UNIVERSITY OF SZEGED

PH.D THESIS

Training Methods for Deep Neural
Network-Based Acoustic Models in

Speech Recognition

Author: Supervisor:

Tamas GROSZ Dr. Laszlé TOTH

PHD ScHOOL IN COMPUTER SCIENCE
MTA-SZTE RESEARCH GROUP ON ARTIFICIAL INTELLIGENCE
FACULTY OF SCIENCE AND INFORMATICS
UNIVERSITY OF SZEGED

Szeged, 2018

Preface

Nowadays, speech recognition technology is built on Deep Neural Networks. These
networks represents the latest direction of machine learning. They are based on the
theory of artificial neural networks, which have been used for decades. However, unlike
traditional Neural Networks, all deep networks contain many processing layers, which
allow the hierarchical processing of the input data. While the concept of deep networks
is not totally new, their efficient training required several new achievements. These
new networks managed to completely replace the Gaussian Mixture Models in the
state-of-the-art speech recognition systems.

In this study, | decided to focus on Deep Neural Network-based recognition systems.
First, | compared the performance of several new training algorithms with each other,
in order to determine the best one for later use. Then, | turned my attention to the
algorithms that the new speech recognition systems have inherited from the previous
Gaussian Mixture Model-based approaches, as the algorithms might not be optimal for
Deep Neural Networks. | proposed new algorithms for obtaining the initial alignment
of the frame-level state labels and the creation of context-dependent states, and found
that they are better suited for the new acoustic models. Lastly, | also experimented
with a data re-sampling method to improve the accuracy of the models.

The first of my acknowledgements goes to my supervisor, Laszlé Téth, for his
help, guidance and support throughout my PhD studies. Secondly, | would like to
thank Gabor Gosztolya for his constant support and constructive suggestions, which
were essential for the accomplishment of the work presented in this thesis.

This study was supported by the 'New National Excellence Programme’ of the
Ministry of Human Capacities (UNKP-16-3 and UNKP-17-3). | am grateful for this
support, which acted as a great incentive for my research work and the submission of
this thesis.

Last but not least, | would like to thank David P. Curley for scrutinising and
correcting this dissertation from a linguistic point of view.

Tamas Grész, February 2018.

Abbreviations

ANN
ASR
CD

CE

Cl

CPU
CTC
DNN
DRN
FBANK
FMLLR
GMM
GPU
HMM
MFCC
MMI
WER

Artificial Neural Network

Automatic Speech Recognition
Context-dependent

Cross Entropy

Context-independent

Central Processing Unit
Connectionist Temporal Classification
Deep Neural Network

Deep Rectifier Network

mel-Filter Bank

Feature space Maximum Likelihood Linear Regression
Gaussian Mixture Model

Graphics Processing Unit

Hidden Markov Model
Mel-Frequency Cepstral Coefficient
Maximum Mutual Information

Word Error Rate

List of Figures

1.1
1.2
1.3

1.4

2.1

2.2

2.3

2.4

2.5

2.6

2.7

3.1

3.2

4.1

4.2

An example ANN structure with one hidden layer.
The standard workflow of a HMM/DNN-based ASR system.
lllustration of the triangular filters on the mel-scale (image from the

HTKBook [1])
The tri-state HMM phoneme model.

RBM with 3 hidden and 4 visible neurons.
The DPT training process is shown, the new parts of the network being
shown in red; after a new layer is added we train the whole network not
just the newly added parts.
The rectifier activation function and other commonly used activation
functions. L L
Phone error rates on the TIMIT dev set as a function of the number of
hidden layers.
Phone error rates on the TIMIT core test set as a function of the
number of hidden layers.
Phone error rates on the Audiobook test set as a function of the number
of hidden layers.
Word error rates for the broadcast news corpus as a function of the
number of hidden layers.

The « (left), 5 (middle) and af (right) values for a given utterance.
The horizontal axis corresponds to the frames of the utterance, while
the vertical axis represents the phonemes.
Non-garbage outputs generated by a CTC network for the utterance
"Ezt mondja a Semmelweis". The network predicts the sequence of

phones as a series of spikes, which are separated by the garbage class. .

The number of training frames for the different state-tying methods for
the case of about 2400 CD states.
WER for the different state-tying approaches on the development set

using the iterative flat start method.

35

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

411

51

5.2

53

5.4

55

5.6

WER for the different state-tying approaches on the test set using the
iterative flat start method.
WER for the different state-tying approaches on the development set
using MMl for flat start.
WER for the different state-tying approaches on the test set using MMI
forflat start.
WER for the different state-tying approaches on the development set
using MMI-CE for flat start.
WER for the different state-tying approaches on the test set using MMI-
CEforflatstart.
WER as a function of the number of KL-clustered tied states on the
Hungarian development set.
WER as a function of the number of KL-clustered tied states on the
Hungarian test set. Lo
Distribution of errors among the error categories, expressed in error
(left) and word error (right) percentages.
Frequency of word categories, expressed in affected error occurrences

and word errors.

The distribution of tied CD states on a logarithmic scale in descending
order (TED-LIUM corpus, Kaldi recipe)
Word error rates got for the development set of the TED-LIUM corpus
using a 3-gram language model and probabilistic sampling.
Word error rates got for the test set of the TED-LIUM corpus using a
3-gram language model and probabilistic sampling.
Word error rates got for the development set of the AMI corpus using
probabilistic sampling.
Word error rates got for the test set of the AMI corpus using proba-
bilistic sampling.
Averaged accuracy scores of sorted CD states obtained on the TED-

LIUM development set with and without re-sampling.

Vi

59

64

77

List of Tables

2.1

3.1
3.2

4.1
4.2

4.3

4.4

4.5

4.6

4.7

5.1

6.1

7.1

The training times required by the various methods for one network
with five hidden layer. 27

The phoneme error rates got for the different DRN training methods. . 40
The phoneme error rates got for the two different DRN training methods. 41

WERs got by using different flat start methods on the WSJ. 53
WER values on the development and test sets got by using the different

flat-start and CD state-tying methods. 54
Word error rates (WER) for the different flat start strategies and the

KL state-tying method., 59
Total number of each error type and each annotated word type 63
Total number of each word error type and each annotated word type . 65

Total number of errors concerning each annotated type and their com-
binations 66
Total number of word errors concerning each annotated type and their

combinations L. 67

Best word error rates got with and without probabilistic sampling and

dividing by the original and the adjusted priors. 76
Correspondence between the thesis points and the publications. 87
A tézispontok és a szerz8 publikaciéinak viszonya. 93

vii

Contents

Preface

Abbreviations

1

Introduction
1.1 Artificial Neural Networks
1.2 Automatic Speech Recognition
1.3 Feature Extraction for Speech Processing
1.3.1 Filterbanks
1.3.2 Mel-Frequency Cepstral Coefficients
1.3.3 Feature-space Maximum Likelihood Linear Regression
1.3.4 Using the A and AA features
1.4 Acoustic modelling with HMMs
141 HMM/DNN model
1.5 Language Model
1.6 The Szeged Broadcast News Corpus
1.7 Summary by Chapters

A Comparison of Deep Neural Network Training Methods for Large

Vocabulary Continuous Speech Recognition

2.1 Introduction

2.2 Training Methods for Deep Neural Networks
221 DBN Pre-Training
2.2.2 Discriminative Pre-Training
2.2.3 Deep Rectifier Networks,
224 Dropout

2.3 Experimental Setup
2.3.1 Training Parameters for the Neural Networks
24 Results
241 TIMIT .00

2.4.2 Hungarian Audiobook

2.4.3 Hungarian Broadcast News 27

25 Summary 28
3 Sequence Training Methods for Deep Rectifier Neural Networks 29
3.1 Problem description and literature overview 30
3.2 Flat start training of HMM/GMMs 31
3.3 Connectionist Temporal Classification 32
3.3.1 The Forward-Backward Algorithm 32
3.3.2 Using the af values for ANN training 33
3.3.3 Garbage Label 34
3.3.4 Decoding and generating forced alignments 35

3.4 Sequence-Discriminative Training Using MMI 36
3.5 Performing MMI training without frame alignments 36
3.6 Experiments and Comparison 38
3.6.1 Databases 38
3.6.2 Experimental Setup 39
3.6.3 Results 39

3.7 Summary . ..o 41
4 A GMM Free Training Method for Deep Neural Networks 43
4.1 Problem description and literature overview 44
42 FlatStart. 46
421 lterative Flat Start a7
4.2.2 Sequence Training Based Flat Start a7

4.3 State Clustering 47
431 GMM-Based State Tying 43
4.3.2 Clustering the CIDNN output 49
4.3.3 Clustering the DNN hidden activations 49
4.3.4 KL-divergence Based State Tying 49
4.3.5 Entropy-based decision criterion, 50

4.4 Experimental Setup 51
45 Englishresults 52
46 Hungarianresults. 58
4.7 Word-Level Error Analysis of a Hungarian Automatic Speech Recognizer 61
47.1 Analysing the Errors 61
472 Results of theanalysis 64

4.8 Summary 68

5 Training CD DNN Acoustic Models using Probabilistic Sampling 69

5.1 Introduction 70

5.2 Probabilistic Sampling L 72
5.2.1 Selecting samples within the classes 73
5.2.2 Adjusting the prior probability estimates 73

5.3 Experimental Setup 74

54 Results 75
541 TED-LIUM 75
542 AMI . . . 7
5.4.3 Improving GMM-free systems using probabilistic sampling . . . 78
544 Discussion 79

5.5 Solving Paralinguistic Tasks using Probabilistic Sampling 80

5.6 Summary 81

6 Summary 83

6.1 A Comparison of Deep Neural Network Training Methods for LVSR . . 83

6.2 Sequence Training Methods for Deep Rectifier Neural Networks in Speech
Recognition 84

6.3 A GMM Free Training Method for Deep Neural Networks 84

6.4 Training Context-Dependent DNN Acoustic Models using Probabilistic
Sampling 85

6.5 Conclusions and future directions 86

6.6 Key points of the Thesis 86

7 Summary in Hungarian 89

7.1 Meély neuronhalés tanitasi médszerek 6sszehasonlitasa nagyszétaras beszéd-
felismerésben 89
7.2 Mély egyeniranyitott neuralis halok tanitasa szekvenciatanulé médsz-
erekkel 90
7.3 GMM-mentes mély neuronhalés beszédfelismersk 90
7.4 Kontextusfiiggé mély neuronhalés akusztikus modellek tanitasa val6sziniiségi

mintavételezéssel 91

7.5 Konklazi6 és jovébeli kutatasi iranyoko 92
7.6 Az eredmények tézisszerii dsszefoglalasa 93
Publications of the author 95
Bibliography 99

xi

Chapter 1

Introduction

Automatic Speech Recognition (ASR) is a key topic of speech technology, where the
goal is to transcribe an audio recording (an utterance) in an automatic way. For decades
the traditional ASR systems used Hidden Markov Models (HMM) with Gaussian Mix-
ture Models (GMM) and, until very recently, these HMM/GMM models represented
the state-of-the-art technology in ASR. Nowadays, with the advent of Deep Neural
Networks (DNN) the original HMM/GMM models have been replaced by the new
HMM/DNN hybrids.

DNNs are a new type of Artificial Neural Networks, which differ in one important
aspect from the previous ones, namely that they have more than one hidden layer
(usually three or more). This definition might seem a little vague and the question
arises of whether this means that we only need to add a few new hidden layers to an
ANN to upgrade it to a DNN. The simple answer of course is no, as with the addition of
extra hidden layers we come up against several problems that make it hard to train the
nets. So besides adding new hidden layers, we need other modifications like changing
the activation function of the neurons or the learning algorithm itself.

The new HMM/DNN hybrids are now routinely used in state-of-the-art ASR sys-
tems, but they inherited many of the algorithms from their predecessors (the standard
HMM/GMM systems). However, the optimality of these algorithms is not guaranteed
with the new models. The main focus of this dissertation is to modify some of these
earlier methods in speech recognition so that they better suit the new DNN-based
acoustic models. Our main goal is to create new solutions that allow the training of
HMM/DNN acoustic models without relying on GMMs during the training process.

To achieve the GMM-free training of a HMIM /DNN hybrid, we have to solve two key
problems, namely the initial alignment of the frame-level state labels and the creation
of context-dependent (CD) states. We solved the first problem by modifying a standard
sequence discriminative training method and showed that with the modified algorithm

it is possible to train randomly initialised DNNs without the frame-level alignment

2 Chapter 1. Introduction

Output layer

Hidden layer

Input layer

Figure 1.1: An example ANN structure with one hidden layer.

of the context independent (Cl) labels. For the creation of CD states, we proposed
a solution which applies a Kullback-Leibler divergence-based decision criterion during
state clustering. Quite recently, several articles have been published about GMM-free
systems, so we also compared the performance of our methods with some of these new
approaches and found that our algorithms are quite competitive. Furthermore, we also
addressed a special problem of the CD states, namely that of the imbalanced class
distribution. We showed that a very simple re-sampling method with the adjustment

of the priors can significantly improve the accuracy of DNN-based acoustic models.

1.1 Artificial Neural Networks

Now, we will give a brief description of Artificial Neural Networks (ANN) [2]. The
concept of ANNs was inspired by biological neural networks, and the basic building
block of these networks is the artificial neural model called the perceptron. In an ANN,
these neurons form layers so that the neurons in one layer are connected to neurons
from other layers (the connection is directed), and each connection has a weight which
represents the strength of the given connection. The layers can be grouped into three
categories. The input stimuli are passed to the network through the input layer, and
the response of the ANN is observable in the output layer. The hidden layers are
responsible for extracting different features (hidden representations), and this is where
the actual processing is done. Figure 1.1 depicts a simple ANN structure.

The neurons are very simple processing units. They receive the activations of other
neurons (z) through the incoming connections, then they calculate the weighted sum
of these values using the weights (w). After the sum has been calculated, bias value (b)

of the neuron is also added. Then, the activation function (f) is applied to determine

1.2. Automatic Speech Recognition 3

the output (0) of a given neuron. Formally,

o(r)=f (Zwixi +b> : (1.1)

where M is the number of inputs for the given neuron.
One of the most widely spread activation functions for hidden neurons is the sigmoid
function, |
Sigmoid(x) = . 1.2
gmoid(z) = 1 g (1.2)

This function is still in use mostly in shallow networks, as in deep structures it is

plagued by an effect called the vanishing gradient effect. The output neurons of an
ANN classifier use a special activation function called the softmax function. It is

defined by the relation N
Softmax(z;) = %, (1.3)

Ej:l e*s

where N is the number of output neurons. By applying this type of activation, we can
interpret the output of the network as a posterior probability vector, as the values fulfil
all the requirements, since they are guaranteed to be non-negative and add up to one.
The last thing we need to address here is the training algorithm of the ANN.
The backpropagation algorithm offers a simple solution to this [2]. The first thing
it requires is an error function, which determines the error by comparing the output
produced by the ANN and the expected output. For classification tasks, we minimise

the cross-entropy (CE) cost function

CE(p,y) = —Zyilog(pi), (1.4)

where y is the one-hot expected output vector and the p; values are the activations
of the output neurons. Using CE we can easily calculate the error of each output
neuron, then all we need to do is to propagate this error back to the hidden neurons.
Once each hidden neuron has an error value, the gradients of the weights and biases
can be calculated. After the gradient computations, the parameters are updated in an
attempt to minimise the error function. For more details on how the backpropagation

algorithm works, see [2].

1.2 Automatic Speech Recognition

Automatic Speech Recognition or Speech-to-Text systems seek to transcribe the audio

input automatically, where the transcription is usually a sequence of words or in some

4 Chapter 1. Introduction

Digital audio w

Acoustic model

A +.w.
*” | Feature extraction |—

Frame N Phoneme
Classification Recognition

A A

= &

Figure 1.2: The standard workflow of a HMM/DNN-based ASR system.

Decoder | Recognized Words

A 4

cases a sequence of phonemes. This transformation is not an easy task; it takes humans
years to learn it, and even then we still make mistakes (we mishear words) [3].

A standard ASR system consists of three main components, as shown in Figure 1.2;
namely the feature extractor, the acoustic model and the language model. In the fol-
lowing sections we will explain the functions of these parts, but before that we need to
address an important question. It is how we can determine which methods are better
and which are worse. Many ASR solutions have been proposed over the years so we
need an evaluation metric to compare the results of these methods. Perhaps the most
straightforward way of comparing different ASR solutions is to evaluate them on the
same test data and calculate their accuracy values. To calculate the accuracy, we need
to compare the transcriptions produced by the system with the original reference tran-
scriptions. For this, first the optimal alignment is found using a dynamic programming
method, and then the number of substitution (), deletion (D) and insertion errors
(I) can be calculated. The accuracy metric is then defined as
N—-D-S5-1

N)

(1.5)

Accuracy =

where N is the total number of words or phonemes in the reference transcriptions.

With this metric, we can easily compare the performance of different systems.

1.3 Feature Extraction for Speech Processing

Next, we will focus on the most popular methods that are used to transform the raw
speech waveform into a sequence of parameter vectors. The feature extraction step
is an essential part of the speech recognition pipeline, but we should mention that
very recently a new alternative has appeared. Some new networks attempt to use the
raw audio input without any transformation [4]; however the recognition accuracies of
these approaches are still far from those of the best systems built on standard feature

extraction methods.

1.3. Feature Extraction for Speech Processing 5

A\,
nt*H + rt ** rtp Energy in

MELSPEC

Figure 1.3: lllustration of the triangular filters on the mel-scale (image from the HTK-
Book [1])

1.3.1 Filterbanks

It is well known that the human ear resolves frequencies non-linearly across the audio
spectrum, and empirical evidence also suggests that designing a front-end to operate
in a similar non-linear manner ought to improve recognition performance. Filterbank
analysis (FBank) offers a straight-forward route for obtaining the desired non-linear
frequency resolution [1]. As can be seen in Figure 1.3, the filters used by the FBank
analysis have a triangular form and they are equally spaced along the mel-scale, which
is defined by

f
=), (1.6)

The FBank extractor first transforms a window of speech data using a Fourier

Mel(f) = 25951og,,(1 +

transform and the magnitude is calculated. The magnitude coefficients are then binned
by correlating them with each triangular filter. These triangular filters are spread over
the whole frequency range from zero up to the Nyquist frequency, and binning means
that each Fast Fourier Transformation (FFT) magnitude coefficient is multiplied by
the corresponding filter gain. After the accumulation of the results, each bin holds a
weighted sum representing the spectral magnitude in that filterbank channel. For the
last step, we take the logarithm of the bins values to get the final FBank features.

The main problem with FBank features is that they are highly correlated, so if we
want to use it as the input of a HMM/GMM based recogniser, we will need to apply
a cepstral transformation first.

1.3.2 Mel-Frequency Cepstral Coefficients

For decades the most favoured feature type in speech recognition was the Mel-Frequency
Cepstral Coefficients (MFCCs) [1]. These are calculated from the FBank amplitudes

6 Chapter 1. Introduction

{m;} using the Discrete Cosine Transform (DCT)

¢ = \/%émj cos (%(g —0.5)), (1.7)

where N is the number of filterbank channels. By taking just the first few basis vectors
we get a good, data-independent approximation of the principal dimensions. Doing
this, the features becomes decorrelated, hence they can be used by a GMM.

To further augment the FBank or MFCC feature sets it is common practice to
concatenate the energy of the speech window with the features. The energy in a frame

is computed as the log of the signal energy; that is, for speech samples {s,}

T
E = longi, (1.8)
n=1

where T is the number of samples in a given frame.

1.3.3 Feature-space Maximum Likelihood Linear Regression

Nowadays, speaker adapted systems achieve the best results on many speech recogni-
tion tasks. Speaker adaptive training (SAT) could and should be used if the training
corpus contains a sufficient amount of speech from multiple speakers. The main idea of
SAT is to transform every utterance in the training corpus before we train the acoustic
model, the goal of this transformation being to reduce the interspeaker differences,
while keeping the intraspeaker variations. Feature-space Maximum Likelihood Linear
Regression (fMLLR), also known as constrained MLLR, is a widely used speaker adap-
tation technique, but it can only be used if a HMM/GMM system trained on MFCCs
is available. Next, we shall give a brief description of how fMLLR works based on
the article of Povey and Saon [5]. The fMLLR method applies a very simple affine
transformation in the form of

at = We¢!, (1.9)
where ¢! = [*'] is the extended input feature vector at time ¢ and W* = [A%, b°] is the
transformation matrix of speaker s. The name “constrained” comes from the fact that
only one transformation matrix (A) is used instead of using separate transformations
for the means and the covariances. To find the best WW* transformations, first we
define the auxiliary function as the sum of log|det(A®)| and the likelihood of z*. The
part of the auxiliary function that changes with the current transform W* (excluding
the determinant) can be written as

M d
0.5 csmE((1.10)
1 =

m=

(™ — wl'")?)"

2(m)

=1

1.4. Acoustic modelling with HMMs 7

where ¢®™ is a constant, F(.)*™ calculates the average value for speaker s and Gaussian

2(m) . . .
are the means and covariances of Gaussian m, respectively.

m, ,u(m) and o
To simplify the auxiliary function, let us define the linear and quadratic terms in
w; (the ith row of W*) as k; and G;:

M sm (m)E sm

m=1 a?(m)
cSME (b(bT)
Gi= Z T (1.12)

Then the auxiliary function can be expressed as

M&

log(|det(A
i=1
Lastly, the WW* matrices are estimated by using a row-by-row method that maximises
Equation 1.13. For more details on fMLLR, see [6].
To summarise, fMLLR offers an easy way to perform SAT, but it has a big drawback
as speaker annotations are needed for each utterance before adaptation.

1.3.4 Using the A and AA features

Empirical studies demonstrate that the performance of a speech recognition system
can be greatly enhanced by adding time derivatives to the basic static parameters.
One possible explanation of why this helps is that by doing so we basically extend the
input window of the acoustic model, thus we allow it to use information from a wider
time window. The delta coefficients can be computed using the following regression

formula [1]

©
O(ciro — i
23 -1 0
where A, is a delta coefficient at time ¢ computed in terms of the corresponding static
coefficients from ¢;_o to ¢;1o. If we apply the same formula to the delta coefficients,

we get the acceleration coefficients (AA).

1.4 Acoustic modelling with HMMs

After the feature extraction step, we can train the acoustic model component of the
recogniser. This task is not an easy one as the acoustic model has to learn the relation-

ship between the input features and the words uttered. Traditional systems first split

8 Chapter 1. Introduction

the transcription at the word-level into a phoneme sequence, and these phonemes can
be defined as speech segments that possess distinct physical or perceptual properties.
The phonemes are the basic building blocks in speech recognition.

Now we need a method that can be trained to produce the correct phoneme se-
quence given the input features. Hidden Markov Models (HMMs) are the most popular
choice for this task. A HMM is characterised by the following:

e S is the finite set of the states, which are also called hidden states (as they
are not directly observed). In speech recognition, each state corresponds to
a phoneme or part of the phoneme. We shall denote the individual states by

S = 81, 89,...,5n, and the state at time ¢ by ¢

e O = 01,09,...,07 is the observation sequence, and V = v, vs,..., vy, is the

set of the individual symbols, which can be omitted.

e The actual state could be determined using the state transition probability values
A = a;;, where
ai; = Pg1 = sjlae = s1). (1.15)

e The output of the HMM is controlled by the observation probability distribution
B = {b;(k)}, where
bi(k) = P(oy = vi|q: = s4). (1.16)

e Lastly the model needs an initial state distribution, which stores the probability

values of P(q1 = s;).

As can be seen, HMMs make two key assumptions. First, they assume that the
current observation (o,) is only dependent on the actual state (¢;). The problem with
this is that we expect the model to correctly guess ¢; using only one input frame, which
is usually a 25 ms-long MFCC or Fbank vector, which represents only a fraction of the
average phoneme duration (7150 ms). A possible solution to overcome this problem
is to extend the input with a few neighbouring frames, thus allowing the model to
make decisions using a more appropriate time window. The second assumption that
HMMs make is that s; only depends on s;_; and it is conditionally independent of the
other preceding states. One could compensate for this by further extending the input
window, but empirically a better solution is to use the A and AA features, as this
allows the system to guess the previous and successive values efficiently.

