkék nélkül.

III/1. A szerz® kidolgozott egy új, mély neuronhálós állapotkap
solási algoritmust, a

standard algoritmus döntési kritériumának le
serélésével. Tekintve, hogy a mód-

szer bemenetként DNN által predikált posterior valószín¶ségi vektorokat kap,

ezért döntési kritériumnak a KL-divergen
ia t¶nt logikus választásnak. Ezt a

kísérleti eredmények is alátámasztották, az új algoritmus lényegesen jobban tel-

jesített, mint az eredeti módszer.

III/2. Az MMI-alapú �at start módszer és a KL-divergen
iát alkalmazó állapot klasztere-

zési algoritmus kombinálásával a szerz® egy teljesen GMM-mentes eljárást ho-

zott létre. Ezt az új eljárást más, közelmúltban javasolt módszerrel hasonlította

össze. A kísérletek során kiderült, hogy az új GMM-mentes módszerek jobb ered-

ményeket képesek elérni mint azok, amelyek felhasználnak GMM-eket tanításuk

során.

IV. A szerz® megvizsgálta a valószín¶ségi mintavételez® algoritmust és alkalmazta

azt kontextusfügg® DNN tanításra. A hipotézise az volt, hogy a tanítóadat

újramintavételezésével a prior valószín¶ségek újrabe
slése szükségessé válik. Kísér-

leti úton igazolta ezt a sejtést és megmutatta, hogy újramintavételezéssel és a

priorok helyes beállításával szigni�kánsan javítható a mély hálók pontossága. A

mintavételez® algoritmust paralingvisztikus feladatokon is sikeresen alkalmazta.
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