As we mentioned before, the hidden states usually correspond to a phoneme, but
the problem of co-articulation complicates this. The most common way of dealing with
co-articulation is to use a tri-state model. In a tri-state model each phoneme is split
into three parts; namely the beginning, the middle and the ending part. Figure 1.4

1.4. Acoustic modelling with HMMs 9

a1l a2 ass
bl(k) b, (k) b5 (k)

Figure 1.4: The tri-state HMM phoneme model.

shows the tri-state phoneme model. The idea behind this is simple. As co-articulation
does not affect the middle part of the phone, by separating the problematic parts we
hope to make the learning task easier. The tri-state model has an additional benefit
that it enforces a minimal duration (3 frames at least) on each phoneme as the decoder
has to go through all three states. Using context dependent (CD) labels is another
option. In this case, we use three phonemes to label the actual observation, namely the
preceding, the actual and the succeeding phonemes. Unfortunately the large amount
of possible observations makes it impossible to train the acoustic model, so we need
to cluster these CD states before training. We will describe state clustering in more
detail later on in Chapter 4.

We should mention that Equation 1.16 describes a HMM with discrete observa-
tions, but speech is represented by a continuous signal. Of course, HMMs can omit
continuous observations with the use of Gaussian Mixture Models (GMMs), the task
of these GMMs being to provide a continuous estimation for b;(k). These models are
called HMM/GMM and they were the standard technique in ASR for decades, until
the appearance of DNNs. In the past few years the GMM part has been replaced by
DNN, resulting in the new HMM/DNN hybrid model, which will be explained later.

Now we can focus on the three basic tasks that can be handled with an HMM,
namely the evaluation, decoding and learning problems. Evaluation means that we wish
to find the probability of an observation given the HMM parameters, an example of this
in speech recognition being the task of isolated word recognition. The second problem
(decoding) is essential in continuous speech recognition, which seeks to find the most
likely sequence of hidden states (phonemes) given the HMM and and observation
sequence. The Viterbi algorithm is a dynamic programming method that offers a
simple solution to the decoding problem [7].

The Baum-Welch algorithm [7] is the standard method used to train a HMM. It

10 Chapter 1. Introduction

applies the forward-backward algorithm (described in Chapter 3) to find the maximum
likelihood estimates of the parameters given a set of observed feature vectors and the

known sequence of hidden states.

1.4.1 HMM/DNN model

After having outlined the HMM part of the hybrid model, we will now focus on the
DNN part. It is clear that the acoustic model requires a component that can estimate
the b;(k) values (the observation probability values). For decades GMMs were routinely
used for this task, but we should add that shallow ANNs were also used by scientists
but they failed to significantly outperform GMMs. This situation has changed with the
appearance of DNNs, which have a superior performance in general compared to that
of the GMM:s.

The success of the DNNs could be credited to several factors. These are:

e DNNs are able to estimate the posterior probabilities of HMM states using any
kind of input, even highly correlated ones, unlike GMMs.

e DNNs can be trained efficiently using a large amount of training data. Actually,

it is an essential aspect of deep learning to use a lot of data.

e DNNs generalise better than GMMs. The explanation for this is the fact that
the output of a DNN is sensitive to a lot of weights in the network, hence it can
learn far more complex relationships between the inputs and the labels.

Of course, we should mention that it is also harder to train a DNN than it is to
fit a GMM. DNNs have many meta-parameters that need to be fine-tuned and usually
they have many more parameters than GMMs do. Fortunately, nowadays one can train
DNNs on special hardware called the Graphical Processing Unit (GPU) to speed up
the training procedure and quickly tune the meta-parameters.

When DNNs are trained as acoustic models, they attempt to estimate the proba-
bility values of the hidden states using observations as input. The ith output of the

network at time ¢ can be written as
dnn;; = P(gilot). (1.17)

The problem is that the HMM requires the estimates of P(o4q;), so using the
Bayes rule the outputs of the DNNs must be reformulated as

P(oa) Pla)

Blor (1.18)

dnni e = P(giloy) =

1.5. Language Model 11

After reordering, we get

P(Qi‘ot)
P(Qi)

where P(q;) is the prior probability of state i. Since the decoding process aims to find

dnmn;

P(oiq;) = P(or) P(g)’

= P(or)

(1.19)

the most probable sequence of states and P(0;) is constant for each state, it can be

ignored.

1.5 Language Model

The purpose of a language model (LM) is to assign probabilities to word sequences.
In speech recognition it is used to convert the output of the acoustic model into a
word sequence, and to achieve this it requires a lexicon (also called the pronunciation
dictionary) that contains the pronunciations for all recognizable words. In our study,
we utilised the simplest model called an N-gram. N-grams use the Markov assumption,
meaning that the probability of a word depends only on the previous N word. Thus

the N-gram model approximates the probability of the next word in a sentence as
P(wn|w?_1) ~ P(wn|w?-:$—N)' (1-20)

Using a 2-gram (also called a bigram model), the probability of the whole sequence
can be calculated by using the chain rule

n

P(w}) ~ H P(w;|w;—1). (1.21)
i=1

Next, we need a way to estimate the N-gram probability values. Luckily, we can
calculate the N-gram probabilities using a very simple method called Maximum Likeli-
hood Estimation (MLE) [7]. The conditional probabilities can be calculated by getting
the number of occurrences from a corpus and normalising them to a value between 0
and 1. In the case of a bigram model this means that we need to count all appearances
of the words x and y, when they are in the correct order and divide this by the number

of all word pairs, which start with 2. Formally,

P(y|z) = _Clow) (1.22)

> Clzw)
Typically, however, the N-gram model probability values are not calculated directly
from the frequency counts, as it gives 0 when confronted with any N-gram that is not
present in the training corpus. To overcome this problem, some form of smoothing is

necessary, diverting a portion of the total probability mass to unseen N-grams. Various

12 Chapter 1. Introduction

methods are used, ranging from the simple add-one smoothing (assign a count of 1 to
unseen n-grams) to more sophisticated methods, like the Good-Turing discounting or
the back-off models. Here we used the Katz back-off model [7], which simply reduces
N if the N-gram was not seen enough times in the training data. The new estimate

fOI’ PKatZ(wi|wl-,N+1 Ce wi,l) is

C(wF Wi — wi) 3
dwi7N+14.<w¢ C(wiiV;iL..wiil) ’ ZfC(wi_N—H o wi) >k (123)

Cuw, nor a1 Datz(WilWim N2 .. wi—1) otherwise,

where « is the back-off weight, k& is a threshold and d is a scaling factor, which typically

has a value of the amount of discounting found by the Good-Turing estimation.

1.6 The Szeged Broadcast News Corpus

The Szeged Hungarian Broadcast News Corpus was the dataset used in all chapter. It
was recorded and transcribed at the Research Group on Artificial Intelligence, belong-
ing to the Hungarian Academy of Sciences and the University of Szeged Institute of
Informatics [8]. The corpus contains 115 news broadcasts which were recorded from 8
different television channels. These recordings were cut into short utterances, and the

resulting segments were placed into one of the following categories:

e Clean speech: utterances in this category contain well-articulated, mostly planned
speech, and have a minimal level of background noise. Most recordings in this
category were originally filmed in a studio, and were spoken by professional news-

casters.

e Noisy speech: speech in this category is still mostly planned, but it has a higher
level of background noise. Recordings in this category are typically taken from

on-site reporters speaking in a noisy environment.

The database contains approximately 28 hours of recordings, from which 22 hours
were selected for the training set, 2 hours for the development set and 4 hours for the
test set. The clean part of the corpus was also partitioned, 44 newscasts (altogether
approximately 5.5 hours) were used for training, 9 newscasts (altogether approximately
1 hour) were used for development and validation, while the remaining 17 newscasts
(altogether approximately 2 hours) were used for testing purposes. Both partitionings
of the recordings were carried out in such a way that each set contained recordings
from all television stations. All the recordings were orthographically typed, and the cor-
responding phonetic transcripts were created with a simple phonetic transcriber. The
phonetic labels of the database consist of 52 categories. In this thesis, we conducted

both phoneme and word recognition experiments on this corpus.

1.7. Summary by Chapters 13

1.7 Summary by Chapters

The thesis is organised as follows:

e In Chapter 2, we compare the performance of four algorithms used to train
DNNs. The first two algorithms are two-phase methods as they apply a pre-
training step before fine-tuning the DNN, the first one being the original algo-
rithm proposed by Hinton et al. [9]. The second algorithm created by Seide et al.
[10] is called discriminative pre-training. As for the third option, we choose the
Deep Rectifier Network (DRN), which differs greatly from the above two in the
sense that here it is not the training algorithm that is modified, but the activation
of the hidden neurons. The fourth training algorithm is a regularization method
called Dropout[11], which simply turns off neurons temporarily during training.
In our experiments, we first compared the results got by using these methods
on the English TIMIT database and on a Hungarian audiobook corpus [12], but
the main goal in this case is to obtain results for a large vocabulary Hungarian
recognition task. For this purpose, we trained a recognition system on the 28-
hour speech corpus of the Szeged Hungarian Broadcast News [8].

e In Chapter 3, we compare two sequence training approaches, namely the Con-
nectionist Temporal Classification (CTC) and the Maximum Mutual Information
(MMI) method. Our aim here is to find a purely DNN-based solution that could
be used to train randomly initialised DNNs without force-aligned labels. Although
CTC was originally proposed for the training of recurrent neural networks, here
we show that it can also be employed to train rectifier networks as well. We will
also show that with our modifications, MMl is also suitable for this task.

e In Chapter 4, we focus on creating a GMM-free HMM/DNN system. For this
we have to solve two problems, namely the initial alignment of the frame-level
state labels and the creation of context-dependent states. To create the ini-
tial alignments, we rely on the MMI-based method described in Chapter 3 and
compare it with another solution, which iteratively trains and realigns the DNN.
Recently, some new methods have been published which offer a way to create
CD states using only HMM/DNNs. We will compare the performance of three

of these new approaches with that of our own solution.

e In Chapter 5, we explore a possible way of handling the imbalance in the CD

state distribution. This imbalance in the class distribution poses a significant

14

Chapter 1. Introduction

challenge to DNNs. A straightforward solution is to re-sample the training data,
either by upsampling the rarer classes or by dowsampling the more common
classes. Here, we experiment with the so-called probabilistic sampling method
that applies downsampling and upsampling at the same time. We also propose a
new method to re-estimate the class priors, to remedy the mismatch between the
training and the test data distributions introduced by re-sampling. Our experi-
mental results indicate that by applying the probabilistic re-sampling algorithm
during the training and properly setting the priors, we can markedly improve the
accuracy of CD DNNs.

In Chapter 6, we provide a brief summary of the contributions outlined in the

thesis and discuss possible directions for future research.

Chapter 2

A Comparison of Deep Neural
Network Training Methods for
Large Vocabulary Continuous

Speech Recognition

In the past few years there has been a renewed interest in applying neural networks to
speech recognition, thanks to the invention of Deep Neural Networks. As we already
remarked in Chapter 1, DNNs differ from conventional ones in that they consist of
several hidden layers. The application of a deep structure can provide significant im-
provements in speech recognition results compared to previously used techniques [13].
However, modifying the network architecture also requires modifications to the training
algorithm, because the conventional backpropagation algorithm encounters difficulties
when training many-layered feedforward networks [14]. As a solution, Hinton et al.
presented a pre-training algorithm that works in an unsupervised fashion [9]. After this
pre-training step, the backpropagation algorithm can find a much better local optimum
of the parameters. The first applications of Deep Networks for speech recognition were
performed on the TIMIT database [15], which is much smaller than the corpora rou-
tinely used for the training of industrial-scale speech recognizers. Hence, since their
invention, a lot of effort has been devoted to scaling up DNNs so that they could be
trained using much larger datasets and large vocabulary tasks [10, 16, 17]. The main
problem is that Hinton’s pre-training algorithm is quite intensive computation-wise,
even when implemented on graphic processors. Several solutions have been proposed
to alleviate or circumvent the computational burden of pre-training, but the search for

the optimal training technique is still going on.

15

Chapter 2. A Comparison of Deep Neural Network Training Methods for Large
16 Vocabulary Continuous Speech Recognition

2.1 Introduction

In this chapter, we compare four different technologies used for the training of DNNs.
The first one is the original pre-training algorithm of Hinton et al. [9]. It treats the
network as a deep belief network built out of restricted Bolztmann machines, and opti-
mizes an energy-based target function using the contrastive divergence (CD) algorithm.
After pre-training, the network has to be fine-tuned using some conventional training
method like backpropagation.

The second algorithm is called “discriminative pre-training” by Seide et al. [10].
This method constructs a deep network by adding one layer at a time, and trains these
sub-networks after the addition of each layer. Both the pre-training of the partial nets
and the final training of the full network can be performed using backpropagation, so
no special training algorithm is required.

As for the third method, it is different from the two above in the sense that in
this case it is not the training algorithm that is modified, but the neurons themselves.
Namely, the usual sigmoid activation function is replaced with the rectifier function
max(0,x). These kinds of neural units were proposed by Glorot et al., and were
successfully applied to image recognition and NLP tasks [14]. Rectified linear units were
also found to improve restricted Boltzmann machines [18]. It has been shown recently
that a deep rectifier network can attain the same phone recognition performance as
that for the pre-trained nets of Mohamed et al. [15], but without the need for any
pre-training [19].

The fourth method called Dropout was introduced a few years ago by Hinton et
al. [11]. Unlike the previous methods, it is a regularisation technique, meaning that
it is just a refinement of the training algorithm. The term “dropout” refers to the
fact that during training, neurons in the network are randomly dropped out. Dropping
neurons from the network can be achieved by simply zeroing out the activation of the
chosen units. The main advantage of this method is that it helps neural networks to
generalise better, thus it improves their performance especially in case of noisy input.
Another advantage of Dropout is the fact that it can be combined with any training
algorithms, since it is a regularisation method, so we will use it not just with standard
sigmoid networks but with rectifier ones too.

In our experiments, we first compared the performance of the four methods on the
English TIMIT database and on a Hungarian audiobook corpus [12], but the main goal
of this study is to obtain results for a large vocabulary Hungarian recognition task. For
this purpose, we trained a recognition system on a 28-hour speech corpus of Hungarian
Broadcast News, presented in Section 1.6.

The recogniser is a hybrid HMM/DNN system [20] that estimates the state-level

2.2. Training Methods for Deep Neural Networks 17

posterior probability values from the neural net, while the decoder is the HDecode
program, which is a part of the HTK package [1]. As Hungarian is an agglutinative
language, our system runs with a relatively large dictionary of almost five hundred

thousand word forms.

2.2 Training Methods for Deep Neural Networks

In the last few years there has been a renewed interest in applying neural networks,
especially Deep Neural Networks, to various tasks. To properly train these multi-layered
feedforward networks, the training algorithm requires modifications as the conventional
backpropagation algorithm encounters difficulties (“vanishing gradient” and “explaining

away” effects).

In this case the “vanishing gradient” effect means that the error might converge to
zero as it gets propagated back through the hidden layers [21]. The reason for this
is simple: each weight in the neural network receives an update proportional to the
gradient of the error function with respect to the current weight during each iteration
of training. The most commonly used activation functions like the sigmoid function
have gradients in the range (0, 1), and backpropagation computes gradients using the
chain rule. This means that if we multiply these small values to compute gradients of a
“deeper” layer in a neural network, the gradient (error signal) decreases exponentially.
This could cause some hidden layers, in particular those that are closest to the input
layer, to have gradients close to zero and as a consequence the whole network may fail

to learn.

At the same time, in fully connected deep networks, the “explaining away” effects
make inference extremely difficult in practice [9]. Explaining away is a well-known
phenomenon in Bayesian networks which has a V shaped structure (two input and
one output node). For DNNs the assumption that hidden neurons are independent
becomes invalid as they could become anticorrelated. For example, if an output node
can be activated by two equally rare and independent events (hidden neurons) with
an even smaller chance of occurring simultaneously, then the activation of one of the
hidden nodes negates (explains away) the occurrence of the other in such a way that a
negative correlation is obtained between the two neurons. This makes the training of
DNNs using the standard backpropagation difficult as it could converge to a suboptimal
model. Several solutions have been proposed to overcome these problems, and here

we compare four of them empirically.

Chapter 2. A Comparison of Deep Neural Network Training Methods for Large
18 Vocabulary Continuous Speech Recognition

Figure 2.1: RBM with 3 hidden and 4 visible neurons.

2.2.1 DBN Pre-Training

This efficient unsupervised algorithm, first described in [9], can be used to learn the
connection weights of a Deep Belief Network (DBN) consisting of several layers of
Restricted Boltzmann Machines (RBMs). The RBMs are a variant of Boltzmann
Machines, with the restriction that their neurons must form a bipartite graph. They
have an input layer (called the visible layer), representing the features of the given
task, and a hidden layer which has to learn some representation of the input. The
restriction compared to the simple Boltzmann Machines is that each connection in an
RBM must be between a visible unit and a hidden unit, thus forming a bipartite graph.
Figure 2.1 provides a graphical depiction of an RBM. These RBMs can be trained
using the Contrastive Divergence (CD) algorithm proposed by Hinton et al. in [9].
The main idea behind CD is that the RBM assigns the following energy value to each
configuration of visible and hidden state vectors, denoted by v and h, respectively:

\%4 H
E(U,h; @) = —ZZwijvihj —Zaﬂ)z‘ —ijhj (21)
] 1=1 j=1

=1 j=1

where the weights of the connection between a visible and hidden neuron are stored
in the matrix w, while b; and a; are the hidden and visible biases respectively. A key
element of the CD algorithm is Gibbs sampling, which is a Markov chain Monte Carlo
algorithm. For RBMs one can sample the visible and hidden units using block Gibbs
sampling, as the layers are conditionally independent. A sampling step is performed as

follows:

R* = f(Wo™ ! +b) (2.2)
v = f(W'h" 4 a) (2.3)

In theory, each learning epoch would require Gibbs sampling to be repeated until
full convergence is achieved. It is clear that in practice one cannot run the sampling
chain up to convergence, as it would be computationally expensive and extremely time-

consuming. As a solution, Hinton proposed the one-step contrastive divergence (CD-1)

2.2. Training Methods for Deep Neural Networks 19

out[QOO000)]

(00000 |+ (000000

000000 2 LOCCOAN - = LOGOOT)
(000000 | = 000000 | = (000000

N A A

« ©O000ON » [COO00ON * [OOOOOON

Figure 2.2: The DPT training process is shown, the new parts of the network being
shown in red; after a new layer is added we train the whole network not just the newly
added parts.

update rule for the visible-hidden weights:
Aw;j o< (v7RY) = (v} h3). (2.4)

Note that CD-1 does not wait for the Markov chain to converge, it runs a Gibbs sampler
initialised on the data for one full step.

Although RBMs with the energy function of Equation (2.1) are applicable for binary
data, in speech recognition the acoustic input is typically represented by real-valued
feature vectors. For real-valued input vectors, the Gaussian-Bernoulli restricted Boltz-
mann machine (GRBM) can be used, and it requires making only a minor modification

of Equation (2.1). The GRBM energy function is given by:

Zb h; (2.5)

Hinton et al. showed that the weights resulting from the unsupervised pre-training

M<
INg
S
je

E(v,h|©) =

=1 =1 _]=1

algorithm can be used to initialise the weights of a deep, but otherwise standard, feed-
forward neural network. After this initialisation step, a softmax output layer needs
to be added to the network, then we simply use the backpropagation algorithm to

fine-tune the network weights with respect to a supervised criterion.

2.2.2 Discriminative Pre-Training

‘Discriminative pre-training’ (DPT) was proposed in [10] as an alternative to DBN
pre-training. It is a simple algorithm where first we train a network with one hidden
layer to full convergence using backpropagation; then we replace the softmax layer by

another randomly initialized hidden layer and a new softmax layer on top, and we train

Chapter 2. A Comparison of Deep Neural Network Training Methods for Large
20 Vocabulary Continuous Speech Recognition

3 r

sigmoid(x) ===
tanh(x)

25 |- rectifier(x) ——

Figure 2.3: The rectifier activation function and other commonly used activation func-

tions.

the network again; this process is repeated until we reach the desired number of hidden
layers. Figure 2.2 illustrates the general procedure.

This training method is very similar to the greedy layer-wise training algorithm of
Bengio et al. [22], but differs in that Bengio only updates the newly added hidden layers
and the output layer. Seide et al. found that this method gives the best results if one
performs only a few iterations of backpropagation in the pre-training phase (instead of
training to full convergence) with an unusually large learn rate. In their article, they
concluded that this simple training strategy performs just as well as the much more

complicated DBN pre-training method described above [10].

2.2.3 Deep Rectifier Networks

Rectified neural units were recently applied with success in standard neural networks,
and they were also found to improve the performance of DNNs on tasks like image
recognition and speech recognition [14, 19]. These rectified neurons apply the rectifier
function (max(0,x)) as the activation function instead of the sigmoid or hyperbolic
tangent activation. The main advantage of Deep Rectifier Networks (DRNs) is that
thanks to their properties, they can be trained with the standard backpropagation
algorithm, without any time-consuming pre-training. As Figure 2.3 shows, the rectifier
function is one-sided, hence it does not enforce a sign symmetry or antisymmetry.
Here, we will examine the two key properties of this one-sided function, namely its
hard saturation at 0 and its linear behaviour for positive input.

The hard saturation for negative input means that only a subset of neurons will
be active in each hidden layer. For example, when we initialize the weights uniformly,
around half of the hidden units output are real zeros. This allows rectified neurons
to achieve truly sparse representations of the data. In theory, this hard saturation
at 0 could harm optimization by blocking gradient back-propagation. Fortunately,

2.2. Training Methods for Deep Neural Networks 21

experimental results do not support this opinion, suggesting that hard zeros can actually
help supervised training. These results show that the hard non-linearities do no harm
as long as the gradient can propagate along some path [14].

For a given input, the computation is linear on the subset of active neurons. Once
the active neurons have been selected, the output is a linear combination of their in-
put. This is why we can treat the model as an exponential number of linear models
that share parameters. Based on this linearity, there is no vanishing gradient effect
[14], and the gradient can propagate via the active neurons. Another advantage of
this linear behaviour is the smaller computational cost: there is no need to compute
the exponential function during the activation, and the sparsity of neuron activity can
also be exploited. A disadvantage of the linearity property is the “exploding gradient”
effect, when the gradients can grow without limit. To prevent this, one could apply
a regularisation technique called weight normalisation [23]. Weight normalisation at-
tempts to keep the L1- or L2-norm of the weight matrices the same as it was after
initialization by scaling the weights during training. What makes this possible is that
for a given input the subset of active neurons behaves linearly, so a scaling of the

weights is equivalent to a scaling of the activations.

2.2.4 Dropout

Dropout differs from the previous methods in that it is a regularisation technique.
The name refers to the fact that this method drops out neurons during training. In
practice, the neuron dropout can be performed by applying a random binary mask.
By dropping a neuron out and temporarily removing it from the network, along with
all its incoming and outgoing connections, we basically create a different model for
each training example. The goal of dropout is to prevent overfitting by combining
exponentially many different neural network architectures efficiently. The dropout mask
could be generated randomly with a A parameter, and this controls the percentage of
the dropped neurons.

During validation or testing, it is not feasible to average the predictions from
exponentially many models. However, a very simple approximate averaging method
works well in practice. The idea is to use the original neural net structure without
dropout, but the weights of this network need to be a scaled-down version of the
trained weights. The scaling-down could be carried out in the following way: if a
neuron drops out with probability p during training, then the weights of that unit are
multiplied by 1 —p before testing. The main advantage of this regularisation technique
besides its simplicity is that it can be readily used with other training algorithms and

it can provide significant improvements.

Chapter 2. A Comparison of Deep Neural Network Training Methods for Large
22 Vocabulary Continuous Speech Recognition

2.3 Experimental Setup

Here, we report the results of applying the ANN-based recognisers on three databases.
The first one is the classic TIMIT database of English sentences, while the second is
a corpus of a Hungarian audiobook. The third database is called Szeged Broadcast
News. On TIMIT quite a lot of phone recognition results are available, so it is good
for comparative purposes. However, TIMIT is quite small and usually only phone-level
results are reported on it. The training set consisted of the standard 3696 'si’ and 'sx’
sentences, while testing was performed on the core test set (192 sentences). A random
10% of the training set was held out for validation purposes, and this block of data
will be referred to as the 'development set’. The scores reported are phone recognition
error rates using a phone bigram language model.

As the second database we chose an audiobook for which the original novel is so old
that its text is no longer copyrighted. Our choice fell on the short story collection by
Gyula Krady entitled 'Sinbad’s Voyages', presented by the actor Sandor Gaspar. The
total duration of the corpus was 212 minutes and it was was carefully annotated, and
the differences between the original text and the sound material were corrected [12].
Each file in the corpus was segmented further into roughly two-minute long parts,
and for training and test purposes the recordings were divided into two parts. From
the ten short stories, eight were used for training (186 minutes) and two for testing
(26 minutes). As the training data was limited we only performed phoneme level
recognition with a phone bigram. One could say that this task is very different from
a real-life recognition task, as there was minimal noise and the training and testing
set are not speaker independent, actually the entire database is spoken by one person.
Due to these facts one could say that this task is speech recognition under optimal

conditions, and the results could provide an empirical glass ceiling for other tasks.

Lastly, in our tests on the Szeged Broadcast News corpus we sought to measure
the large vocabulary recognition performance of the methods applied. The language
model was created from texts taken from the Origo news portal (www.origo.hu), from
a corpus of about 50 million words. Hungarian is an agglutinative language with a lot of
word forms, hence we limited the size of the recognition dictionary to 486982 words by
keeping only those words that occurred at least twice in the corpus. The pronunciations
of these words were obtained from the ‘Hungarian Pronunciation Dictionary’ [24].
Based on the Origo corpus, a trigram language model was built using the language
modelling tools of HTK [1].

As for the acoustic features, we applied the standard 39 MFCC coefficients, ex-
tracted from 25 ms frames with 10 ms frame skips. We used MFCC coefficients

(including the energy), along with the corresponding A and AA values. In each case,

2.3. Experimental Setup 23

the neural network was trained on 15 neighbouring frames, so the number of inputs to
the acoustic model was 585.

Neural networks require a frame-level labeling of the training data. For this purpose,
we first trained a standard hidden Markov model (HMM) speech recogniser, again using
the HTK toolkit. For the TIMIT dataset, monophone 3-state models were created,
which resulted in 183 states. For the broadcast news dataset, triphone models were
constructed, consisting of 2348 tied triphone states in total. The HMM states were
then aligned to the training data using forced alignment. These labels served as training
targets for the neural nets.

For the recognition process, we applied the decoders of the HTK package. We used
HVite for the phone recognition experiments on TIMIT and the Hungarian audiobook,
while the HDecode routine was applied for the large vocabulary recognition tests on the
broadcast news task. In both cases, the acoustic modeling module of HTK required a
slight modification so that it could use the posterior probability values produced by the
neural nets. For the TIMIT and the audiobook dataset, the language model weight and
the insertion penalty factor were set to 1.0 and 0.0, respectively. With the broadcast
news dataset, these meta-parameters were tuned on the development set. Lastly, for
a fairness of comparison, the pruning beam width was set to the same value for each

network.

2.3.1 Training Parameters for the Neural Networks

As is standard in machine learning, all hyperparameters of the training methods were
fine-tuned on the development set. In the case of the DBN-based pre-training method,
we applied stochastic gradient descent (i.e. backpropagation) training with a mini-
batch size of 128. For Gaussian-binary RBMs, we ran 50 epochs with a fixed learning
rate of 0.002, while for binary-binary RBMs we used 30 epochs with a learning rate of
0.02. Then, to fine-tune the pre-trained nets, again backpropagation was applied with
the same mini-batch size as that used for pre-training. The initial learn rate was set
to 0.01, and it was halved after each epoch when the error on the development set
increased.

During both the pre-training and fine-tuning phases, the learning was accelerated
by using a momentum of 0.9. Momentum is a well-known regularisation technique
for accelerating gradient descent [25], which accumulates a velocity vector of gradient
updates across previous iterations. The momentum update rule in our implementation

is given by:

Vg1 = Mx* AWt+1 + (1 - m)'Ut (26)
Wit = Wi+ ev, (2.7)

Chapter 2. A Comparison of Deep Neural Network Training Methods for Large
24 Vocabulary Continuous Speech Recognition

25

24 - : 4

23+ , .

22 - ’l\\ —

Phoneme error rate (PER)

RECT —¥— \ ——
20 - Sigmoid-DO , e S -
RECT-DO \
Sigmoid-BP —©—
19 1 1 1 1 1
1 2 3 4 5

Number of hidden layers

Figure 2.4: Phone error rates on the TIMIT dev set as a function of the number of
hidden layers.

where v is the matrix in which the momentum of the gradient is stored, m is the

momentum coefficient parameter and ¢ is the learning rate.

Turning to the discriminative pre-training method, the initial learn rate was set
to 0.01, and it was halved after each epoch when the error on the development set
increased. The learn rate was restored to its initial value of 0.01 after the addition
of each layer. Furthermore, we found that using 5 epochs of backpropagation after
the introduction of each layer gave the best results. For both the pre-training and
fine-tuning phases, we used a batch size of 128 and momentum of 0.8 (except for the

first epoch). The initial learn rate for the fine-tuning of the full network was again set
to 0.01.

The training of deep rectifier nets did not require any pre-training at all. The
training of the network was performed using backpropagation with an initial learn rate
of 0.001 and a batch size of 128. The dropout method was applied with standard
sigmoid networks and with rectified ones as well. We did not combine dropout with
the pre-training methods since their training already required a lot of time and dropout
would have increased it even further. In the case of the sigmoid network 20% of the
neurons were dropped randomly, while the rectifier networks required only 10% dropout
to achieve the best results.

2.4. Results 25

27
26 - .
=
w
S
o 251 B
4@’ ane
; :
& 24 .
(]
g =
2 DBN —— -
=
o

23 L DPT " 4
RECT —— A. ~
Sigmoid-DO ——
5> |- RECT-DO ; i

Sigmoi‘d-BP -

1 2 3 4 5

Number of hidden layers
Figure 2.5: Phone error rates on the TIMIT core test set as a function of the number
of hidden layers.

2.4 Results

241 TIMIT

Figures 2.4 and 2.5 show the phone recognition error rates obtained on the TIMIT dev
and core test set, respectively, with a varying number of hidden layers, each hidden layer
containing 2048 neurons. As can be seen, the deep learning methods performed very
similarly, up to 4 hidden layers and in the case of five hidden layers, the rectifier nets
performed slightly better than the others. Each deep learning method outperformed
the standard backpropagation method (BP) once the network had at least two hidden
layers. The best results (21.87% and 21.75%) were obtained with rectifier networks,
which had five hidden layers. The dropout regularisation improved the deep sigmoid
networks significantly, but it gave only a minor improvement in the case of the rectifier
networks. Besides the fact that dropout failed to improve the results significantly, the
new hyperparameter, namely the dropout rate noticeably increased the time needed
to tune the hyperparameters. Using similar features, training labels and network sizes,
Mohamed at al. reported a 22.3% error rate with DBN pre-training [15], while Téth
reported a 21.8% figure with rectifier nets [19]. As our scores fall in the same range,
the results also demonstrate the soundness of our methodology.

2.4.2 Hungarian Audiobook

Figure 2.6 shows the results for the Audiobook corpus. The standard method achieves

its best performance with three hidden layers, only slightly better than the one achieved

Chapter 2. A Comparison of Deep Neural Network Training Methods for Large

26 Vocabulary Continuous Speech Recognition
12.5
12 -
x
w
& 1150
(0]
©
S 1
fu— *
2 105 DBN ——
2 DPT
RECT —¥—
10 - Sigmoid-DO
RECT-DO
Sigmoid-BP —©—
95 L | | | |

1 2 3 4 5

Number of hidden layers

Figure 2.6: Phone error rates on the Audiobook test set as a function of the number
of hidden layers.

20 T
DBN =—4—
195 - " DPT
O RECT =—¥—
19 L Sigmoid-DO
2 RECT-DO
L 185 1 Sigmoid-BP —©— |
:q:), .
©
= 18
<]
]
- 175
5]
=
17
16.5
16 | | | | |

Number of hidden layers

Figure 2.7: Word error rates for the broadcast news corpus as a function of the number
of hidden layers.

with only one hidden layer. It is also interesting that using more than three hidden
layers leads to an increasing PER. The Dropout regularisation increased the accuracy
of the sigmoid networks, but they still followed the same trend. The two pre-training
methods performed in a quite similar way and just like on the TIMIT dataset the
rectifier networks proved to be the best models performance-wise.

2.4. Results 27

2.4.3 Hungarian Broadcast News

Figure 2.7 shows the word error rates got for the large vocabulary broadcast news
recognition task. Similar to the TIMIT tests, 2048 neurons were used for each hidden
layer, with a varying number of hidden layers. The trends of the recognition results
are quite similar to those for the TIMIT database. The error rates seem to saturate at
4-5 hidden layers, and the curves for the methods run parallel and have only slightly
different values. The lowest error rate is attained with the five-layer rectifier network,
both on the development set and the test set.

Although their recognition accuracy scores are quite similar, there is another factor
we need to consider, namely the training times. These methods differ significantly
in the training times required,and Table 2.1 shows the training times we measured
using a NVIDIA GTX-560 TI graphics card. These values tell us how long it took
to train one DNN, after we found the optimal hyperparameters. We should add that
in the case of the DBN pre-training method and the dropout method, we spent far
more time on properly tuning their hyperparameter values than in the case of the
others. Evidently, the DBN pre-training algorithm also has the largest computational
requirements. This algorithm has no clearly defined stopping criterion, and various
authors run it with a widely differing number of iterations. The iteration count we
applied here (50 for Gaussian RBMs and 30 for binary RBMs) is an average value,
and follows the experiments carried out by Seide et al. [10]. Mohamed applies many
more iterations [15], while Jaitly et al. use far fewer iterations [16]. Discriminative pre-
training and dropout regularisation are also much faster than the DBN-based method,

but they are still slower than the training of rectifier nets.

Training method Pre-training time Fine-tuning training time
Sigmoid + BP 0 hours 4.5 hours
Sigmoid + Dropout 0 hours 5.5 hours
DBN pre-training 1 hours 4 hours
Discr. pre-training 2.5 hours 3 hours
Rectifier network 0 hours 4 hours
Rectifier network 4+ Dropout 0 hours 4.5 hours

Table 2.1: The training times required by the various methods for one network with

five hidden layer.

Lastly, although the main goal here was to compare the four deep neural network
algorithms, let us now compare the large vocabulary recognition scores with those of
a conventional HMM. The same HMM model that was used to generate the training

labels attained a word error rate of 20.07% (with maximum likelihood training), while

Chapter 2. A Comparison of Deep Neural Network Training Methods for Large
28 Vocabulary Continuous Speech Recognition

the best DNN system achieved a WER of 16.59%, meaning that by replacing the
GMM with a rectifier network we got a 17% relative error rate reduction. Tuning the
parameters so that the two systems had a similar real-time factor was also out of the
question, as the hybrid model was implemented on a GPU, while the HMM used a
normal CPU.

2.5 Summary

It is perhaps no exaggeration to say that deep neural nets have led to a breakthrough
is speech recognition. However, they are computationally intensive, and the quest
for the optimal network architecture and training method is still continuing. In this
chapter | presented and compared two training methods, a new type of activation
function and a regularisation technique for DNNs, and evaluated them on two smaller
phoneme recognition tasks and on a Hungarian large vocabulary recognition task. To
the best of my knowledge, | was the first to apply HMM/DNN systems to Hungarian
speech recognition. These deep learning algorithms yielded pretty similar recognition
performances on a medium-sized corpus, yet rectifier networks produced better results
and their training was considerably faster. Based on these facts, in my later experiments
deep rectifier networks became my preferred choice.

In this chapter, the author regards the following as his main contributions:
e Performing an experimental comparison of four deep learning methods.

e First results for Hungarian speech recognition using HMM/DNN hybrids.

And the results presented in this chapter were published in [26].

Chapter 3

Sequence Training Methods for

Deep Rectifier Neural Networks

In our pursuit of a strictly DNN-based ASR solution, we first turned our attention to
the task of flat start training. Most of the current DNN technologies require frame-
aligned labels, which are usually created by first training an HMM/GMM. Obviously,
it would be far more efficient to just use DNN-based recognisers without the need to
create an HMM/GMM to do the same task. Although flat start training via iteratively
realigning and retraining the DNN using a frame-level error function is viable, it is
quite cumbersome. In this chapter, we compare two sequence training approaches,
namely the Connectionist Temporal Classification (CTC) and the Maximum Mutual
Information (MMI) method. Our aim here is to find a purely DNN based flat start
solution, which could be used to train randomly initialised DNNs without using force-

aligned labels.

The first method (CTC) that we examined was originally proposed for the training
of recurrent neural networks, but here we will show that it can also be used to train
more conventional feed-forward networks as well. As our second choice, from the wide
variety of sequence discriminative training methods we opted for MMI training [27].
While this is routinely applied only in the final phase of model training, here we will
show that with proper modifications it is also suitable for obtaining the alignments of

context-independent models.

In the experimental part, we evaluate the two methods on several phone recognition
tasks. For each database we tested, we found that the sequence training methods give
better results that those obtained with force-aligned training labels produced by an
HMM/GMM system. These results suggests that flat start training is possible without
the use of GMMs.

29

30 Chapter 3. Sequence Training Methods for Deep Rectifier Neural Networks

3.1 Problem description and literature overview

For three decades now, Hidden Markov Models (HMMs) have been the dominant
technology in speech recognition. Their success is due to the fact that they handle
local (frame-level) likelihood estimation and combine these local estimates to get a
joint global (utterance-level) score, in a unified mathematical framework. Recently,
however, it was shown that DNN-based solutions can significantly outperform standard
HMMs [28]. As described in Chapter 1, this new technology replaces the Gaussian
mixtures of the HMM by a DNN, while the utterance-level decoding is still performed
by the HMM. The DNN component of these hybrid models is usually trained only at
the frame level. That is, we generate frame-level training targets for the network, and
during training we optimise some frame-level training criteria. However this frame-
by-frame training has several drawbacks. Firstly, we have to have frame-level labels
to be able to start the training. For very old and small databases (like the TIMIT
dataset used here), a manual phonetic segmentation is available. However, for more
recent corpora which might be hundreds of hours long, manual segmentation is clearly
out of the question. Hence, the usual solution for obtaining frame-level labels is to
train a standard HMM/GMM system, and then use it in forced alignment mode. This
means that, based on the current technology, the training of a DNN-based recogniser
should always be preceded by the training of a standard HMM model. This clearly
makes the creation of a DNN-based system much more tedious and time-consuming,
and although quite recently there have been some attempts at having the standalone

training of DNN systems, these technologies are still far from complete [29].

Secondly, besides the cost of creating forced aligned labels, the frame-level training
of a neural network has a deeper, more theoretical limitation. During this training, we
minimise the frame-level error cost, such as the frame-level cross-entropy (CE) between
the network output and the training targets. These training targets are hard-labeled,
which means that we expect the network to give an output of 1 for the correct class
and 0 for the remaining ones. This is not necessarily optimal regarding the decoding
process, which combines the frame-level scores. A more sophisticated method that
derives “soft” training targets from the sentence-level scores can be expected to result
in a better performance.

Graves et al. proposed a method that provides a solution to both the above-
mentioned problems, and called it the Connectionist Temporal Classification (CTC)
method for Recurrent Neural Networks (RNNs) [30]. This method requires just the
transcription of the utterance, without any further label alignment information. Never-
theless, their architecture differs fundamentally from the standard HMM/ANN model:

owing to the use of recurrent neural network classifiers, they apply the training method

3.2. Flat start training of HMM/GMMs 31

called backpropagation through time [31], making the training process much more time-
consuming and quite complex. The number of model parameters is also quite high.
Furthermore, as frames have to be processed in a strictly increasing order, decoding
is much harder to parallelise. When using bidirectional recurrent networks (which are
required to achieve the best performance with this approach [32]), we have to wait for
the end of the utterance before we can start evaluating the network, making real-time
speech processing impossible. Lastly, instead of using a standard language model like
a phoneme n-gram, they use a special technique called a prediction network, which is
also based on an RNN. Thus, their approach is quite involved and quite different from
the usual HMM/ANN model.

In this chapter we show that the CTC training scheme is not an inseparable part of
the RNN-based architecture, and with a few small modifications it can also be applied
to the training of HMM/ANN models. Here, we use it to train standard feed-forward
deep neural nets on a phone recognition task over three different databases.

Altough CTC is a viable option for flat start training [33], it has a serious drawback,
namely that it cannot be used to generate accurate forced alignments of the phone la-
bels. To overcome this problem, we also experimented with the MMI training method.
Within the framework of HMM/GMM systems, several sequence-discriminative train-
ing methods have been developed, and these have now been adapted to HMM/DNN
hybrids as well [27, 34]. However, most authors apply sequence-discriminative criteria
only in the final phase of training, for the refinement of the DNN model. That is, the
first step is always CE-based training, either to initialise the DNN (e.g. [35, 36, 37])
or just to provide frame-level state labels (e.g. [27, 34, 38, 39, 40]). In contrast with
the previous authors, here we propose a training procedure that applies sequence-
discriminative training in the flat start training phase. This requires several small mod-
ifications compared to the standard usage of sequence-discriminative training, which

will be elaborated on later.

3.2 Flat start training of HMM/GMMs

The flat start training first initialises a so-called flat model, which does this by esti-
mating a uniform GMM from all the training data and then applies it for all initial
distributions. This also implies that during the first cycle of training, each training
utterance will be uniformly segmented.

After the flat initialisation, the Baum-Welch algorithm [7] could be used to train
the HMM/GMM acoustic model, which makes use of the forward-backward algorithm
described later in Section 3.3.1. The basic assumption of the initialisation is that a

sufficient number of the phone models align or overlap with the actual position of

32 Chapter 3. Sequence Training Methods for Deep Rectifier Neural Networks

that phone, so that during the second and subsequent iterations, the models align as
intended.

3.3 Connectionist Temporal Classification

Following the research work of Graves et al. [30], first we will outline the Connectionist
Temporal Classification training scheme. Similar to standard frame-level backpropa-
gation training, it is an iterative method, where we sweep through the whole audio
training data set several times. A special feature of this training method is that we
process one whole utterance at a time instead of using just fixed-sized batches of it;
furthermore, we only need the correct transcription of the utterance, and time-aligned
labels are not required.

The CTC training method is built on the dynamic search method called forward-
backward search [41], which is a standard part of HMM training. The forward-backward
algorithm not only gives the optimal path, but at the same time we also get the
probability of going through the given phoneme of the transcription for all the frames
of the utterance. Using the forward-backward algorithm, we can calculate a probability
distribution over the possible phonemes, for each frame; then these values can be used
as target values when training the acoustic classifier.

3.3.1 The Forward-Backward Algorithm

Let us begin with the formal description of the forward-backward algorithm. First, let
us take the utterance with length 7", and let its correct transcription be z = z125. .. z,.
We will also use the output vectors 3 of the neural network trained in the previous
iteration. In the first iteration, due to the random initial DNN weights, these will
be practically random values. The forward variable («(¢,u)) can be defined as the
summed probability of outputting the u-long prefix of z up to the time index t < T.
The initial conditions state that the correct sequence starts with the first label in 2:

1 .
Y, if u=1,
Lu)=4{ % 1
a(lu) {O if u>2. 3.1)

Thereafter the forward variables at time ¢ can be calculated recursively from those at

time ¢ — 1; and we can remain in state z, 1, or move on to the next one (z,). Thus,

Oz(t u) _ yiua(t -1, u) if u=1, (3 2)
’ gt (ot —1u) +a(t —1,u—1)) otherwise. '

In the backward phase we calculate the backward variables 3(u, t), which represent the
probability of producing the suffix of z having length n — u starting from the frame

3.3. Connectionist Temporal Classification 33

100 200 300

100 200 300

Figure 3.1: The a (left), 5 (middle) and af (right) values for a given utterance.
The horizontal axis corresponds to the frames of the utterance, while the vertical axis
represents the phonemes.

t + 1. The backward variables can be calculated recursively using the following rules:

1 if u=n,

BT) = { (3.3)

0 otherwise,

and foreach t < T

_ v pl+ 1) ifu=n,
Bt u) = { yt (B(t+1,u)+ B(t+1,u+1)) otherwise. (34)

Figure 3.1 depicts the forward variables, the backward variables and their product for

a short utterance.

3.3.2 Using the af values for ANN training

The a(t, u)B(t, u) product values express the overall probability of two factors, summed
along all paths: the first is that we recognise the correct sequence of phonemes, and the
second is that at frame ¢ the system omits the uth phoneme of z. For neural network
training, however, we would need a distribution over the phoneme set for frame ¢. It
is not hard to see that such a distribution over the phonemes of z can be obtained by
normalising the «(t, u)S3(t, u) products so that they sum up to one (by which step we
eliminate the probability of recognising the correct sequence of phonemes). Then, to
normalise this distribution to one over the whole set of phonemes, we need to sum up
the scores belonging to the multiple occurrences of the same phonemes in z. That is,

the regression targets for any frame t and phoneme ph can be defined by the formula
S alt, A)
e . (3.5)
- a(t, (L)

We can use these values as training targets instead of the standard binary zero-or-one
targets with any gradient-based non-linear optimisation algorithm. In our experiments,
we applied the backpropagation algorithm to train the networks.

34 Chapter 3. Sequence Training Methods for Deep Rectifier Neural Networks

3.3.3 Garbage Label

Although the above training method may work well for the original phoneme set, Graves
et al. introduced a new label (which we will denote by X’), by which the neural network
may choose not to omit any phoneme. This label can be inserted between any two
phonemes, but of course it can also be skipped. They called this label “blank”, but
we consider the term “garbage” more reasonable as frames belonging to this class are
thrown away during decoding.

To interpret the role of this label, let us consider a standard tri-state model. This
divides each phone into three parts. The middle state corresponds to the steady-state
part of the given phone, whereas the beginning and end states represent those parts
of the phone that are affected by coarticulation with the preceding and the subsequent
phones, respectively. By introducing the label X', we allow the system to concentrate
on the recognition of the cleanly pronounced middle part of a phone, and it can map
the coarticulated parts to the symbol X'. Therefore, we find it more logical to use
the term garbage label instead of blank, as the latter would suggest that the label X
covers silences, but in fact this label more likely corresponds to the coarticulated parts
of phones.

Formally, introducing this label means that instead of the phoneme sequence z we
will use the sequence 2/ = X'2; X2, X ... X 2,X. The forward-backward algorithm also

has to be modified slightly. Namely, the initial o values are set to

a(lu) = y;i if u=1o0ru=2, (36)
0 if u>3,

while for the latter labels we allow skipping the X’ states:

yloat —1,u) if u=1,
at,u) = yia(at—lu (t—l,u—l)) if 2, =X,
Yl (et —1Lu)+a(t—1u—1)+at—1,u—2)) otherwise.
(3.7)

The calculation of the (¢, u) values is performed in a similar way.

CTC is a process with a positive feedback: phonemes with generally high y values
will have higher o values, resulting in higher target target values, and during the
iterations they typically tend to suppress all other phonemes. When using the label X,
usually this label dominates during training, and the outputs of a trained CTC network
tend to form a series of spikes, which are separated by the garbage class. Figure 3.2
shows the outputs of a trained network. As can be seen, the garbage label permits the
classifier to choose that a given frame does not belong to any of the original phoneme

set, similarly to the anti-phoneme model of segment-based speech recognition [42]. It

3.3. Connectionist Temporal Classification 35

1 T T T T T I T T

08 |]
y H |
oL ‘/\ WAV AM‘AA A

si e s ctm o nyzlgyaa mm e

T

T

Figure 3.2: Non-garbage outputs generated by a CTC network for the utterance "Ezt
mondja a Semmelweis". The network predicts the sequence of phones as a series of
spikes, which are separated by the garbage class.

is also possible to use the garbage label with a tri-state model: then X is inserted

between every state of all the phonemes, while still being optional.

3.3.4 Decoding and generating forced alignments

When a predictor RNN is used for decoding, it is obvious that we cannot perform a
standard Viterbi beam search; this is why Graves et al. had to modify the decoding
algorithm as well. However, when we switch to a HMIM/DNN that has a feed-forward
DNN architecture, this constraint vanishes and we can apply any kind of standard
decoding method.

The only reason why we need to alter the decoding part is that we need to remove
the garbage label from the resulting phoneme sequence. Luckily, in other respects the
use of the garbage label does not affect the strictly-interpreted decoding part. This
label of course has to be ignored during search when we apply a language model like

a phoneme n-gram. In our tests, we used our own implementation of the Viterbi
algorithm [41].

Generating time-aligned labels for each frame is important for later steps like the
state clustering phase. Strictly speaking, it is impossible to generate accurate align-
ments as most of the frames will be labelled as garbage, and the presence of the phones
are represented only by spikes. In [33] the authors tackle this problem by just using
the frames that correspond to the spikes, however this means that a large portion of
the data will be ignored during state clustering.

36 Chapter 3. Sequence Training Methods for Deep Rectifier Neural Networks

3.4 Sequence-Discriminative Training Using MM|

Several sequence-discriminative training criteria have been developed for the traditional
HMM/GMMs [43] — and adapted to HMIM/DNNs [27, 34, 39, 44] — from which the
maximum mutual information (MMI) criterion is the oldest and simplest. The MMI
function measures the mutual information between the distribution of the observation
and the phoneme sequence. Denoting the sequence of all observations by O, =
Ouls - - -, Our,, and the label-sequence for utterance u by W, the MMI criterion can be
defined by the formula

P(Ou]Su)*p(Wy)
FMMI = log s (38)
; 2w P(Ou]S)*p(W)
where S, = su1,...,Sur, is the sequence of states corresponding to W, and « is

the acoustic scaling factor. The sum in the denominator is taken over all phoneme
sequences in the decoded speech lattice for u. Differentiating Equation (3.8) with
respect to the log-likelihood log p(o,|r) for state r at time ¢, we get

OF 1 — s @ ZW:st:r p(Ou|S)*p(W)
9 log p(ou|r) > P(Ou]S)p(W)

= a(ér;sut - 7£EN(T))7

(3.9)

where yDEN

the denominator lattices for utterance u using the forward-backward algorithm, and

(r) is the posterior probability of being in state r at time ¢, computed over

Or:5.: 1S the Kronecker delta function (the one-hot frame-level phonetic target vector).

3.5 Performing MMI training without frame align-

ments

Sequence training criteria like the MMI error function are now widely used for DNN
training. However, almost all authors initialise their networks using CE training, and
apply the sequence-discriminative criterion only in the final phase of the training proce-
dure, to fine-tune their models [34, 39]. This makes it necessary to use some method
(like HMM/GMM or iterative CE training) to provide frame-level state targets. In
contrast with these authors, here we propose to apply MMI training in the flat start
phase. In order to be able to perform flat start of randomly initialised DNNs using
MMI training, we made some slight changes in the standard process, which we will
describe next.

Firstly, we use the numerator occupancies YNUM (r) in Eq. (3.9) instead of the

ut

Or.s., Values. This way we can work with smoother targets instead of the crude binary

3.5. Performing MMI training without frame alignments 37

ones usually employed during DNN training. Another advantage of eliminating the
Or.s,, Values is that it allows us to skip the preceding (usually GMM-based) label
alignment step, responsible for generating the frame-level training targets. We applied

NUM (1) values, this solution has been

the forward-backward algorithm to obtain the ~
mentioned in some studies (e.g. [34, 44]); but we only found Zhou et al. [35] actually
doing this. However, they pre-trained their DNN with the CE criterion first, while we
apply MMI training from the beginning, starting with randomly initialised weights.
The second difference is that sequence training is conventionally applied only to
refine a fully trained system. Therefore, the MMI training criterion is calculated with
CD phone models and a word-level language model. This makes the decoding process
slow, and hence the numerator and denominator lattices are calculated only once,
before starting MMI training. In contrast to this, we execute sequence DNN training
using only phone-level transcripts and Cl phone models. This allows very fast decoding,
so we can recalculate the lattices after each sentence. This difference is crucial for
the fast convergence of our procedure. For converting the orthographic transcripts to
phone sequences, one can follow the strategy of HTK. That is, in the very first step we
get the phonetic transcripts from the dictionary, with no silences between the words.
Pronunciation alternatives and the optional short pause at word endings can be added
later on, when realignment can be performed with a sufficiently well-trained model [1].
A further difference is that we use no state priors or language model, which makes
the « scaling factor in Eq. (3.9) unnecessary as well. Next, to reduce the computational

DEN(,,,)

requirements of the algorithm, we estimated ~ using just the most probable

decoded path instead of summing over all possible paths in the lattice (denoted by

Fur " (1))-

With these modifications, the gradient with respect to the output activations (a,)
of the DNN is found using

8FMM[aFMMI 8logp(0ut|7’)
3.10
Dty (s Z 0logp(oy|r) Oay(s) ()

—%ﬂthM() = At (5),

which can be applied directly for DNN training. A standard technique in DNN training
is to separate a hold-out set from the training data (see [45]). If the error increases on
this hold-out set after a training iteration, then the DNN weights are restored from a
backup and the training continues with a smaller learning rate. This strategy can be
readily adapted to sequence DNN training [27], and we found it to be essential for the
stability of our flat start MMI training method.

38 Chapter 3. Sequence Training Methods for Deep Rectifier Neural Networks

In summary, the modifications that we propose in order to make MMI training
suitable for DNN flat start are:

1. Frame-level phonetic targets (7NU™(r)) are determined by a forward-backward

search.
2. We employ only phoneme-level transcripts and Cl phoneme states.
3. We do not apply state priors or language model.

4. We estimate yDFN

ut

() by just using the most probable decoded path (Y25 (r)).

5. We measure training error on a hold-out set; when the error increases after a

training iteration, we restore the weights and decrease the learning rate.

Note that steps (1) to (4) seek to simplify the procedure both to speed it up and to
make it more robust. Step (2) also helps us to perform sequence-discriminative DNN
training before CD state tying, which is essential for applying it in flat start. Step
(5), however, is applied in our general DNN training process, but we found it crucial
to avoid the “runaway silence model” issue [46], which is a common side-effect that
haunts sequence-discriminative DNN training. The “runaway silence model” is caused
by the poor lattice quality, meaning that the number of silence frames after decoding
increases as the training epoch increases leading to a high number of deletion errors.
Our solution simply monitors the performance of the network, and once the decoding
result deteriorates the weights of the DNN are reverted to their previous values and

the training is continued with a lower learning rate.

3.6 Experiments and Comparison

3.6.1 Databases

We tested the CTC and MMI training methods on three different databases. The
first was the well-known TIMIT set [47], which is frequently used for evaluating the
phoneme recognition accuracy of a new method. Although it is a small dataset by
today's standards, a lot of experimental results have been published for it; also, due to
its relatively small size, it is ideal for experimentation purposes. We used the standard
(core) test set, and withheld a small part of the training set for development purposes.
The standard phoneme set consists of 61 phonemes, which is frequently reduced to a
set of 39 labels when evaluating the models; we experimented with training on these

61 phonemes and also on the restricted set of 39 phonemes.

3.6. Experiments and Comparison 39

The second database was a Hungarian audiobook, the same one described in the
previous chapter. Lastly, for the third database, the clean part of the Szeged Hungarian

Broadcast News Corpus was chosen.

3.6.2 Experimental Setup

In our experiments, we compared only the phoneme error rates of the algorithms, since
our aim was to develop a method capable of performing flat start training. Although it
is standard practice to use a phoneme bigram, we chose to focus only on the acoustic
models and we did not utilize any language model. The reason for this is that the
following steps in the ASR training process rely heavily on the quality of the initial
acoustic models. Furthermore, due to the introduction of the garbage symbol in the
phoneme set in the case of CTC, including a phoneme n-gram in the dynamic search
method seems overly complicated.

As the frame-level classifier we utilised Deep Rectifier Neural Networks (DRN) [14,
19], which have been shown to achieve state-of-the-art performance on TIMIT [48].
DRN differ from traditional deep neural networks in that they use rectified linear units
in the hidden layers; these units differ from standard neurons only in their activation
function, where they apply the rectifier function (max(0, z)) instead of the sigmoid or
hyperbolic tangent activation. Due to the better behaviour of this activation function,
we can build deep networks with many hidden layers without the need for complicated
pre-training methods, just by applying standard backpropagation training. Neverthe-
less, to keep the weights from growing without limit, we have to use some kind of
regularisation technique; here, we applied the method called L2 normalisation. Our
DRN consisted of 5 hidden layers, with 1000 rectifier neurons in each layer. The initial
learn rate was set to 0.2 and held fixed while the error on the development set kept
decreasing. Afterwards, if the error rate did not decrease for a given iteration, the
learn rate was subsequently halved. The learning was accelerated by using a momen-
tum value of 0.9. We used the well-known MFCC+A+AA feature set as acoustic
features. In each case, the neural network was trained on 15 neighbouring frames.

3.6.3 Results

First we evaluated the CTC and MMI training methods on the TIMIT database, the
results of which can be seen in Table 3.1. In this data set a manual segmentation is
also available, so we decided to use the results obtained by training using the manually
given boundaries as baseline. As a further comparison, the training was repeated in the
usual way, where the training labels are obtained using forced alignment. We found

that the results obtained using the hand-labeled set of labels were noticeably worse

40 Chapter 3. Sequence Training Methods for Deep Rectifier Neural Networks

Database Method Dev. set | Test set
CTC + DRN 26.69% | 28.60%
MMI + DRN 27.70% 30.94%

M tate (39
onostate (39) |\ \d-labeled 27.26% | 29.35%
Forced Alignment 27.10% | 28.92%
CTC + DRN 26.07% | 27.34%
MMI + DRN 25.16% 27.89%

TIMIT M tate (61
onostate (61) |\ 4 labeled 26.42% | 27.94%
Forced Alignment 25.92% | 27.55%
CTC + DRN 23.20% 24.41%
MMI + DRN 20.32% | 22.76%

Tristate (183

ristate (183) |\ - labeled 22.75% | 24.7%
Forced Alignment 22.78% | 24.48%

Table 3.1: The phoneme error rates got for the different DRN training methods.

than those we got when we used forced-aligned labels got by a HMM/GMM. This
reflects the fact that the manually placed phone boundaries are suboptimal compared
to the case, where the algorithm is allowed to re-align the boundaries according to its
needs. On all three databases, the results obtained using tri-state models were always
better than those got with monostate ones.

Furthermore, the CTC+DRN training model consistently outperformed the other
two non-sequence-based training schemes (although sometimes only slightly), when
evaluated on the test set. On the development set usually the standard training strate-
gies were better than the CTC method, which can probably be attributed to overfitting.

The MMI4-DRN networks performed poorly with monostate labels, mostly because
of the runaway silence problem. By using tristate labels we enforce each phone to have
a minimal length, hence it is harder for the silence to suppress the other phones. As
can be seen in Table 3.1 and Table 3.2 the tri-phone MMI+DRN models significantly
outperformed all other methods.

Comparing the training times of the MMI and CTC we noticed that they were
slightly slower than the baseline cases: calculating the o and 3 values increased the
execution times only by a very small amount, but it took a few more iterations to
make the weights converge. On TIMIT, CTC used all training vectors 24-25 times and
MMI performed 21-24 training iterations, whereas the baseline required only 18-19.
This is probably due to the fact that the sequence-based methods strongly rely on the

acoustic classifier trained in the previous iteration, so it takes a few iterations before

3.7. Summary 41

Database Method Dev. set | Test set
CTC + DRN 17.85% 16.55%
Monostate (52) | MMI + DRN 16.95% | 16.12%
_ Forced Alignment 17.76% | 16.98%
Audiobook
CTC + DRN 12.58% 11.67%
Tristate (156) MMI + DRN 10.08% | 9.67%
Forced Alignment 12.53% | 11.96%
CTC + DRN 25.96% | 25.58%
Monostate (52) | MMI + DRN 35.66% | 65.26%
Forced Alignment || 25.82% | 25.64%
Broadcast news
CTC + DRN 21.62% 21.23%
Tristate (156) MMI + DRN 20.74% | 20.42%
Forced Alignment 22.13% | 21.74%

Table 3.2: The phoneme error rates got for the two different DRN training methods.

the training starts to converge. We think these values are not high, especially as Graves
et al. reported much higher values for CTC (frequently over 100 iteration) [32].

Another interesting point is that besides the similar accuracy scores, standard non-
sequence-based method leads to a relatively high number of phoneme insertions, while
when performing sequence training it is common to have a lot of deletion errors. The
reason is that the correct phonemes are often suppressed by X's (in the case of the
CTC) or by the silence model (in the case of the MMI). During decoding, the X labels
are deleted from the output before the accuracy score is calculated. This behaviour,
fortunately, does not affect the overall quality of the result.

3.7 Summary

In this chapter, | adapted two sequence learning method to a standard HMM/DNN
architecture. The CTC method was originally developed for RNNs, but here | showed
that it can be used with DRNs as well. The CTC method relies on the blank or garbage
label, which makes the decoding process problematic. Furthermore, the DRNs trained
with CTC cannot be used to generate proper forced alignment of the labels.

The other method described here (MMI) is widely used in DNN training, but it
usually requires some initialisation before training. To circumvent this constraint, |
proposed several modifications to the original method, to make it suitable for flat start

training.

42 Chapter 3. Sequence Training Methods for Deep Rectifier Neural Networks

Compared to standard zero-or-one frame-level backpropagation DNN training, |
found that networks trained with these sequence learning method always produced
higher accuracy scores than the baseline ones. From the results it was also clear that
MMI with tristate labels works best, so it is well suited for flat start training.

In this chapter, the author regards the following as his main contributions:

e The use of CTC with feedforward DRNs:

e Modifications to MMI training algorithm, to make it applicable to flat start
training;

The methods and results presented in this chapter were published in [49] and [50].

Chapter 4

A GMM Free Training Method for

Deep Neural Networks

Today, deep neural network based speech recognizers have completely replaced Gaus-
sian mixture-based systems as the state-of-the-art. While some of the modeling
techniques developed for the GMM-based framework may directly be applied to the
HMM/DNN systems, others may be inappropriate. One such example is the creation
of context-dependent tied states, for which an efficient decision tree state tying method
exists. The tied states used to train DNNs are usually obtained using the same tying
algorithm, even though it is based on likelihoods of Gaussians, hence it is more appro-
priate for HMM/GMMs. Recently, however, several refinements have been published
which seek to adapt the state tying algorithm to the HMM/DNN hybrid architecture.
Unfortunately, these studies reported results on different (and sometimes very small)

datasets, which does not allow their direct comparison.

Some of the new state tying methods change only the input of the clustering
algorithm, while the whole state tying algorithm remained intact. These methods feed
the output or the activations of the neurons in the last hidden layer to the clustering
method and use the same standard Gaussian-based decision tree clustering method.
Other studies proposed novel decision criteria as well for the standard state tying

method, which better suit the new input.

In this chapter, we present a new state tying criterion, and evaluate it by comparing
its performance to three other methods on the same LVCSR tasks, under the same cir-
cumstances. We found that, besides changing the input of the context-dependent state
tying algorithm, it is worth adjusting the tying criterion as well. The methods which
utilised a decision criterion designed specifically for neural networks consistently, and

markedly outperformed those which employed the standard Gaussian-based algorithm.

43

44 Chapter 4. A GMM Free Training Method for Deep Neural Networks

4.1 Problem description and literature overview

While deep neural network-based speech recognizers have recently replaced Gaus-
sian mixture-based systems as the state-of-the-art in ASR, the training process of
HMM/DNN hybrids still relies on the HMM/GMM framework. Recently, however,
attempts have been made to remove GMMs from the training process of deep neural
network-based hidden Markov models (HMM/DNN). For the GMM-free training of a
HMM/DNN hybrid we have to solve two problems, namely the initial alignment of the
frame-level state labels and the creation of context-dependent states. Conventionally,
we start the training of a HMM/DNN by constructing a HMM/GMM system, which is
then applied to get an alignment for the frame-level state labels. These labels are then
used as the training targets for the DNN. The second task that requires GMMs is the
state-tying algorithm utilised for the construction of context-dependent (CD) phone
models. We propose a GMM-free solution for state clustering here [51], and we will
combine it with DNN-based methods, which can generate an initial state alignment.

The most convenient way of training the DNN component of a HMM/DNN hybrid
is to apply a frame-level error criterion, which is usually the cross-entropy (CE) function.
This solution, however, requires frame-aligned training labels, while the training dataset
contains just orthographic transcripts in most cases. Of course, one could train a

HMM/GMM system to get aligned labels, but this is clearly a waste of resources.

The procedure for training HMM/GMM systems without alignment information
is commonly known as ‘flat start training’ [1]. This consists of initialising all phone
models with the same parameters, which would result in a uniform alignment of phone
boundaries in the first iteration of Baum-Welch training. It is possible to construct a
flat start-like training procedure for CE-trained DNNs as well, by iteratively training
and realigning the DNN. For example, Senior et al. randomly initialised their neural
network [52], while Zhang et al. trained their first model on equal-sized segments for
each state [53]. As these solutions have a slow convergence rate, they require a lot of

training-realignment loops.

Although training the DNN at the frame level is straightforward, it is clearly not
optimal, as the recognition is performed and evaluated at the sentence level. Within the
framework of HMM/GMM systems, several sequence-discriminative training methods
have been developed, and these have now been adapted to HMM/DNN hybrids as
well [27, 34, 49]. However, most authors apply sequence-discriminative criteria only in
the final phase of training, for the refinement of the DNN model. That is, the first
step is always CE-based training, either to initialize the DNN (e.g. [35, 36, 37]) or just
to provide frame-level state labels (e.g. [27, 34, 38, 39, 40]).

The CTC approach has recently become very popular for training DNNs without

4.1. Problem description and literature overview 45

an initial time alignment being available [32]. Rao et al. proposed a flat start training
procedure which is built on CTC [33]. However as we explained earlier, CTC has several
drawbacks compared to MMI. First, it introduces blank labels, which require special
care in the later steps (e.g. CD state-tying) of the training process. Nevertheless,
the CTC algorithm is not a sequence-discriminative training method, so for the best
performance it has to be combined with techniques like SMBR training [32, 33]. After
performing flat-start training with CTC, however, it is not clear how to revert to the
standard phoneme set for CD state-tying or standard CE CD DNN training. Therefore
integrating the CTC flat start method into the standard DNN training framework does
not appear to be a suitable option. Still, MMI with proper modifications is suitable for
flat start training a DNN.

While hybrid models applied only context-independent (Cl) phone models for a
long time [20], there is now common agreement that HMM/DNN systems also greatly
benefit from using context-dependent tied states [54, 17]. Thus, it is necessary to
find an approach for efficiently creating context-dependent tied states for systems built
on DNNs. Currently, the dominant solution is the decision tree-based state tying
method of Young et al. [65]. This technique fits Gaussians on the distribution of
the states, and uses the likelihood gain to govern a decision tree-based state-splitting
process. Thanks to the Gaussian assumption and the decision tree representation, this
approach is computationally very efficient. However, as we have already mentioned,
it may be inappropriate to just impose the common HMM/GMM-based techniques on
the HMM/DNN training procedure, and this may hold for this state-tying algorithm

as well.

GMM-based methods assume that the Gaussian components have diagonal co-
variance matrices, and hence require decorrelated features like cepstral coefficients
(MFCCs). However, HMM/DNN hybrids tend to work better on more primitive fea-
tures like mel filter bank energies (Fbank) [15]. Since conventional HMM/GMM sys-
tems cannot be efficiently trained on these features, the usual approach is to build
a HMM/GMM system on a standard feature set like MFCCs, create the tied-state
inventory and alignment, and then throw away the feature set and the whole model.
This process, besides wasting resources, also implies that state tying is done on an
mismatched feature set. Furthermore, intuitively, the state clustering algorithm should
split those states where the splitting would be beneficial for the respective classifier.
Since the objective functions during GMM and DNN training are different, measuring
how a Gaussian fits a given class may be unrelated to the difficulty of modeling that
class by a DNN. This suggests that if we perform the CD state-tying by following the
standard approach, we do it on a mismatched feature set and using a mismatched

similarity metric.

46 Chapter 4. A GMM Free Training Method for Deep Neural Networks

Not so long ago, a number of articles were published on CD state tying for
HMM/DNNs. The issue of the “inappropriate feature set” can be handled by perform-
ing the state clustering process on the output of a DNN instead of the raw features.
This idea was investigated in a couple of studies (e.g. [56, 53, 52, 57]). In those
studies, however, only the input of the clustering algorithm was modified, while the
whole state-tying algorithm remained intact. Other studies proposed novel decision
criteria for the standard state-tying method, which better suit neural networks. Here,
we propose the use of the Kullback-Leibler divergence-based decision criterion, orig-
inally developed for KL-HMMs by Imseng et al. [58]. Zhu et al. [59] constructed a
criterion that relied on entropy. Lastly, Wang et al. [60] trained a special network that
optimised for Deep Canonical Correlation Analysis, and clustered the output of this
network via k-means clustering.

All these studies experienced a drop in the word error rate (WER) compared to
the baseline that uses the standard Gaussian likelihood-based state-tying method with
the MFCC vectors. Yet, none of these studies compared their results with other neu-
ral network-based state-tying approaches, which makes these methods quite hard to
compare. Furthermore, the datasets used differed to a huge extent as well: we used a
Hungarian database, Zhu et al. used a German one, while Wang et al. used the quite
small TIMIT corpus, where only phoneme error rates can be reported. In this chapter
we compare four such approaches on the same LVCSR task, where the same context-
independent neural network will provide the input vectors for the state clustering. Note
that, since we obtain the frame-level Cl labels by purely DNN-based flat-start meth-
ods, the CI models have no inherent GMM dependency. Therefore those state-tying
methods that have a decision criterion designed for DNNs are completely GMM-free.

In the experimental part we compare the two flat start methods, namely the one that
applies MMI with the CE-based iterative retraining realignment procedure of Zhang et
al. [53]. We found that our method is not only faster, but it achieves lower word error
rates as well. Furthermore, we combine the flat start training with various DNN-based
state clustering methods to eliminate all dependencies from a HMM/GMM system,
making the whole training procedure of context-dependent HMM/DNNs GMM-free.

4.2 Flat Start

The first step of training a speech recognition system is to get time-aligned labels for
the transcription. Traditionally this is achieved by using the Baum Welch algorithm
to train a HMM/GMM, as described in the previous chapter. Here, we compare two
approaches that seek to eliminate GMMs from this process. As the baseline method,
we apply a simple solution that iterates the loop of CE DNN training and realignment.

4.3. State Clustering a7

Afterwards, we compare it with an approach that creates time-aligned transcriptions
for the training data by training a DNN with a sequence training criterion. From the
wide variety of sequence training methods, we opted for MMI training [27]. Applying
sequence training to flat start requires some slight modifications, which we will now
discuss.

4.2.1 Iterative Flat Start

For comparison we will also test what is perhaps the most straightforward solution for
flat start DNN training, namely just using the CE training criterion and iterating DNN
training and realignment. Here, we used the following algorithm that was based on
the description by Zhang et al. [53]:

1. Train a DNN using sound files uniformly segmented into phones.
2. Use the current DNN to realign the labels.

3. Train a randomly initialised DNN using the new alignments.

4. Repeat steps 2-3 several times.

The final DNN was utilised to create time-aligned labels for the training set.

The main advantage of this method is that it requires only an implementation
of CE training for the DNN, and the realignment step can also be readily performed
by using standard ASR toolkits. The drawback is that the procedure of retraining
and realignment tends to be rather time-consuming, which was also confirmed by our
experiments.

4.2.2 Sequence Training Based Flat Start

As an alternative to the iterative method we also used the MMI-based method described
in Chapter 3). For the MMI training we commenced with a randomly initialised Cl
DNN and with the modifications of the original method the networks were successfully
trained. As a further refinement we also tried to improve the segmentation by training
another CI DNN with CE training, where the training labels were obtained by forced
aligning the labels using the MMI trained DNN.

4.3 State Clustering

Nowadays, state-of-the-art ASR systems are trained with CD labels. Usually these

labels consist of three phonemes, namely the actual phone, the one before and the one

48 Chapter 4. A GMM Free Training Method for Deep Neural Networks

after. With the triphone labels, one can achieve better recognition accuracies than
with CI labels, simply because the acoustic model can handle co-articulation better
in this way. Still, switching to triphone acoustic models creates a serious problem,
namely the data insufficiency problem. This problem is caused by the fact that the
number of possible triphones is quite large and we have only a limited amount of
training data. For instance, there are almost 14,000 triphones in the training data of
the Szeged Broadcast News corpus. Furthermore, the data is usually unevenly spread,
meaning that some of the triphones occur only once or twice, while other labels are
quite common. Additionally, it is possible for some triphones to appear only in the test
data, and understandably we cannot expect the acoustic model to learn to recognise
these.

Traditionally, the state-tying algorithm is used to handle these problems, which is
basically a clustering method that aims to cluster the triphones derived from the same
monophone. This way, we can use a shared label for the triphones which are similar
and have the same central phoneme, thus solving the data sparsity problem.

The decision tree-based state-tying algorithm was introduced by Young et al. [55],
and it evolved into a vital component of training large vocabulary speech recognisers.
The main idea is to pool all context variants of a state, and then build a decision tree by
successively splitting this set into two. For each step, the algorithm chooses one of the
pre-defined acoustic questions in such a way that the resulting two non-overlapping
sub-sets of the original state set S differ maximally. The algorithm measures this
difference by using a likelihood-based decision criterion. The tree-based clustering has
the important advantage of providing a mapping for unseen triphones as well. Although
minor improvements to the algorithm like the automatic generation of the questions
via clustering were proposed [61], the main scheme of the method proved so successful
that it has remained unaltered ever since.

4.3.1 GMM-Based State Tying

Suppose that we have a set of states S that need to be tied, using the decision tree-
based method of Young et al. [55]. Here, at each node, we have a set of questions, and
each question can split S into two non-overlapping sub-sets depending on the answer to
the question. Odell formulated a maximum likelihood-based decision criteria [62] and
proposed a computationally efficient algorithm by approximating the splitting criterion
as

L(S) ~ —= (log[(2m)¥|S(S)[] + K) >~ N(s), (4.1)

seS

where s € S are the individual states, 3(S) is the variance of data in S, K is the

dimension of the data and N(s) is the number of examples (frames) in the training

| —

4.3. State Clustering 49

data which belong to state s. Using this formula, we should choose the question ¢
which maximizes the likelihood difference AL(q|S)

AL(qlS) = (L(Sy(0) + L(Sa(a))) — L(S), (4.2)

where S,(¢) and S,,(¢) are the two subsets of S formed based on the answer to the
question ¢. It can be seen that the likelihood values do not depend on the training
observations themselves, but only on the variance over the training data corresponding
to the states, and the raw number of frames belonging to each state. Although this
assumption (regarding the variance of the feature vectors) fits in well with a system
employing GMMs, in a HMM/DNN hybrid speech recogniser framework some other

decision criterion might result in a more suitable set of tied states.

4.3.2 Clustering the CI DNN output

This approach, proposed by Senior et al. [52], is quite straightforward. They simply
use the frame-level outputs of the auxiliary neural network as input for the state-tying
procedure. The whole clustering process remains the same in every other respect.
Senior et al. reported a slight improvement in the WER and, naturally, with this
approach they were able to avoid the feature set mismatch among CD DNN training
and the CD state-tying process. Despite this, as they used the original state-tying
method of Odell [62], which relies on likelihoods of Gaussians, in our opinion their
method can hardly be regarded as completely GMM-free.

4.3.3 Clustering the DNN hidden activations

In a parallel study Bacchiani and Rybach [57] proposed performing the clustering on the
activations of the last hidden layer of the auxiliary CI NN. Although one cannot expect
the activation vectors to be decorrelated (or to follow any predefined distribution),
Bacchiani and Rybach were able to use them as inputs for the CD state-tying method
of Young et al. The WERSs they got were reported to be lower for smaller CD state sizes
than by using the standard approach, but for larger state counts it was the other way
around. They explained this by recalling that the frame-level Cl labels were obtained
by HMM/GMMs, causing a mismatch in the frame-level targets. Since we used a
DNN-based flat start, there will be no such mismatch.

4.3.4 KL-divergence Based State Tying

This decision criterion was introduced by Imseng et al., who successfully applied it in
their KL-HMM framework [58]. Here, we propose to use it during the CD state-tying

50 Chapter 4. A GMM Free Training Method for Deep Neural Networks

step. Next, we will give a brief description of this algorithm, based on articles [63]
and [64].

Although the Kullback-Leibler divergence is known to be asymmetric, unfortunately
there is no closed form of the symmetric KL-divergence-based cost function. Therefore
we will apply the asymmetric KL-divergence between two posterior vectors z; and vy;,

defined as
K

Dics(yelz) = Y- (k) o 20 (4.3)
k=1 t

where & € {1,..., K} is the dimensionality index of the posterior distribution vec-

tor [65]. The KL-divergence is always non-negative and zero if and only if the two
posterior vectors are equal. So instead of maximizing the likelihood, we will minimize
the KL-divergence

DKL Z Z Zys]]3 (4-4)

s€S feF(s) k=1

where S is a set of states s, and F(s) is the set of input vectors corresponding to
state s. The posterior vector associated with the set S (ys) can be calculated as the

normalised geometrical mean of the example vectors belonging to the elements of S.
That is,

1

5 (HSES erF(s) Zf(k:)) e
2 k=1 Ys(k)
After expanding and simplifying, we get [63]
K
Dkr(8) == N(s)log > is(k), (4.6)
seS k=1

so the KL divergence of a set of states S can be calculated based on the statistics y;
and N(s) of the individual states.

For the splitting of a set of states S, the straightforward option is to choose the
question that maximizes the KL-divergence difference ADk(q|S):

ADk1(q|S) = Dkr(S) — (Dk1(S,(q)) + Dxr(Sx(0)))-

4.3.5 Entropy-based decision criterion

The fourth approach we tested was proposed by Zhu et al. [59]. They also replaced
the decision criterion of Eq. (4.1) with another formula that has no implicit GMM

dependency. The key idea was to measure the inter-similarity of each merged cluster

4.4. Experimental Setup 51

by calculating the entropy of the examples belonging to it. The entropy of a K-

dimensional probability distribution can be calculated as

= Zp(i) log p(i). (4.7)

The probability distributions associated with each initial state (i.e. the y, vectors) were
estimated via the mean of the DNN outputs for all the frames associated with a given
state. Then, for a set of states S, the prototype probability vector (ys) was calculated
as the arithmetic mean of the prototype (y;) of the member states, weighted by the
number of state occurrences (N(s)); from these values, the decision criterion used

during state-tying can be calculated by using the entropy function, i.e.

=—> N(s Zys) log ys(k). (4.8)

seS

4.4 Experimental Setup

In our experiments we employed DNNs with 5 hidden layers, each containing 1000
rectified neurons [14], while the softmax activation function was applied in the output
layer. As input, FBank features were presented to the networks along with their first
and second order derivatives. Decoding and evaluation was performed by a modified
version of HTK [1].

The methods described in this chapter were tested on two databases. Firstly, the
81-hour long Wall Street Journal (WSJ) English read speech corpus [66] (specifically,
the s1-284 set) was chosen to test the algorithms as it is a well known and widely
used corpus. The recognisers were evaluated on the eval92 and eval93 test sets in
the “open-vocabulary” (60K word vocabulary) test condition, using a pruned version
of the standard trigram language model. We used the eval93 set as our development
set; i.e. we tuned the language model weight and the insertion penalty on it, and
also chose the optimal number of tied states for each state-tying method based on the
WER achieved on this set. Then, at the very end, we evaluated the models using the
optimal meta-parameters on the eval92 set as the test set.

We also used the 28 hour-long speech corpus of Hungarian Broadcast News [8], just
like in the previous chapters. The whole corpus was utilised with the same partitioning
as before: the training set was about 22 hours long, a small part (2 hours) was used
for validation purposes, and a 4-hour part was used for testing.

We tested three approaches for flat start training (i.e. to get the frame-level
phonetic targets for CD state-tying and CE DNN training). Since our goal was to

create a GMM-free system, we evaluated the two algorithms presented in sections

52 Chapter 4. A GMM Free Training Method for Deep Neural Networks

4.2.1 and 4.2.2 and their combination for flat starting with DNNs. In these tests we
always used five-hidden-layer CI DNNs. For the flat start method with iterative CE
training (“Iterative CE") we performed nine training-aligning iterations on the WSJ and
four on the Hungarian database. DNN-based CD state tying was performed using the
output and the alignments created by the final DNN. For MMI training (“MMI") we
also commenced with a randomly initialised C| DNN. After applying the discriminative
sequence training method, the resulting DNN was used to create forced aligned labels
and also to provide the input posterior estimates for KL clustering. In the last flat start
approach tested, we first applied the sequence-discriminative method (i.e. “MMI").
Afterwards, we combined the two approaches; first we produced the alignments using
the MMI network, then we trained another DNN with the CE criterion to supply both
the final frame labels and the likelihoods for CD state-tying (“MMI + CE”). After the
Cl DNN training phase we tested the state-tying methods described in this chapter.
To see how well the state clustering methods perform we also created CD states with
the original GMM based method (“MFCC + Likelihood ”). Keep in mind that in this
case the frame alignments were still produced by a DNN.

In the case of the Hungarian corpus we also applied the standard GMM-based flat
start training to produce initial time-aligned labels. To further improve the segmen-
tation, we trained a shallow Cl ANN using the CE criterion and re-aligned the frame
labels based on the outputs of this ANN (we will refer to this approach as the “GMM +
ANN" method). (In our early study we found that using a deep neural network for this
re-alignment setup did not bring about any improvement [51].) After the realignment,
only the KL-based state-tying algorithm was executed on the output of the CI ANN.

The main aim of this chapter is to compare various flat start strategies and state-
tying methods. This is why, after obtaining the CD labels, the final DNN models
were trained starting from randomly initialised weights and using just the CE criterion.
Of course, it is possible to extend the training with a final refinement step using CD
sequence-discriminative training, but it is out of the scope of this study.

4.5 English results

First, let us compare the three flat start strategies, Table 4.1 shows the WERs of the
Cl DNNs. It is clear that the iterative method, which optimised the frame level CE
performed worst of all. Besides providing inferior WER, it also required far more time
than the other two approaches. In total nine training and re-aligning iterations were
required, afterwards the WER on the development set started to decrease. Surprisingly,
the DNN trained with MMI yielded quite acceptable results, despite the fact that it
was only a Cl acoustic model. The combination of the two methods (MMI+CE)

4.5. English results 53

Method Dev. Test

[terative CE | 28.63% | 20.47%
MMI 15.78% | 10.07%
MMI4-CE 15.43% | 9.64%

Table 4.1: WERs got by using different flat start methods on the WSJ.

1e+007
1e+006
[%]
Q
£ 1e+005"
2
= 10000
@
= s
5 1000} 7 |
2
g 1001 - - =DNN + Likelihood
= R DNN (hidden) + Likelihood
10 — Kullback-Leibler I
— Entropy
1 : ‘ ‘ ‘
0 500 1000 1500 2000 2500

Tied state index

Figure 4.1: The number of training frames for the different state-tying methods for
the case of about 2400 CD states.

offered some improvements on both the development and test set, but almost doubled
the training time. The inferior performance of the iterative method can be explained
by the “run-away silence model” effect, meaning that these networks became greatly
biased towards the silence label, this caused a lot of deletion errors.

Figure 4.1 shows the distribution of the training classes after state-tying (using the
MMI+CE flat-start strategy) for the case of roughly 2400 CD states. Besides noticing
that the distribution produced by the different state-tying methods is quite similar, we
should also note that using the original decision criterion with the DNN outputs as
input (proposed by Senior et al.) resulted in the best balanced class distribution.

First, we would like to mention that a purely GMM based system achieves 12.74%
and 9.46% on the development and test sets, respectively [67]. Table 4.2 lists the best
WER scores got on the development set and the corresponding WER values obtained
on the test set. All GMM-free state-tying methods achieved the best results with an
MMI-trained DNN. We can also see that the Iterative CE strategy led to the worst
results and interestingly the MMI+CE approach yielded worse results than the MMI
based flat start.

54 Chapter 4. A GMM Free Training Method for Deep Neural Networks

Flat start strategy | Clustering method Development | Test
MFCC + Likelihood 11.02% 8.20%
DNN + Likelihood 11.48% 7.64%
Iterative CE DNN (hidden) + Likelihood 11.05% 7.81%
Kullback-Leibler 10.47% 7.27%
Entropy 10.24% 7.27%
MFCC + Likelihood 8.58% 6.13%
DNN + Likelihood 8.7% 6.47%
MMI DNN (hidden) + Likelihood 8.85% 6.04%
Kullback-Leibler 8.06% 5.72%
Entropy 8.03% 5.92%
MFCC + Likelihood 8.79% 5.97%
DNN + Likelihood 9.14% 6.45%
MMI + CE DNN (hidden) + Likelihood 9.43% 6.77%
Kullback-Leibler 8.5% 6.15%
Entropy 8.09% 6.20%

Table 4.2: WER values on the development and test sets got by using the different
flat-start and CD state-tying methods.

Upon examining the results it can be seen that all GMM-free methods markedly
outperformed the HMM/GMM system. Notice that on the development set the highest
WER is around 11.48%, while it is 8.2% for the test set, so the same relative WER
improvement corresponds to a smaller absolute improvement for the latter set. The
two most basic approaches worked the worst of all: using the CI DNN outputs or
the hidden activations with the standard state-tying decision criterion. While using
MMI-based flat start and the outputs of the last hidden layer with the original state-
tying method (proposed by Bacchiani and Rybach) led to slightly worse scores on
the development set, it greatly outperformed the first approach on the test set. This
approach is also justified by the fact that the activation vectors of a DNN are commonly
used as features in several tasks such as speaker identification [68] and various image
processing applications [69]. The standard state-tying method (MFCC + Likelihood)
was quite competitive with those that did not change the decision criteria, meaning
that the alignments produced by a DNN were better than those got by using a GMM.

The remaining two methods utilised some novel decision criteria instead of the

4.5. English results 55

Gaussian-based, standard one; and this fact is clearly reflected in their performance.
On the development set they achieved practically identical WER scores (8.06% vs.
8.03% for the Kullback-Leibler and the entropy-based decision criteria, respectively);
they differed somewhat on the test set, but the difference is not statistically significant.
Overall, by relying on the Kullback-Leibler-based decision criterion the WER scores
were reduced by 0.8% compared to the basic approach of Senior et al., meaning a 12%

improvement in terms of relative error reduction.

125

12

115

[EEN
O
a1

-+-MFCC + Likelihood
-©-DNN + Likelihood ~ |C-C - T oI TR

Word Error Rate (%)
'_\
[N

——DNN (hidden) + Likelihood |-~ -~~~ - - - """ - - - -----°]

10 (|, o o -

—O— Kullback-Leibler oo o-----o--

Entopy |7 oo oo oo o

95 - ‘ e S T-1
1800 2400 3000 3600

No. of tied states

Figure 4.2: WER for the different state-tying approaches on the development set using
the iterative flat start method.

Taking a closer look at figures 4.2-4.7, we can see the WER scores obtained as
a function of the number of CD states. It can be observed that the two solutions
that used the original state-tying algorithm, and the two which utilised a decision
criterion designed for DNN outputs, are well separated, with the latter group producing
consistently lower WER scores for both sets regardless of the number of tied states. The
results of the MFCC + Likelihood method are a little hard to interpret as the curves of
the development and test sets do not correlate, and sometimes behave quite differently.
The most probable explanation for this is the inappropriate feature set issue: the Cl
DNN was trained using FBank features, but the state-tying algorithm used MFCC
features. These results, in our opinion, confirm our hypothesis that besides changing
the input of the CD state-tying algorithm, its behaviour should also be adapted to

better suit DNNs, allowing them to achieve better results.

56

Chapter 4. A GMM Free Training Method for Deep Neural Networks

8.5

~ fo')
o

Word Error Rate (%)
\I

6.5

Figure 4.3: WER for the different state-tying approaches on the test set using

-4+-MFCC + Likelihood
-©-DNN + Likelihood

——DNN (hidden) + Likelihood
—O— Kullback-Leibler
Entropy

| 1

3000 3600

No. of tied states

iterative flat start method.

10

9.5

o ©
o

Word Error Rate (%)
(o]

7.5

the

-+-MFCC + Likelihood
-$-DNN + Likelihood
—+—DNN (hidden) + Likelihood
—O— Kullback-Leibler

T T N N T N |

-] Entropy
. | | L
1800 2400 3000 3600
No. of tied states

Figure 4.4: WER for the different state-tying approaches on the development set using
MMI for flat start.

4.5. English results

57

Word Error Rate (%)

-+-MFCC + Likelihood
-$-DNN + Likelihood

—+— DNN (hidden) + Likelihood
—O— Kullback-Leibler

—————————————————————— Entropy .
I Il .l L
1800 2400 3000 3600
No. of tied states

Figure 4.5: WER for the different state-tying approaches on the test set using MMI
for flat start.

Word Error Rate (%)

10.5

10

©
o

(e]

@
o

(e0]

N
o

6.5

-+4+-MFCC + Likelihood
-$-DNN + Likelihood

—+— DNN (hidden) + Likelihood
—O— Kullback-Leibler

I Entropy
e T T I o i
1800 2400 3000 3600
No. of tied states

Figure 4.6: WER for the different state-tying approaches on the development set using
MMI-CE for flat start.

58 Chapter 4. A GMM Free Training Method for Deep Neural Networks

.
S
~6.5
I
@®©
o
S
L
-E 6
s | %] -+-MFCC + Likelihood]
7777777777777777777777 -€-DNN + Likelihood 1
********************** —+—DNN (hidden) + Likelihood| |
SO T IT T I T T T T T T T T o Kullback-Leibler]
,,,,,,,,,,,,,,,,,,,,,, Entropy]
1800 2400 3000 3600

No. of tied states

Figure 4.7: WER for the different state-tying approaches on the test set using MMI-CE
for flat start.

As a further note, increasing the number of CD states helps those approaches
that use the original, likelihood-based criterion; for the other two methods, however,
optimality is achieved by having about 2400 states. On the test set, all four approaches
seem to be quite insensitive to the number of tied states. Note that these inventory
sizes appear to be smaller than those commonly used on the WSJ corpus, which, due

to the lower computational requirements, is an improvement by itself.

4.6 Hungarian results

Figures 4.8 and 4.9 show the resulting WER scores as a function of the number of
CD tied states on the Szeged Hungarian Broadcast News dataset. As can be seen,
the MMI-based flat start strategy gave consistently better results than the iterative
method in every case, just like before. We also observed that the final CD models
which got their training labels from the MMI-trained DNN were more stable with
respect to varying the number of CD states. Fine-tuning the labels of the MMI-trained
DNN with a CE-trained DNN (“MMI” vs. “MMI4CE") again seems unnecessary, as
it was not able to notably improve the results. This strongly suggests that sequence

training yields both fine alignments and good posterior estimates.

4.6. Hungarian results 59

Flat start state-tying WER % No. of
method method Dev. Test epochs
GMM + ANN | GMM 18.83% | 17.27% —
GMM + ANN | KL 17.12% | 16.54% —
Iterative CE 16.81% | 16.50% 48
MMI KL 16.50% | 15.96% 13
MMI + CE 16.36% | 15.86% 29

Table 4.3: Word error rates (WER) for the different flat start strategies and the KL
state-tying method.

18 T
777777777777777777777777777777777777 PR
P A
,,,:k,,,,,,,,,,,,,,,,,,:q_,_:f ,,,,,,,,,,,,,,,

175F - - - dg-------------- S

N SR R
S | & s LT
[I S Sl M e
N e T \;!Q,,,
S5 17F-- - - - - S PR
LE F-—- QN "99r-——---———— A v=-— - - - — - — - —
B NN T T Y
o 77777777777777777777777777
> I N - gl - o

165F - -------N\g-----------== e .
7777777777 . —p— [-+-GMM + ANN]|
—————————————————————————————— <~ Iterative CE ||
777777777777777777777777777777 ——MMI |
ffffffffffffffffffffffffffffff ~-MMI +CE |

16 | | | | T T

600 1200 1800 2400 3000 3600

No. of tied states

Figure 4.8: WER as a function of the number of KL-clustered tied states on the

Hungarian development set.

Table 4.3 summarises the best WER values obtained on the development set, and
the corresponding scores on the test set for the Hungarian corpus. The KL cluster-
ing method clearly outperformed the GMM-based state-tying technique. Comparing
the alignment methods, we can see that relying on the alignments produced by the
HMM/GMM resulted in the lowest accuracy score, in spite of the fine-tuning step that
used an ANN. After setting the parameter configurations, the lterative CE training
method performed slightly worse than the MMI-based strategies. Unfortunately, for

60 Chapter 4. A GMM Free Training Method for Deep Neural Networks

i et
,,,,,,,,,,,,,,,,,,,,,,,,, :;f,’,,,,,,,,,~,‘+,,,
*7****7*************:;v£ *****************

| Tl e %]
L165r - - R T
8 ,
§
L
°
o
=
777777777777777777777777777777 -+-GMM + ANN |
—————————————————————————————— <~ Iterative CE ||

165 ——— - - - - ———m—m— o —— MMI g

ffffffffffffffffffffffffffffff —<-MMI+CE ||
600 1200 1800 2400 3000 3600

No. of tied states

Figure 4.9: WER as a function of the number of KL-clustered tied states on the

Hungarian test set.

the Iterative CE method the right number of training-aligning steps is hard to tune.
For example, Zhang et al. performed 20 such iterations [53], while we employed only
4 iterations. In this respect, it is more informative to compare the training times,
which are shown in the rightmost column of Table 4.3. We did not include the number
of epochs for the “GMM + ANN" method, as the training procedure was radically
different in that case. For our 28-hour dataset, 48 epochs were required by the four
iterations of iterative CE flat start strategy, while MMI required only one-fourth of
it. Although performing the forward-backward search adds a slight overhead to the
MMI training process, it is clear that it was still much faster, even when the final CE
re-alignment step was also involved (MMI+CE).

Measuring the training times in CPU/GPU time gives even larger differences in
favour of the MMI method (3 hours vs. 16 hours). The reason is that for iterative
CE flat start training we used a mini-batch of 100 frames (which we found optimal
previously [51]), while for MMI whole utterances (usually more than 1000 frames) were
used to update the weights, and this allowed better parallelisation on the GPU.

In our view, two modifications are crucial for the speed and stability of the proposed
algorithm. The first one is that we use only Cl phone models without phone language
model, so we can very quickly update the numerator and denominator lattices after

the processing of each sentence. This continuous refinement of the frame-level soft

4.7. Word-Level Error Analysis of a Hungarian Automatic Speech Recognizer — 61

targets obviously leads to a faster convergence. The only study we know of, which does
not perform the re-alignment of the frame-level targets immediately after a training
iteration, is that of Bacchiani et al. [70]. Their study focuses on describing their
massively parallelised online neural network optimisation system, where a separate
thread is responsible for the alignment of the phonetic targets, while DNN training is
performed by the client machines. Besides the fact that in their model there is no
guarantee that the alignment of phonetic targets are up-to-date, it is easy to see that
their architecture is quite different from a standard DNN training architecture, making
their techniques pretty hard to adapt. In contrast, our slight modifications can be
applied relatively easily.

As regards stability, a known drawback of sequence training methods is that the
same process is responsible both for aligning and training the DNN, which often leads
to the “run-away silence model” issue [46]. That is, after a few iterations, only one
model (usually the silence model) dominates most parts of the utterances, which is even
reinforced with the next training step. To prevent the occurrence of this phenomenon,
we monitored the error rate on a hold-out set during training. If the error increased
after an iteration, we restored the weights of the network to their previous values and
the learning rate was halved. In our experience, restoring the weights to their previous
values and continuing the training using a lower learning rate can successfully handle

this issue.

4.7 Word-Level Error Analysis of a Hungarian Au-

tomatic Speech Recognizer

Next, we will take a closer look at the typical word-level errors of our best GMM-
free Hungarian speech recognition system. To achieve this, we selected one hundred
utterances from the test set and the errors produced by the ASR system were manually
annotated, then analysed. The word-level error rate in Automatic Speech Recognition
(ASR) is traditionally measured by a metric based on edit distance, which relies on
the exact match of word forms. Like most common techniques in ASR, this approach
works well with the English language, but as we will see, for other languages such as

agglutinative ones (like the Hungarian language) it may be suboptimal.

4.7.1 Analysing the Errors

To analyse the error types, we manually compared the ASR output and the correct
transcription for a subset of the test set. First we automatically located the errors in
the ASR output, and displayed them in a form along with one neighbouring word on

62 Chapter 4. A GMM Free Training Method for Deep Neural Networks

each side to provide a context for the human annotators. Error categories were set
up by linguists, and each error occurrence was categorised manually by two human
annotators.

Errors were first categorised based on linguistic criteria. For instance, when the
only difference between the gold standard text and the output of the ASR system was
just a space, causing only a slight change in meaning (if any) we regarded this as a

Compounding error. Two examples of this are:

o a két szazmillidrdos tétel |5 ke:t sa:zmillia:rdof te:tel] (the two one.hundred.billion
item) “the two items worth one hundred billions” vs. a kétszaz millidrdos tétel
[> ke:tsa:z millia:rdof te:tel] (the two.hundred.billion item) “the item worth two
hundred billions”;

e az exportdinamikaja is [>zeksportdinomika:jo if] (the export.dynamics-3SGPOSS
too) “its export dynamics too” vs. az export dinamikgja is [>z eksport dinomika:jo
if] (the export dynamics-3SGPOSS too) “the dynamics of the export too”).

Another frequent error was that a sound was followed by another one of the same
quality, which was treated as a long phoneme by the system. We created two subtypes
for this category, one for the consonants (Consec. consonants), and the other for the
vowels. Since the most common source of error with vowels was that a word ending in

-a was followed by the definite article a, we called this type the Two "a"

sounds. (e.g.
mondja bankszévetség [monjo o bonksgvetfe:g] (say-3SGOBJ bank.federation) “bank
federation says” vs. mondja a bankszévetség [monjo bonksgvetfe:g] (say-3SGOBJ the
bank.federation) “the bank federation says”).

In many cases, the stem of the word was correctly recognised but its suffixes were
not (Incorrect suffix): either the inflectional suffix was missing (e.g. a possessive suffix
in Mez6tiir polgdrmester [mezg:tu:r polga:rmefter] (Mez6tar mayor) “Mez8tar mayor”
vs. Mezétir polgdrmestere [mezg:tu:r polga:rmeftere] (Mez6tar mayor-3SGPOSS) “the
mayor of Mez&tar"), or an incorrect one was assigned to the word (present vs. past
tense in szétdaraboljak [se:ddoroboj:a:k| (cut.into.pieces-3PLOBJ) “they are cutting it
into pieces” vs. szétdaraboltak [se:ddorobolta:k] (cut.into.pieces-PAST-3PLOBJ) “they
were cutting it into pieces”).

In other cases, one word was absent from the ASR output (Omitted word cate-
gory) (terén erésitik [tere:n erg:[i:tik] (aspect-3SGPOSS-SUP improve-3PLOBJ) “they
improve this in this aspect” vs. terén ha erésitik [tere:n ho erg:fi:tik] (aspect-3SGPOSS-
SUP if improve-3PLOBJ) “if they improve this in this aspect”).

In two special cases the ASR output was correct, but it differed from the transcrip-

tion. First, the gold standard may have contained an error (a szennyezetett viztél >
sen:ezetett viistg:l] (the polluted-TYPO water-ABL) “from the polluted water” vs. a

4.7. Word-Level Error Analysis of a Hungarian Automatic Speech Recognizer 63

Error type NE NUM OOV Annot. | Total
Compounding 3 25 25 14 61
Two “a” sounds 0 0 0 0 11
Be/de change 0 0 9 0 9
Consec. consonants 0 0 0 0 5
Gold standard 0 0 1 1 1
Spelling 7 0 6 0 7
Is/és change 0 0 0 0 19
Omitted word 0 0 0 0 12
Incorrect suffix 7 3 20 0 91
Other error 96 6 114 0| 185
Total 113 34 175 15| 401

Table 4.4: Total number of each error type and each annotated word type

szennyezett vizt6l [> sen:ezett visstg:l] (the polluted water-ABL) “from the polluted
water”). Second, the errors in the Spelling category were caused by the fact that the
linguistic principles behind the creation of the transcript had some special aspects.
For instance, named entities with irregular pronunciation were encoded according to
the Hungarian orthographical norms but the ASR system provided the original spelling
for them (Magyar Helszinki Bizottsag [mojor helsinki bizottfa:g] “Hungarian Helsinki
Committee” vs. Magyar Helsinki Bizottsag, the correct spelling, where the digraph sz
denotes the phoneme [s]).

We found two other very common error types, both types being caused by replacing
a word with a similar sounding one. In the case of the first category (be/de change),
the ASR system replaced the word be [be] “in” with the word de[de] “but”. The second
category (/s/és change) contained errors when the two word is [if] “too” and és [e:s]

“and” were interchanged.

Apart from the error type categories, we also examined which error types were
related to certain word types. We examined four word categories; namely the named
entities (NE), the numbers (NUM), the out-of-vocabulary words(OOV) and words
with annotation errors (Annot.). If any of the words in the local context of the actual
error belonged to the given word category (e.g. one of the three words was OOV'), we

marked the given error occurrence as one related to the given word category.

Firstly, we examined whether the correct transcript contained a named entity
(e.g. Balogh [bolog] (a Hungarian surname), Fidesz [fides] (the name of a politi-
cal party), tdlibok [ta:libok] “Taliban”). Secondly, we checked whether it contained

any numerals (e.g. ezeréves [ezere:ve[| “a thousand years old”, kétmilliés [ke:tmillio:]]

64 Chapter 4. A GMM Free Training Method for Deep Neural Networks

Il Compounding

A

Il Be/de

26% 12% [l | dentical consonants
1% I Gold standard
1%

21% l
/0 ;
7 I Spelling
3% [Cislés
2%
19%

2%

o

<18
2%
5%

3% []Omitted word
[Isuffix

[]other

23%

Figure 4.10: Distribution of errors among the error categories, expressed in error (left)
and word error (right) percentages.

“(worth) two million”, ezerkilencszazétvenhatos [ezerkilentssa:zgtvenhotof] “of /from
1956"). Thirdly, we checked to see if any of the word forms was OOV. Lastly, we
examined whether the transcript was correct, or if it contained some error (e.g. com-
pounding error or typo).

Note that in the above approach, an error may affect several consecutive word
occurrences, which are treated as one error instance. Naturally, as we use WER to
measure the word-level error, these errors influence the final WER more than those
which only affects one word. Furthermore, as each word type was treated independently

of the others, in theory an error occurrence can be related to multiple word categories.

4.7.2 Results of the analysis

Figure 4.10 shows the distribution of error categories, expressed in terms of the ratio of
errors and the ratio of word errors. The distribution of the error categories and the given
word categories can be seen in tables 4.4 and 4.5. We can see that only slightly more
that half of the error occurrences can be assigned to one of the meaningful categories,
while about 46% of them fell into the “Other error” category. When measured in
word errors, “Other errors” represent a slightly larger part — almost 50%; this can be
traced back to the fact that for certain error types (e.g. be/de change, is/és change,
two consecutive “a” sounds, omitted word, difference in spelling), one error occurrence
typically affects only one word, while on average this value is around 1.5. At the same
time, the ratio of compounding errors increased, as this error type leads to at least two
word errors for each error occurrence.

Evidently, among the errors affecting named entities, a very common error type was
that of spelling differences, and many errors were caused by incorrect suffices. This is
quite logical, as the named entities appear quite rarely in the training text corpus, and

their inflected forms are even less frequent. Still, most errors related to named entities

4.7. Word-Level Error Analysis of a Hungarian Automatic Speech Recognizer ~ 65

Error type NE NUM OOV Annot. | Total
Compounding 6 52 52 28 | 124
Two “a” sounds 0 0 0 0 11
Be/de change 0 0 9 0 9
Consec. consonants 0 0 0 0 5
Gold standard 0 0 1 1 1
Spelling 7 0 6 0 7
Is/és change 0 0 0 0 19
Omitted word 0 0 0 0 12
Incorrect suffix 11 5 32 0| 116
Other error 157 11 188 0| 299
Total 181 68 288 29 603

Table 4.5: Total number of each word error type and each annotated word type

fell into the error category of Other.

Error occurrences related to numerals mostly belonged to the compounding error
category. A straightforward explanation would be that there are just too many (nu-
meral) word forms possible which cannot be listed in the vocabulary, but surprisingly
out of the 25 cases only 5 were OOV ones at the same time. The high frequency of
compounding errors for numerals was probably because the language model allowed
both versions (e.g. for the word kétszdzharmincezer [ke:tsa:zhormintsezer] “two hun-
dred thirty thousand” both the word kétszdazharminc [ke:tsa:zhormints] “two hundred
thirty” and the word ezer [ezer| “thousand” were present in the vocabulary). Interest-
ingly, in 11 cases the compounding errors related to numerals were annotation errors
at the same time.

Examining the error categories related to OOV words, compounding errors and
using incorrect suffices altogether formed only one-fourth of the error occurrences,
while the vast majority of these errors belonged to the category Other. The reason for
this is probably that for these two kinds of errors at least a variation of the OOV word
with a different suffix has to be present in the vocabulary. Annotation errors usually
led to compounding errors, and in one case there was a typo in the transcription

(szennyezetett instead of szennyezett “polluted”).

Focusing on the error categories we can see that, for a large portion of compound-
ing errors, some of the marked word types also occur; these form roughly 80% of
compounding errors. The errors “be/de change” are always OOV errors, simply be-
cause the word “be” was missing from the vocabulary. Spelling errors affect only named

entities, but it is surprising that in one case it was not an OOV error. The reason for

66 Chapter 4. A GMM Free Training Method for Deep Neural Networks

Category NE NUM OOV Annot. | Total
Named entity | 113 0 99 0 113
Numeral 0 34 10 11 34
0]0)Y) 99 10 175 1 175
Annotation 0 11 1 15 15
Total 113 34 175 15 216

Table 4.6: Total number of errors concerning each annotated type and their combina-
tions

@
=1

.
I Error count
[word error count

Frequency (%)
N w B o
o o o o

=
o

oI r
Annot. NUM NE oov
Word Category

Figure 4.11: Frequency of word categories, expressed in affected error occurrences and
word errors.

this is that besides the most common word form Attilanak (Attila-DAT) “for Attila”,
an alternative form Atillanak was also present in the vocabulary.

More than half of the error occurrences classed as Other error contained a named
entity, and two-thirds of them had at least one OOV word. Examining all the errors
we can see a similarly high ratio for these two word types; overall, 46% of the error
occurrences contained at least one of the examined word types, although these gave
60% of the WER.

Figure 4.11 shows what proportion of the given word types were present in the error
occurrences and word errors. As expected, a large part (almost 50%) of the errors were
OOQV; yet, there were many named entities (28-30%) and numerals (8-11%) present
in the error occurrences as well. Tables 4.6 and 4.7 show the co-occurrence of the
marked word categories. (Evidently, diagonal elements are the same as those in the
Total row and column.) It can be seen that the vast majority (87%) of the error
occurrences containing named entities are OOV errors as well; evidently, this ratio
is much smaller (53%) than the other way around, as many other word forms (e.g.
suffixed forms) may be frequently missing from the vocabulary. Roughly one-third of
the error occurrences of numerals are also OOV or annotation errors. Also, notice

how frequent the numerals are among annotation errors. This is probably due to the

4.7. Word-Level Error Analysis of a Hungarian Automatic Speech Recognizer — 67

Category NE NUM OOV Annot. | Total
Named entity | 181 0 161 0 181
Numeral 0 68 22 22 68
ooV 161 22 288 1 288
Annotation 0 22 1 29 29
Total 181 68 288 29 360

Table 4.7: Total number of word errors concerning each annotated type and their
combinations

complicated spelling of Hungarian numerals (as the words with dashes were split in the

transcriptions, hence hyphenation errors appear as compounding ones).

Overall, a great amount of recognition errors simply represented a mismatch be-
tween the vocabulary and the transcriptions. Using the orthographic transcription for
proper names helped us when creating the phonetic transcripts (and thus, in training
the acoustic model), but these words were present in the vocabulary using a different
spelling. Furthermore, there may have been a mismatch between the origo corpus
that was used to build the language model, and the pronunciation dictionary (the
Hungarian Pronunciation Dictionary), which led to a number of abbreviations (mostly
names of political parties, being present quite frequently in broadcast news) missing
from the vocabulary. And, for some mysterious reason, some common words (e.g. be

“in", legalabb “at least”) were missing from the vocabulary.

Nevertheless, these errors might be responsible for at most 10% of WER, since 90%
came from compounding errors, those of incorrect suffix, and of course the “Other’
category. From this, perhaps the more interesting case is the high number of com-
pounding errors, especially in the case of numerals, where the language model usually
allows both versions. In such cases the ASR output is “practically” correct, so it can
be read and understood very well, containing “only” some spelling error. This phe-
nomenon is not a frequent one in English ASR, but as we have seen, in Hungarian
(and probably for several other languages) it affects the WER to a notable extent. Of
course, word sequences containing compounding errors cannot be regarded as correct
ones; still, it would be sensible to treat them as less serious mistakes instead of omit-
ting a word with an entirely different meaning. What WER does in practice, however,
happens to be the opposite: compounding errors, by their nature, result in at least two
word errors (e.g. one substitution and one insertion). In our opinion this highlights a

language-dependent weakness of the de-facto standard WER metric.

63 Chapter 4. A GMM Free Training Method for Deep Neural Networks

4.8 Summary

In this chapter, | introduced a GMM-free method to train DNN based speech rec-
ognizers. In the previous chapter | proposed several modifications to the standard
MMI sequence training method, which made it possible to train randomly initialised
Cl DNNs without forced aligned labels. After the flat start step | also compared the
performance of four state clustering approaches (including the KL-divergence-based
one, which was proposed by us) to create context-dependent tied states for DNN
acoustic models. What was common in the four approaches is that they utilized the
output of a context-independent neural network as their input. The experimental re-
sults showed that replacing the decision criterion used during state clustering is also
beneficial. The results indicated that, compared to the standard procedure of iterative
CE DNN training and re-alignment, the MMI based one was not only able to produce
better WER scores, but also achieved a significant reduction in training times. By also
utilising several new DNN-based state-tying methods, the whole training procedure of
context-dependent HMM/DNNs became GMM-free.

Furthermore, we also examined the word error types that are common in the output
of a standard ASR system built for the Hungarian language. For this, we collected the
word errors and their local context, then we manually categorised and analysed them.
We found that a large amount of word errors can be traced to OOV word forms, which
is just what we expected. Nevertheless, compounding errors were surprisingly common.
We found that the main reason for this is that the language model allows both word
forms, and the acoustic model simply cannot decide which form is the correct one (as
both solutions have the same phonetic transcript). This kind of error is judged to be a
minor one by human readers, yet WER, which is based on the concept of exact word
matching, treats these errors as more serious ones than substituting just one word with
a completely different meaning. We found this issue quite common in Hungarian ASR,
hence in the future we would like to have a new metric to measure the accuracy of
Hungarian ASR systems.

In this chapter, the author regards the following as his main contributions:

e The introduction of a novel KL-divergence based state-tying algorithm;
e The application of the MMI-based training for the flat start training of CI DNNs;

e An experimental comparison of multiple GMM-free ASR soulutions.

The methods and results of this chapter were published in [51, 50, 71].

Chapter 5

Training Context-Dependent
DNN Acoustic Models using
Probabilistic Sampling

After exploring possible improvements in the flat start and state clustering phase, we
now turn our attention to the CD training phase. In current HMM/DNN speech
recognition systems, the purpose of the DNN component is to estimate the posterior
probabilities of tied triphone states. In most cases the distribution of these states is
uneven, meaning that we have a markedly different number of training samples for the
various states. This imbalance in the training data is a source of suboptimality for most
machine learning algorithms, and DNNs are no exception. A straightforward solution
is to re-sample the data, either by upsampling the rarer classes or by dowsampling the
more common classes.

In this chapter, we experiment with the so-called probabilistic sampling method
that applies downsampling and upsampling at the same time, to improve the accuracy
of CD acoustic models. For this, we define a new class distribution for the training
data, which is a linear combination of the original and the uniform class distributions.
As an extension to previous studies, we also propose a new method to re-estimate the
class priors, which is required to reduce the mismatch between the training and the

test data distributions introduced by re-sampling.

Using probabilistic sampling and the proposed modification we achieved relative
word error rate reductions of 5% and 6% on the TED-LIUM and on the AMI corpora,
respectively. We will also show that this re-sampling method can improve our GMM-

free system.

69

70 Chapter 5. Training CD DNN Acoustic Models using Probabilistic Sampling

5.1 Introduction

The imbalance in the class distribution poses a significant challenge to most machine
learning algorithms [72], and DNNs are no exception. It is known that neural networks
tend to become biased towards classes with more training examples, underestimating
the posterior probabilities of the rarer classes [73]. Class imbalance is a typical problem
in detection tasks, where usually only a small percentage of the training samples belong
to the positive class [74]. The situation is even more difficult when the total amount

of training data is already very low in itself.

In this chapter, we focus on the effect of class imbalance on the training of CD DNN
acoustic models. At first glance, class imbalance is not an issue in speech recognition,
as the frequency of the phones is quite balanced, and we have tremendous amounts of
training data compared to some other machine learning tasks. However, we typically
use context dependent (CD) phone models, and the number of tied states is allowed
to increase when the size of the training corpus increases. We will show that the
distribution of these CD target labels is far from uniform, meaning that many of the
training samples belong to only a few classes, while many of the CD state classes are
represented by just a few examples. While one would think that this causes problems
only in low-resource scenarios, our experiments will show that the technique we propose

may significantly improve the recognition results even in the case of fair-sized corpora.

The problem of class imbalance is typically tackled by applying re-sampling algo-
rithms to the training data. In the simplest approach, the class-balance of the data is
achieved by either reducing the number of the examples of the most common classes
(downsampling) [75] or by presenting the rare examples more frequently (upsampling).
In this chapter, we describe a more sophisticated algorithm called probabilistic sam-
pling [76]. Probabilistic sampling offers a way of downsampling and upsampling at
the same time by applying a two-step sampling process. For this, we define a new
probability distribution over the classes, which determines how frequently the classes
are chosen during re-sampling. The first step of the sampling process chooses a class
based on this distribution. For the second step, a sample from the training vectors
of the chosen class is selected following a uniform distribution. A simple solution to
create a probability distribution over the classes is to take the linear combination of the
original class distribution and the uniform distribution. This will result in a re-sampling
process that has one free parameter, the weight \ of this linear interpolation. With
A = 0, we retain the original class distribution, while A = 1 results in a uniform class
sampling.

T6th and Kocsor applied the probabilistic sampling method to a very small speech
recognition task in 2005 in the framework of HMM/ANN hybrids, and they reported

b5.1. Introduction 71

improvements in the results [77]. As they worked only with monophone class labels,
the main problem they tried to handle by probabilistic sampling was data scarcity. In
2015, Song et al. applied probabilistic sampling in the training of DNN acoustic models
with context-dependent targets, and they obtained a significant reduction in the word
error rate [78]. However, they performed their experiments on a low-resource task,

using a corpus of only 4.5 hours of speech.

When discussing re-sampling methods in the framework of speech recognition, we
should also mention the in-depth study of Garcia-Moral et al., who applied a simple
downsampling approach by discarding examples belonging to the more common classes.
Although this made the ANN training process much faster, they experienced a slight
drop in the accuracy scores [75]. Lastly, we should mention that over the past few years
we have successfully used probabilistic sampling in detection-oriented paralinguistic
tasks such as detecting the intensity of cognitive and physical load [74, 79, 80].

In Chapter 1, we mentioned the classic mathematical formulation of HMM/DNN
hybrids states. To put it simply, the neural network outputs estimate the posterior
distribution of the training labels, and the they can be incorporated in the HMM
framework after a division by the class priors [20]. When probabilistic sampling is
applied with uniform class sampling, Téth and Kocsor [77] proved that there was no
need to divide by the priors, as the network will approximate the class-conditional

probabilities within a scaling factor.

Unfortunately, neither the authors of [77] nor [78] addressed the problem of in-
termediate distributions; that is, when the interpolation factor A is between 0 and 1.
Garcia-Moral emphasizes that in such cases the posterior estimates require a proper
scaling [75] after re-sampling the training data. To achieve this, here we propose to
re-estimate the priors from the re-sampled training data, and divide the DNN outputs
by these adjusted priors. Besides examining the effect of scaling by the various esti-
mates of the class priors, we will also compare two different strategies for the random

selection of the samples within a given class.

Our experiments show that with the proposed minor modifications probabilistic
sampling can be used to improve the results of training CD DNN acoustic models, even
in cases where large amounts of data are available. In the experiments we evaluated
our method on the publicly available TED-LIUM corpus (release 1), which contains
118 hours of training data [81], and the public AMI corpus, which has a training set
of 100 hours [82]. With the best A\ we managed to achieve relative word error rate

reductions between 5% and 6% on these corpora.

72 Chapter 5. Training CD DNN Acoustic Models using Probabilistic Sampling

5.2 Probabilistic Sampling

The class distribution of CD state labels is a heavy-tailed distribution, meaning that the
number of examples for each state differs significantly. Figure 5.1 shows the empirical
distribution of the CD states on a logarithmic scale for the TED-LIUM corpus (the
CD states were obtained using the Kaldi recipe [83]). As can be seen, a subset of
the classes is significantly over- and under-represented, which might bias the DNN to
favour certain classes and neglect some others. As a result, it generates imprecise
posterior estimates for these classes, which usually leads to a higher word error rate
(WER). One possible way to avoid this is to artificially balance the class distribution

-3

Log prior probability

11 F B

12 | | | | | | |
0 500 1000 1500 2000 2500 3000 3500 4000

Index of sorted triphone state
Figure 5.1: The distribution of tied CD states on a logarithmic scale in descending
order (TED-LIUM corpus, Kaldi recipe)

by re-sampling the training set. Usually, we have no way of generating additional
samples from a rare class, so balancing can be achieved by either reducing the number
of examples belonging to the most common classes (downsampling) or by presenting
the rare examples more frequently (upsampling).

Probabilistic sampling offers a third option by combining the two previous sampling
approaches [76]. It applies a simple two-step sampling scheme; namely, first we select
a class, then we pick a training sample belonging to this class. The first step requires
us to assign a probability to each class, which determines how frequently it is selected.

Here, we will use the following formula to define the sampling probability of the classes:

5.2. Probabilistic Sampling 73

Pley) =)\% (1= \)Prior(cy), (5.1)

where Prior(cy) is the prior probability of class ¢;, K is the number of classes and
A €]0,1] is a parameter. For A = 1, we get a uniform distribution over the classes;
and with A = 0 we retain the original class distribution. Using intermediate A values
leads to a linear combination of these two distributions.

5.2.1 Selecting samples within the classes

Having chosen a class based on Eq. (5.1), we need to select a sample belonging to
that class. During re-sampling our main goal is to modify the class distribution of
the training data and leave the distribution of the training examples belonging to the
same class unchanged (uniform). The simplest way to do this is to pick a random
training vector within the class. However, as we perform only a few iterations on the
training data, this strategy could have an undesired side-effect that it could change
the distribution of the examples within the same class. The reason for this is that for
some classes the re-sampling method may present the training vectors to the DNN
unevenly, meaning that some examples might not be selected at all during the whole
training process. We propose a very simple solution to remedy the problem. First, we
define a random ordering of the examples belonging to the given class. Then, during
training, we always select the next sample according to this ordering. This strategy

ensures that the examples of the given class are presented evenly.

5.2.2 Adjusting the prior probability estimates

The standard practice for HMM/ANN hybrids is to divide the outputs of the DNN
acoustic model by the class priors, in order to convert the posterior estimates into
likelihood estimates. When applying probabilistic sampling, in theory, the division by
the priors is required when A = 0 (there is no re-sampling), and there is no need
to divide with the priors when A = 1 (uniform class sampling). The key theoretical
question here is what to do in the intermediate cases (0 < A < 1). Lacking theoretical
results, Téth and Song performed their evaluations by dividing the posterior estimates
by the class priors or by using the neural network outputs directly, and found the
optimal \ value experimentally [77, 78]. Here, we argue that the re-sampling of the
training database requires us to properly adjust the prior probabilities. The reason
is that by balancing the data we create a mismatch between the distribution of the
training and the test sets. A simple and intuitive solution for the adjustment is to apply

the class selection probabilities calculated using Equation (5.1) as class prior estimates.

74 Chapter 5. Training CD DNN Acoustic Models using Probabilistic Sampling

This way, we can ensure that the adjusted priors estimate the class distribution of the
re-sampled training data. In our experiments we evaluate our models with both the
original and the adjusted prior estimates to empirically justify the significance of this

adjustment.

5.3 Experimental Setup

Two large English speech databases were used to train the CD DNNs, namely the
TED-LIUM and AMI corpus. The TED-LIUM corpus [81] is composed of 774 TED
talks, containing 118 hours of speech overall: 82 hours of male and 36 hours of
female speech. All recordings and their closed captions in this corpus were extracted
from the TED website. The training data was automatically transcribed and only the
development and test sets were transcribed manually (for more details, see [81]). As
training targets we used 3933 CD labels, and the class distribution can be seen in
Figure 5.1. We evaluated the trained DNN-based acoustic models using a 3-gram and
a 4-gram language model as well.

AMI is a multi-modal corpus, which contains recordings of meetings [82]. All
participants of the meetings speak in English, but only some of them are native English
speakers, which leads to a high degree of variability in speech patterns. Here we
used only the audio part of the corpus, specifically the recordings captured with the
independent headset microphone (IHM). Following the Kaldi [83] recipe, the DNNs
predicted the posterior scores of 3973 CD states, which had a similar class distribution
to that of the TED-LIUM corpus.

We also used the Hungarian Broadcast News corpus [8]. For this database we made
use of the best CD system (MMI-CE + KL) from the previous chapter to show that
probabilistic sampling could also improve a GMM-free recogniser.

The acoustic model in our experiments was a DNN with 5 hidden layers, each
containing 1000 rectified neurons [14], while we applied the softmax activation function
in the output layer. The DNNs were trained using frame aligned labels and no sequence
training was applied. As input, we used the 40-dimensional fMLLR features in the case
of the TED-LIUM and AMI databases. We extracted the features by following the
Kaldi recipe and the DNNs were trained on 11 neighbouring frames. The Hungarian
recogniser used 15 neighbouring frames of FBank features as input, just like that
described in the previous chapter. To train the DNNs we used our own deep learning
framework [8], while the decoding and evaluation of the English corpora was performed
with Kaldi.

To determine the effectiveness of the probabilistic sampling method, we tested A

values between 0.1 and 1.0 with a step size of 0.1. For each training iteration, we

5.4. Results 75

19

Bl 2djusted priors
185 | [Joriginal priors |
~—-no re-sampling (baseline)

[y
oo
T
1

[y
~
[&)]
T
1

Word error Rate (WER)
)

=
(o2}
T
1

15.5 - 4

15

0 01 02 03 04 05 06 07 08 09 1
A
Figure 5.2: Word error rates got for the development set of the TED-LIUM corpus

using a 3-gram language model and probabilistic sampling.

re-sampled the same amount of training vectors as that in the original data. All DNN
models were evaluated with the division by the original or the adjusted priors to see

the effectiveness of the adjustment.

5.4 Results

First, we compared the two sample selection approaches described in Section 5.2.1. We
found that selecting training vectors within the classes with uniform sampling led to
suboptimal models for some rare triphones. In our preliminary experiments we observed
that this strategy led to a 1% increase in the frame error rates compared to that for the
other selection method, and also resulted in a higher WER. As the selection method
that applies a random ordering performed consistently better, we decided to apply it

in all our experiments.

5.4.1 TED-LIUM

Figures 5.2 and 5.3 show the results we got with probabilistic sampling on the TED-
LIUM corpus. Clearly, dividing the DNN outputs by the original priors gives worse

76 Chapter 5. Training CD DNN Acoustic Models using Probabilistic Sampling

17

Bl 2djusted priors
15| [Joriginal priors |
~—-no re-sampling (baseline)

[y
(o2}
T
1

i

a

3]
T
|

145 M M M M 1

Word error Rate (WER)
I
|
|
|
|
|
!
!
\
!
\
\
!
\
\
\
\
\
\
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

[N
»
T
1

135 - 4

13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
Figure 5.3: Word error rates got for the test set of the TED-LIUM corpus using a

3-gram language model and probabilistic sampling.

LM Method Dev WER Test WER
original | adjusted | original | adjusted
priors priors priors priors
baseline | 16.9 - 15.0 -
3-gram
A=04 16.3 15.9 144 14.1
baseline | 15.2 - 13.7 -
4-gram
A=04| 147 14.4 13.0 12.9

Table 5.1: Best word error rates got with and without probabilistic sampling and

dividing by the original and the adjusted priors.

results as X increases, and we found that small A values (here 0.4) work best. For small
A values, i.e. when the original distribution remains dominant in the class distribution
of the new training data, both prior estimation strategies performed similarly, but as
we increase A\ above 0.5, the mismatch between the training and test sets caused a
significant drop in recognition accuracy (even below the baseline).

When we adjusted the priors, the models became more robust and we got better
results than the baseline for all A values. The best result on the development set was
attained using the adjusted priors and A = 0.4; this network achieved a 14.1% WER

5.4. Results 77

on the test set, which means a 6% relative error reduction compared to the baseline.

Table 5.1 summarises the best results on the TED-LIUM database. As can be
seen, probabilistic sampling always yielded better results and with the prior adjustment
we managed to improve the performance further. Using the 4-gram language model
produced similar results to those achieved with the 3-gram model. The optimal value

for the re-sampling parameter was 0.4, just like when the 3-gram language model was

used.
5.4.2 AMI
32 \ ‘
Il adjusted priors
[__Joriginal priors |
31 i i |
——-no re-sampling (baseline)

w
o
T
1

Word error Rate (WER)

A

Figure 5.4: Word error rates got for the development set of the AMI corpus using
probabilistic sampling.

On the AMI corpus the results follow a similar trend; the best results were achieved
with the adjusted priors, and the division by the original priors resulted in a declining
recognition accuracy for increasing A. All DNNs trained with A < 0.7 performed better
than the baseline model both on the development and the test sets. The optimal value
of A was 0.1 when we divided by the original prior (26.7% WER on the development set
and 27.4% on the test) and 0.1 or 0.4 when the adjusted priors were used. Both DNNs
achieved a WER of 26.6% on the development and 27.3% on the test set. On the test
set the best WER was 27.3%, which is far better than the baseline (28.6%), yielding

78 Chapter 5. Training CD DNN Acoustic Models using Probabilistic Sampling

33 T T
B adjusted priors]
[Joriginal priors

32 . . b
—no re-sampling (baseline)

w
ey
T
|

Word error Rate (WER)
)

28 - b

27

A

Figure 5.5: Word error rates got for the test set of the AMI corpus using probabilistic
sampling.

a relative error reduction of 5%. We should mention that using uniform re-sampling

with the original priors resulted in recognition results far below the baseline.

5.4.3 Improving GMM-free systems using probabilistic sam-
pling

In the case of the Hungarian Broadcast News corpus we employed our previous best
GMM-free CD system that made use of the MMI-based algorithm followed by one
iteration of CE training for flat start. To create the CD targets the KL-divergence
based clustering method was applied. The number of CD states was 1843, meaning
that this corpus was less imbalanced than the other two; 22 hours of training data was
available for 1843 classes, while for the English databases we had about 100 hours of
data for roughly 4000 classes. Using A = 0.4, the trained CD DNN gave a WER of
16.14% on the development set, which is better than the baseline 16.36%. However on
the test set it achieved only a small improvement (15.79% vs 15.86%). The reason for
this is probably the small amount of training data, we hypothesis that if the database
had more speech data we would have seen improvements similar to the English corpora.
To test this, we also applied probabilistic sampling to train the best GMM-free CD DNN

5.4. Results 79

from the previous experiments using the Wall Street Journal (WSJ) corpus. The corpus
has 81 hour of training data and the DNN had approximately 2400 output neurons.
As a reminder, the best WERs achieved by us previously were 8.03% and 5.92% on
the development and test sets, respectively. By applying probabilistic sampling, the
new DNN managed to perform significantly better, yielding a WER of 7.6% on the
development set and 5.44% on the test set. These results suggest that our hypothesis
was correct and the sampling method works best if the amount of training data is

sufficiently large.

5.4.4 Discussion

70

65 -

60 [

Accuracy (%)

ey
()]
T

35 =—=no sampling (baseline)
= =probabilistic sampling (A=0.4)

30 ! ! !
0 500 1000 1500 2000 2500 3000 3500 4000

Index of sorted triphone state

Figure 5.6: Averaged accuracy scores of sorted CD states obtained on the TED-LIUM
development set with and without re-sampling.

To get an insight into why probabilistic sampling helps, we performed an analysis to
learn how the accuracy of CD state classification varies as a function of state frequency.
Figure 5.6 shows the average frame-level accuracy scores of the sorted CD states, and it
compares the baseline method with the best model trained with re-sampling. The first
thing to notice is that probabilistic sampling significantly improves the accuracy scores
of the rare states (Index < 1000), and even the frequent states are recognised more

often. The downside of this improvement is the lower accuracy of those classes that

80 Chapter 5. Training CD DNN Acoustic Models using Probabilistic Sampling

have the most training data. Interestingly, the accuracy of classes having an average
amount of training data (middle part in the figure) also increased with probabilistic
sampling; the reason is that they were less likely confused with the more frequent
states.

As we saw, dividing the DNN outputs by the adjusted priors stabilized the results:
for almost all A values we got similar WE scores. If the original priors are used then
a declining trend is observed as we move farther from the original distribution. The
stability of this adjustment could be explained by the fact that it reduces the mismatch

between the training and test data introduced by the re-sampling process.

5.5 Solving Paralinguistic Tasks using Probabilis-
tic Sampling

For a long time the main focus of speech technology was Automatic Speech Recognition
(ASR), but recently a new sub-area has emerged called computational paralinguistics.
It seeks to extract and identify phenomena present in the audio signal other than the
words uttered. The fact that since 2009 the Computational Paralinguistics ChallengE
(ComParE) series takes place annually at the INTERSPEECH conference shows the
importance of this new area. ComParE is an open challenge in the field of speech
technology that deals with states and traits of speakers, as manifested in their speech.
Every year, new highly relevant paralinguistic tasks are introduced in this competition
series. Most of these tasks have only a limited amount of training data and a highly
imbalanced class distribution. Luckily, the limited data is distributed among a few
classes, so probabilistic sampling is applicable. We managed to apply DRNs, trained

with probabilistic sampling and achieved good results in many of these challenges.

e In 2014, we created a system, whose goal was to detect the intensity of cognitive
and physical load of the speaker [84]. Our DNN-based method consistently
managed to outperform the baseline SVMs, yielding an unweighted average recall
(UAR) of 63.05% on the Cognitive Load Challenge, and a UAR of 73.03% on
the Physical Load Challenge [74].

e In 2016, we participated in the Deception Sub-Challenge [85] with a DRN that
was trained using re-sampling [79]. The aim of this Sub-Challenge was the
detection of deceit, using only the speech of the person in question. With DNNs
alone, we managed to get a higher UAR value than the baseline by a mere 0.3%,

but this is much less than the 3.6% improvement measured on the development

5.6. Summary 81

set. In our view this can be attributed to the limited amount of training data

and a possible mismatch between the training and test data.

e In 2017, we experimented with the re-sampling method and applied it in the
Addressee and Cold Sub-Challenge [80]. In the Addressee Sub-Challenge, one
had to determine whether the adult speaks to a child or to another adult, and
the Cold Sub-Challenge sought to separate healthy speakers from those who
have a cold [86]. We should mention here that the baseline systems of these
sub-challenges were very competitive (the fusion of three approaches). On the
Addressee Sub-Challenge our approach yielded worse results than the baseline,
but on the Cold Sub-Challenge it managed to significantly outperform the base-
line. Furthermore, as our outstanding result proved to better than those of our

competitors, we won this sub-challenge.

5.6 Summary

In this chapter, | demonstrated that CD DNN training can be improved by re-sampling
the training data with probabilistic sampling. | also proposed a new method for re-
estimating the class priors when using this sampling algorithm. The experimental
results proved that this re-estimation is essential for remedying the mismatch between
the training and the test data distributions introduced by the re-sampling step. These
adjusted priors made the re-sampling method more robust, and the recognition results
varied only slightly as the class distribution, with a bigger A\ value was shifted towards
a uniform distribution. Our experiments revealed that by using this modification, the
recognition results dramatically improved, it gave relative error reductions between 5%
and 6% on two fair-sized corpora (TED-LIUM and AMI).
In this chapter, the author regards the following as his main contributions:

e The use of probabilistic sampling during the training of CD DNNs;

e A new way to adjust the priors in the case of re-sampling;

The methods and results of this chapter were published in [87, 74, 79, 80].

82 Chapter 5. Training CD DNN Acoustic Models using Probabilistic Sampling

Chapter 6
Summary

In this thesis, we proposed new HMM/DNN acoustic modelling techniques and eval-
uated them on large vocabulary speech recognition tasks. In Chapter 1 we briefly
introduced the basic components of an automatic speech recognition system, such
as the feature extractor, the HMM/DNN acoustic model and the language model.
Here, we also described how neural networks work, and how they can be trained. In
later chapters, we examined several training methods for HMM/DNNs and modified
the algorithms it had inherited from the HMIM/GMM system to better suit this new
DNN-based model.

6.1 A Comparison of Deep Neural Network Train-
ing Methods for LVSR

The second chapter focused on comparing the performance of four DNN training al-
gorithms. The first one is the original algorithm proposed by Hinton et al.[9], and the
second one is called discriminative pre-training by Seide et al. [10]. Both of these meth-
ods apply a pre-training phase before they finetune the DNNs. Deep Rectifier Networks,
our third approach differs greatly from the previous two in the sense that it modifies
the activation of the hidden neurons instead of the training process. The fourth train-
ing algorithm that we examined is a regularization method called Dropout [11], which
simply turns off neurons during training.

In our experiments we compared the recognition accuracies of these methods on
a large vocabulary Hungarian recognition task. Our conclusion was that, although
the four algorithms yielded quite similar recognition performances, rectifier networks
achieved better accuracies and their training was considerably faster. Based on these

facts in the rest of the thesis | just used rectifier networks.

83

84 Chapter 6. Summary

6.2 Sequence Training Methods for Deep Recti-

fier Neural Networks in Speech Recognition

After determining our preferred choice of DNN, we turned our attention to the task of
flat start training, which is the first step of training a speech recognition system. The
goal of flat start is to get time-aligned context independent labels for the database.
Our aim here was to compare two sequence training approaches that could be used
to train randomly initialised DNNs without force-aligned labels. The first one was the
Connectionist Temporal Classification (CTC) and the second one was the Maximum
Mutual Information (MMI) method. Both of them were used to train DRNs. We
proposed several modifications to the standard MMI method, which were essential to
make it suitable for the flat start process.

In the experimental part, we evaluated the two methods on several phone recogni-
tion tasks. For all databases we tested, we found that the sequence training methods
gave better results that those obtained with force-aligned training labels produced
by an HMM/GMM system. From the experimental results, it was also clear that the
MMI-based approach gave better results than the CTC-based one. Furthermore, DRNs
trained with CTC could not produce forced-aligned labels. Based on these findings we
concluded that MMI was the better algorithm for flat start training.

6.3 A GMM Free Training Method for Deep Neu-

ral Networks

Next, we adapted the state-tying algorithm with the goal of getting rid of its GMM
dependency. The context-dependent states used to train DNNs are usually obtained
using the standard tying algorithm, even though it is based on likelihoods of Gaus-
sians, hence it is more appropriate for HMUIM/GMMs. Recently, however, several new
refinements have been published which seek to adapt the state tying algorithm to the
HMM/DNN hybrid architecture.

Some of the new methods change only the input of the clustering algorithm, feeding
the output or the activations of the neurons in the last hidden layer to the clustering
method while the whole state tying algorithm remains intact. Other studies proposed
novel decision criteria as well for the clustering method, which better suit the new
input provided by a DNN.

In this chapter, we proposed a KL-divergence-based approach. We evaluated it
along with three other state-tying methods on the same LVCSR tasks, and compared

their performance under the same circumstances. We combined them with the MMI-

6.4. Training Context-Dependent DNN Acoustic Models using Probabilistic
Sampling 85

based flat start method from the previous chapter, and showed that the whole training
procedure of context-dependent HMM/DNNs can be carried out without using GMMs.

The experimental results confirmed that the MMI-based flat star approach is far
better than the procedure of iterative CE DNN training and re-alignment. Furthermore,
we saw that replacing the decision criterion used during state clustering is also beneficial
for DNN training. Lastly, we examined the best Hungarian HMM/DNN system to see
what type of errors are most common. For this, we collected the word errors and their
local context, then we manually categorised and analysed them. Our conclusion was
that a new metric is needed to measure the accuracy of Hungarian ASR systems, since

the current one (WER) treats some errors more seriously than human readers do.

6.4 Training Context-Dependent DNN Acoustic
Models using Probabilistic Sampling

In Chapter 5, we turned our attention to the CD training phase of the ASR system. In
the current HMIM /DNN speech recognition systems, the purpose of the DNN compo-
nent is to estimate the posterior probabilities of tied triphone states. It is well known
that the distribution of the CD states is uneven, meaning that we have a markedly
different number of training samples for the various states. This imbalance in the
training data is a source of suboptimality for most machine learning algorithms, and

DNNSs are no exception to this.

Here, we experimented with the so-called probabilistic sampling method that applies
downsampling and upsampling at the same time, to improve the accuracy of CD
acoustic models. This re-sampling method defines a new class distribution for the
training data, which is a linear combination of the original and the uniform class
distributions. As an extension to previous studies, we also proposed a new method to
re-estimate the class priors, which is required to remedy the mismatch between the

training and the test data distributions introduced by re-sampling.

Using probabilistic sampling we achieved relative word error rate reductions of
5% and 6%, respectively, on two fair-sized corpora (TED-LIUM and AMI). We also
showed that this re-sampling method can improve our GMM-free system outlined in
the previous chapter. Our experimental results strongly suggest that the re-estimation
of the priors is essential to handle the mismatch between the training and the test
data distributions introduced by the re-sampling step. These adjusted priors made the
re-sampling method more robust, and the recognition results varied only slightly as the

class distribution was shifted towards a uniform distribution.

86 Chapter 6. Summary

6.5 Conclusions and future directions

In this thesis, we successfully adapted the standard methods of the HMM /GMM acous-
tic models to better suit the new HMM/DNN hybrid. We revised both the initial
training phase (flat start) and the CD state-tying phase, and introduced new strictly
DNN-based solutions to these problems. By combining these methods, we created a
new training method that does not depend on GMMs at all. We also showed that the
final training phase could be improved by employing a simple re-sampling method. On
the Szeged Hungarian Broadcast News corpus, a traditional HMM/GMM gave a WER
of 20.07%, the best DNN that relies on GMMs produced a WER of 16.59%; while our
best GMM-free system managed to achieve a WER of 15.79%.

Naturally, many experiments have been left for the future, mainly due to lack of
time or because they lay outside the scope of the present study. The following list

presents some of the possible future research directions.

e For one, we should consider applying a new DNN type, namely the Convolutional
Neural Network (CNN), since it has provided impressive results both in image

processing and speech recognition.

e To extend the results of Chapter 3, it would be worth examining other sequence
learning methods, such as minimum phone error (MPE) or state-level minimum

Bayes risk (sMBR), and adept them so they are suitable for flat start training.

e |t is worth investigating what would happen if we had more CD clusters in our
GMM-free systems. The hypothesis here is that with more states we should get
better results, of course, at the cost of the increased training and evaluation

times.

e It would be interesting to learn how the CD DNNs trained with probabilistic
sampling perform after a final sequence discriminative training phase, which is

nowadays a common practice.

6.6 Key points of the Thesis

In the following a listing of the most important results of the dissertation is given.
Table 6.6. summarises the relation between the theses and the corresponding publica-

tions.

|. The author compared the performance of four deep learning methods empiri-

cally; two of these methods were pre-training algorithms, the third one applied

6.6.

Key points of the Thesis 87

I1/1.

11/2.

[26] | [49] | [50] | [51] | [71] | [87] | [74] | [79] | [8O]
[°
/1. °
/2. ° °
/1. °
/2. ° ° °
V. ° ° ° °

Table 6.1: Correspondence between the thesis points and the publications.

the rectifier activation function and the fourth was a regularisation technique
called Dropout. The experiments were also carried out using a Hungarian speech
corpus, and this study was among the first to apply a HMM/DNN system to
Hungarian speech recognition. The results indicated that the new HMM/DNN
systems can outperform the traditional HMM/GMM system significantly. The
conclusion of the experiments was that, although the four algorithms yielded
quite similar recognition performances, rectifier networks consistently produced

the best results.

The CTC algorithm was originally proposed for the training of recurrent neural
networks, but here the author showed that it can also be used to train conven-
tional feed-forward networks. Using several corpora, deep rectifier networks were
trained with the CTC method, in order to determine whether this approach was
suitable for the flat start training step. The results led us to conclude that CTC
can be used to train randomly initialised networks without time-aligned labels.

As a competitor, the MMI-based training algorithm was also examined. The
author proposed several modifications to the standard MMI, to make it suitable
for the task (flat start training). The experimental results showed that the mod-
ified MMI is a far superior alternative to CTC, for training randomly initialised

networks without time-aligned labels.

88

Chapter 6. Summary

/1.

1/2.

The author created a new DNN-based state-tying method by changing the de-
cision criterion used by the standard algorithm during the clustering step. Since
this new state tying method uses posterior probability vectors produced by DNNs
as input, KL-divergence seemed a logical choice for decision criterion. The ex-
perimental results also supported this view, as the new method markedly out-

performed the original one.

By combining the MMI-based flat start training algorithm with the KL-divergence-
based clustering method, the author built an ASR system that did not rely on
GMMs. He compared this GMM-free solution with other recently proposed al-
ternatives, and found that it was competitive with the other approaches used.
Furthermore, the results demonstrated that the GMM-free systems were capable
of producing better results than those that rely on GMMs.

. The author examined the probabilistic sampling method for the training of CD

DNNs. He hypothesised that when the training data is re-sampled, the prior
probability values need to be re-estimated. He justified this experimentally, and
showed that re-sampling with adjusted priors greatly improves the performance
of CD DNNs. This re-sampling algorithm was also applied with great success in
several paralinguistic tasks.

Chapter 7
Summary in Hungarian

Ebben a dolgozatban az @j, mély neuronhalés akusztikus modelleket vizsgaltuk és
alkalmaztuk nagy szétaras beszédfelismerési feladatokban. Az els§ fejezetben rov-
iden bemutattuk az automatikus beszédfelismerék alap komponenseit; a kiildnbdz8
jellemzskinyerési médszereket, az aj HMM/DNN hibridet alkalmazé akusztikus mod-
ellt és a nyelvi modellt. Szintén a bevezetd fejezetben bemutattuk a mesterséges
neuronhalék miikodését, illetve tanuldsi algoritmusukat. Az ezt kdvets fejezetekben
megvizsgaltunk tobb mély neuronhalés tanitasi médszert, majd megmutattuk, hogyan
lehet a HMM/GMM modelltsl 6rokolt algoritmusokat gy médositani, hogy azok job-
ban illeszkedjenek az aj DNN alapi modellhez.

7.1 Meély neuronhalés tanitasi moédszerek Ossze-

hasonlitasa nagyszo6taras beszédfelismerésben

A masodik fejezetben négy mély neuronhalés tanitasi médszert hasonlitunk 6ssze. Az
els6 médszer a Hinton és tarsai altal kidolgozott eredeti el6tanité algoritmus [9], a ma-
sodik médszer pedig az Ggynevezett diszkriminativ el6tanitas, amelyet Seide és tarsai
publikaltak [10]. Ezen két algoritmusban kozds, hogy két fontos fazisbél allnak; az el6-
tanitas soran inicializaljak a neuronhalét, majd a masodik lépésben finomhangoljak azt.
A mély egyeniranyitott haldk, a harmadik médszer, amit megvizsgaltunk, jelent8sen
eltérnek a korabbiaktdl, hiszen ebben az esetben nem a tanitasi algoritmus médosul,
hanem a rejtett neuronok aktivaciés fiiggvénye. A negyedik médszerként egy regu-
larizaci6s technikat valasztottunk, az Ggynevezett Dropout [11] algoritmust, melynek
lényege, hogy tanitas soran véletlenszeriien kikapcsolunk neuronokat a halézatban. Ez
a mé6dszer nem egy 6nall6 algoritmus, hanem mas médszerekkel (barmelyik korabbival)
kombinalva hasznalhaté.

Kisérleteinkben ezen médszereket hasonlitottuk Gssze egy magyar nyelvii nagy

89

90 Chapter 7. Summary in Hungarian

szétaras beszédfelismerési feladaton. Konklazioként azt kaptuk, hogy mind a négy
modszer elég hasonlé eredményeket tudott elérni, de a legjobbnak az egyeniranyitott
halézatok bizonyultak, tekintve, hogy ezek érték el a legjobb felismerési pontossagokat
és betanitasuk is kevesebb id6t igényelt. Ezen eredményekre alapozva, a dolgozatom
tovabbi részében csak egyeniranyitott neuronhalékat alkalmaztam.

7.2 Meély egyeniranyitott neuralis halék tanitasa

szekvenciatanuld mdédszerekkel

Miutan kivalasztottuk a legjobb mély tanitasi médszert, a flat start nevii feladatra
forditottuk figyelmiinket. Ezen feladat megoldasa az elsd lépés minden beszédfelis-
mer$ rendszer létrehozasa soran. Ezen lépés lényege, hogy meghatarozzuk a kontex-
tusfiiggetlen cimkék idébeli illesztését. A hosszatavi célunk egy teljesen mély haldkon
alapulé médszer kidolgozasa volt, ezért ebben a fejezetben két szekvenciatanulé mod-
szert hasonlitottunk Gssze, amelyek alkalmasnak tiintek a kezdeti kontextusfiiggetlen
modellek tanitasara. A konnekcids temporalis osztalyozas (CTC) algoritmust vettettiik
ossze a maximalis kolcsonds informacion (MMI) alapuléval. Mindkét vizsgalt médszert
mély egyeniranyitott halék tanitasara hasznaltuk. Az alap MMI algoritmushoz tébb mé-
dositast is javasoltunk, melyek lehet6vé tették, hogy véletlenszeriien inicializalt halok
tanitasara hasznaljuk ezt a médszert idében illesztett cimkék nélkiil.

A kisérleteink soran kiilonbzé fonémafelismerési feladatokon hasonlitottuk ssze a
két médszert. Mindegyik adatbazis esetén azt talaltuk, hogy a szekvenciatanulé médsz-
erek jobban miikddtek mint a hagyomanyos rendszerek, amelyeket egy HMM/GMM al-
tal generalt idében illesztett cimkékkel tanitottunk. Az eredményekbdl az is egyértelmii-
en kideriilt, hogy az MMI médszer jobb eredményeket képes elérni mint a CTC algorit-
mus. A CTC algoritmus egy tovabbi hatranya, hogy a betanitott halék nem hasznal-
haték a cimkék kényszeritett illesztésére. Mindezeket figyelembe véve megallapithaté,
hogy az MMI médszer a legjobb valasztas a flat start 1épés megoldasara.

7.3 GMM-mentes mély neuronhalés beszédfelis-

merdk

A 4. fejezetben az allapotkapcsolasi algoritmust adaptaltuk, célunk a GMM fiigg6ségek
eltavolitasa volt. A kornyezetfiiggd allapotokat altalaban a standard algoritmussal al-
litjak el6, annak ellenére, hogy az algoritmus specialisan a Gauss-gorbék illeszkedését

hasznalja ki, igy optimalitasa egy mély halés rendszerben megkérdéjelezhets. Az

7.4. Kontextusfiiggé mély neuronhalés akusztikus modellek tanitisa valészindségi
mintavételezéssel 91

utébbi idében azonban tébb olyan allapotklaszterezé algoritmust is publikaltak, ame-
lyek megkisérlik a korabbi eljarast a mély neuronhalés modellezéshez igazitani.

Néhany @j moédszer csak a klaszterezé algoritmus bemenetén valtoztat, azaz a
klaszterezést a DNN kimenetén futtatjak le, magat az algoritmust pedig egyaltalan
nem moédositjak. Mas szerz&k a bemenet kicserélésén tal a klaszterezé eljaras don-
tési kritériumat is médositjak oly médon, hogy az jobban illeszkedjen a neuronhalés
eloszlas-modellezéshez.

Ebben a fejezetben harom kilonb6z8 médszert hasonlitottunk dssze a sajat KL
divergencian alapul6 médszeriinkkel, ugyan azon a nagy szétaras beszédfelismerési fe-
ladaton. Kombinalva ezen mddszereket az el6z8 fejezetben bemutatott MMlI-alapi
flat start médszerrel megmutattuk, hogy lehetséges HMM/DNN beszédfelismersket
tanitani GMM hasznalata nélkiil is.

A kisérleti eredményeink azt mutattak, hogy az MMI-alapi médszer sokkal jobban
miikodik, mint a keresztentrépias tanitast és Gjraillesztést iterald médszer. Tovabba azt
is lattuk, hogy célszer(i a dontési kritériumot is lecserélni a klaszterezé algoritmusban.
Mindezeken tal azt is megvizsgaltuk, hogy a legjobb magyar beszédfelismerénk milyen
tipus(hibakat vét leggyakrabban. Ehhez a teszthalmaz egy részén el6fordulé szészintii
hibakat kigyjtottiik, majd manuélisan kategorizaltuk és elemeztiik. A vizsgalatok ered-
ményeképpen megallapitottuk, hogy egy (j hibametrikara lenne sziikség magyar nyelvii
beszédfelismers rendszerek értékeléséhez, mivel a jelenleg hasznalt metrika (WER) tobb

hibat sokkal silyosabbként kezel, mint az emberi annotatorok.

7.4 Kontextusfiiggé mély neuronhalés akusztikus
modellek tanitasa valdsziniiségi mintavétele-

zéssel

A 5. fejezetben a kornyezetfiiggd akusztikus modellek tanitasara fékuszaltunk. A
manapsag hasznalatban |évs beszédfelismerskben a DNN komponensek feladata, hogy
allapotkapcsolt trifénok posterior valdsziniiségét becsiiljek. A problémat az jelenti,
hogy a cimkék eloszlasa nem egyenletes, igy a gyakorlatban az egyes osztalyokhoz tar-
tozé tanitépéldak szama jelentsen eltér. A tanité adat egyenlétlen eloszlasa problémat
jelent a legtobb gépi tanul6 algoritmusnak, ez alél a mély halék sem kivételek.

A probléma megoldasara a valdsziniiségi mintavételezés modszerét hasznaltuk, ame-
lynek elénye, hogy egyszerre alkalmazza az alul- és a feliil-mintavételezést. Az adat-
bazis Gjramintavételezéséhez egy () osztalyeloszlast definial a médszer, ez az aj elos-
zlas az eredeti és az egyenletes eloszlas linearis kombinaciéjaként all el. A korabbi

tanulmanyokhoz képest mi a prior val6szintiségek ajraszamlalasara is javasoltunk egy

92 Chapter 7. Summary in Hungarian

modszert. Erre azért volt szilkség, mert az adat Gjramintavételezése révén jelentésen
eltért a tanit6 és a teszt adatbazis egymastdl.

A valésziniiségi mintavételezés segitségével 5% és 6% szoszintii hibaarany reduk-
ci6t sikeriilt elérniink két nagy méretii adatbazison (TED-LIUM és AMI). Megmutattuk
azt is, hogy ezzel a médszerrel a korabbi fejezetben bemutatott GMM-mentes rend-
szer is jobb eredményeket képes elérni. A kisérleti eredményeink alatamasztottak azon
sejtésiinket is, hogy a prior valdsziniiségek Gjrabecslése kritikus az Gjramintavételezés
miatt a tanitd és teszt adat kozott fellepd kiilonbség kezelése szempontjabdl. Ezek az
ajrabecsiilt priorok robusztusabba tették a médszeriinket, hatasukra a felismerési pon-
tossagok csak csekély mértékben valtoztak, ahogy az egyenletes eloszlas felé mozgattuk

az osztalyok eloszlasat a mintavételezés soran.

7.5 Konklazié és jovébeli kutatasi iranyok

A dolgozatban bemutattuk, hogy a standard HMM/GMM rendszerhez kidolgozott
moédszerek hogyan adaptalhatéak az aj HMM/DNN hibrid modellhez. Ehhez kidol-
goztunk 0j, tisztan DNN alapt médszereket a kezdeti tanitasi fazis (flat start) és az
allapotkapcsolasi 1épés megoldasara. Ezek Gsszekapcsolasaval sikeresen létrehoztunk
egy (j tanitasi médszert, amely soran nincs sziikség GMM-ek hasznalatara. Végiil
megmutattuk, hogy a végsé tanitasi [épés javithat6 egy egyszerii Gjramintavételez§ al-
goritmussal. A kisérleteink soran felhasznalt magyar nyelvii Szeged Hirad6s korpuszon
egy hagyomanyos HMM/GMM 20.07%-os szészint(i hibaaranyt képes elérni. Az 0j hi-
brid médszer esetében, ami még valtozatlanul hasznélja a megorokdlt algoritmusokat,
a szé6szintii hibaarany 16.59%-ra csokkent, mig a legjobb GMM-mentes médszeriink
még ennél is jobb eredményt (15.79%) ért el.

Természetesen rengeteg tovabbi kisérletet lehetne még elvégezni, ezeket sajnos
idshianyaban a jovébeli munkaink kdzé soroljuk. A kdvetkezékben felsorolunk néhany
lehetséges jovSbeli kutatasi iranyt.

e Az elmdlt par évben megjelent egy 4j tipusi neuronhald, a konvoliciés neu-
ronhalé (CNN), amely jelent&s sikereket ért el képfeldolgozasban és beszédfe-

lismerésben. A kidolgozott médszereinket célszer(i lenne kiprébalni ilyen tipusi
halékkal is.

e A 3. fejezet kibdvitése céljabél mas szekvenciatanulé algoritmusokat, példaul a
minimalis fonéma hiba (MPE) vagy minimalis Bayes kockazat (sMBR) médszert
is tervezziink megvizsgalni.

o Erdekes kérdés, hogy vajon hogyan alakulna a GMM-mentes modelljeink pon-

tossdga, amennyiben a mostaninal tobb klaszter létrejottét is engednénk. A

7.6.

Az eredmények tézisszer(i dsszefoglalasa 93

[26] | [49] | [50] | [51] | [71] | [87] | [74] | [79] | [8O]
[°
/1. °
/2. ° °
/1. °
/2. ° ° °
V. ° ° ° °

Table 7.1: A tézispontok és a szerz§ publikaciéinak viszonya.

hipotézisiink, hogy tobb kontextus-fiiggs allapot esetén jobb eredményeket tudna-
nak elérni a halék, természetesen ennek az ara a megnovekedett tanitasi és
kiértékelési id6k lennének.

e Szintén megérné megvizsgalni, hogy a mintavételezéssel tanitott halék hogyan

viselkednének, egy végsé szekvencia-diszkriminativ tanitasi lépés végrehajtasa

utan.

7.6 Az eredmények tézisszerii 0sszefoglalasa

Az alabbiakban tézispontokba rendezve Gsszegezziik a szerzd kutatasi eredményeit. A

7.6. tablazat osszegzi a kutatasokbdl szarmazé publikaciok és az egyes tézispontok

viszonyat.

I1/1.

A szerz§ kisérleti Gton Gsszehasonlitott négy mély tanulasos médszert: két el-
tanitasos algoritmust, az egyeniranyitott aktivacios fliggvényt és a Dropout nevii
regularizacios technikat. A kiértékeléseket egy magyar nyelvii adatbazison is
elvégeztiik, az itt kozolt eredmények, legjobb tudomasunk szerint, a legels6 mély
neuronhalés eredmények magyar nyelvii beszédfelismerésben. Az eredmények
alapjan megallapithatjuk, hogy a HMM/DNN hibrid szignifikdansan jobban tel-
jesit mint a hagyomanyos HMM/GMM. A végsé konklazidja a kisérleteknek az
volt, hogy mind a négy médszer elég hasonlé eredményeket tudott elérni, de az

egyeniranyitott halék konzisztensen jobbnak bizonyultak a tdbbi médszernél.

A szerz6 megmutatta, hogy a CTC algoritmust, amit eredetileg rekurens neu-
ronhalék tanitasara készitettek, fel lehet hasznalni el6recsatolt halék tanitisara
is. A kisérletek célja annak megallapitasa volt, hogy ez a médszer alkalmas-e a
flat start tanitasi lépés elvégzésére, ezért mély egyeniranyitott neuronhalék let-

tek tanitva CTC algoritmussal, kiilonb6z6 adatbazisokon. Az eredmények azt

94 Chapter 7. Summary in Hungarian

mutattak, hogy a CTC médszer alkalmas véletlenszeriien inicializalt neuronhalok
flat start tanitasara.

[1/2. A CTC algoritmus versenytarsaként megvizsgalasra keriilt az MMI algoritmus is.
A szerz6 tobb modositast is javasolt, hogy ezt a médszert alkalmassa tegye a flat
start tanitasra. Az Gsszehasonlitas soran egyértelmiivé valt, hogy az MMI sokkal
jobb megoldas mint a CTC algoritmus véletlenszeriien inicializalt neuronhalék
tanitasara idében illesztett cimkék nélkiil.

I11/1. A szerz6 kidolgozott egy 0j, mély neuronhalés allapotkapcsolasi algoritmust, a
standard algoritmus dontési kritériumanak lecserélésével. Tekintve, hogy a méd-
szer bemenetként DNN altal predikalt posterior valésziniiségi vektorokat kap,
ezért dontési kritériumnak a KL-divergencia tiint logikus valasztasnak. Ezt a
kisérleti eredmények is alatamasztottak, az () algoritmus lényegesen jobban tel-
jesitett, mint az eredeti médszer.

[11/2. Az MMI-alapu flat start médszer és a KL-divergenciat alkalmazé allapot klasztere-
zési algoritmus kombinalasaval a szerz8 egy teljesen GMM-mentes eljarast ho-
zott létre. Ezt az 4j eljarast mas, kdzelmaltban javasolt médszerrel hasonlitotta
ossze. A kisérletek soran kideriilt, hogy az (j GMM-mentes médszerek jobb ered-
ményeket képesek elérni mint azok, amelyek felhasznalnak GMM-eket tanitasuk

soran.

IV. A szerz6 megvizsgalta a valdsziniiségi mintavételezd algoritmust és alkalmazta
azt kontextusfiiggd DNN tanitasra. A hipotézise az volt, hogy a tanitéadat
ajramintavételezésével a prior val6szintiségek Gjrabecslése sziikségessé valik. Kisér-
leti Gton igazolta ezt a sejtést és megmutatta, hogy Gjramintavételezéssel és a
priorok helyes beallitasaval szignifikansan javithat6 a mély halok pontossaga. A

mintavételezd algoritmust paralingvisztikus feladatokon is sikeresen alkalmazta.

Publications of the author

Publications accepted by the PhD School in Com-

puter Science

Journal publications

e Gabor Gosztolya and Tamas Grész. Domain adaptation of deep neural networks for
automatic speech recognition via wireless sensors. Journal of Electrical Engineering,
67(2):124-130, 2016.

e Péter Bodnar, Tamas Grész, Laszlé Téth, and Laszlé G Nyal. Efficient visual code
localization with neural networks. Pattern Analysis and Applications, 21(1):249-260,
2018.

Conference publications

e LaszI6 Téth and Tamas Grész. A comparison of deep neural network training meth-
ods for large vocabulary speech recognition. In Proceedings of TSD, pages 36—43.
Springer Berlin Heidelberg, 2013.

e Gabor Gosztolya, Tamas Grész, Rébert Busa-Fekete, and Laszl6 Té6th. Detecting
the intensity of cognitive and physical load using adaboost and deep rectifier neural
networks. In Proceedings of Interspeech, pages 452-456, 2014.

e Gyorgy Kovacs, Laszl6 Téth, and Tamas Grész. Robust multi-band asr using deep
neural nets and spectro-temporal features. In Proceedings of SPECOM, pages 386—
393. Springer International Publishing, 2014.

e Tamas Grész, Gabor Gosztolya, and LaszI6 Téth. A sequence training method for
deep rectifier neural networks in speech recognition. In Proceedings of SPECOM,
pages 81-88. Springer International Publishing, 2014.

95

Chapter 7. Summary in Hungarian

Tamas Groész and Istvan Nagy. Document classification with deep rectifier neural
networks and probabilistic sampling. In Proceedings of TSD, pages 108-115. Springer
International Publishing, 2014.

Péter Bodnar, Tamas Groész, Laszlé Téth, and Laszlé Nyal. Localization of visual
codes in the dct domain using deep rectifier neural networks. In Proceedings of
ANNIIP. SciTePress, 2014.

Tamas Groész, Péter Bodnar, LaszIl6 Té6th, and LaszI6 G Nyal. Qr code localization

using deep neural networks. In Proceedings of MLSP, pages 1-6. IEEE, 2014.

Tamas Grész, Rébert Busa-Fekete, Gabor Gosztolya, and LaszIé Téth. Assessing the
degree of nativeness and parkinson’s condition using gaussian processes and deep
rectifier neural networks. In Proceedings of Interspeech, pages 1339-1343, 2015.

Gabor Gosztolya, Tamas Grész, Laszlé6 Toth, and David Imseng. Building context-
dependent dnn acoustic models using kullback-leibler divergence-based state tying.
In Proceedings of ICASSP, pages 4570-4574. IEEE, 2015.

Gabor Gosztolya, Tamas Grész, Gydrgy Szaszak, and Laszlé6 Téth. Estimating the
sincerity of apologies in speech by DNN rank learning and prosodic analysis. In
Proceedings of Interspeech, pages 2026—2030, 2016.

Gabor Gosztolya, Tamas Grész, Robert Busa-Fekete, and Laszl6 Téth. Determining
native language and deception using phonetic features and classifier combination.
In Proceedings of Interspeech, pages 2418-2422, 2016.

Gabor Gosztolya, LaszIl6 Téth, Tamas Grész, Veronika Vincze, Ildiké Hoffmann,
Gréta Szatléczki, Magdolna Pakaski, and Janos Kalman. Detecting mild cognitive
impairment from spontaneous speech by correlation-based phonetic feature selection.

In Proceedings of Interspeech, 2016.

Gabor Gosztolya, Tamas Grész, and Laszl6 Téth. GMM-free flat start sequence-
discriminative DNN training. In Proceedings of Interspeech, pages 3409-3413, 2016.

Gyorgy Kovacs, Tamas Grész, and Tamas Varadi. Topical unit classification using
deep neural nets and probabilistic sampling. In Proceedings of CoglnfoCom, pages
199-204. IEEE, 2016.

Gabor Gosztolya, Rébert Busa-Fekete, Tamas Grész, and LaszI6 Téth. DNN-based
feature extraction and classifier combination for child-directed speech, cold and snor-
ing identification. In Proceedings of Interspeech, pages 3522-3526, 2017.

7.6. Az eredmények tézisszerii dsszefoglalasa 97

Tamas Gabor Csap6, Tamas Grész, Gabor Gosztolya, Laszl6 Téth, and Alexandra
Marké. DNN-based ultrasound-to-speech conversion for a Silent Speech Interface.
In Proceedings of Interspeech, pages 3672-3676, 2017.

Tamas Grész, Gabor Gosztolya, and Laszlé Téth. Training context-dependent DNN
acoustic models using probabilistic sampling. In Proceedings of Interspeech, pages
1621-1625, 2017.

Tamas Grosz, Gabor Gosztolya, and LaszI6 Téth. A comparative evaluation of GMM-
free state tying methods for ASR. In Proceedings of Interspeech, pages 1626—1630,
2017.

Tamas Grész, Gabor Gosztolya, LaszI6 Téth, Tamas Gabor Csapé, and Alexandra
Marké. FO estimation for dnn-based ultrasound silent speech interfaces. In Proceed-
ings of ICASSP, 2018.

98

Chapter 7. Summary in Hungarian

Bibliography

—

S. Young, G. Evermann, M. J. F. Gales, T. Hain, D. Kershaw, G. Moore, J. Odell,
D. Ollason, D. Povey, V. Valtchev, and P. Woodland, The HTK Book. Cambridge,
UK: Cambridge University Engineering Department, 2006.

C. M. Bishop, Neural networks for pattern recognition. Oxford university press,
1995.

. W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke, D. Yu, and

G. Zweig, “Achieving human parity in conversational speech recognition,” CoRR,
vol. abs/1610.05256, 2016.

Z. Tiiske, P. Golik, R. Schliiter, and H. Ney, “Acoustic modeling with deep neural
networks using raw time signal for Ivcsr,” in Proceedings of Interspeech, 09 2014,
pp. 890-894.

D. Povey and G. Saon, “Feature and model space speaker adaptation with full
covariance gaussians,” in /CSLP, 2006.

M. J. Gales, “Maximum likelihood linear transformations for hmm-based speech
recognition,” Computer speech & language, vol. 12, no. 2, pp. 75-98, 1998.

D. Jurafsky and J. H. Martin, Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition,
1st ed. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2000.

. T. Grész and L. Téth, “A comparison of Deep Neural Network training methods for

Large Vocabulary Speech Recognition,” in Proceedings of TSD, 2013, pp. 36—43.

. G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep

belief nets,” Neural Computation, vol. 18, no. 7, pp. 1527-1554, 2006.

99

100

Chapter 7. Summary in Hungarian

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

F. Seide, G. Li, X. Chen, and D. Yu, “Feature engineering in context-dependent
deep neural networks for conversational speech transcription,” in Proceedings of
ASRU, 2011, pp. 24-29.

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov,

“Improving neural networks by preventing co-adaptation of feature detectors,” in
CoRR, vol. 1207.0580, 2012.

L. Téth, B. Tarjan, G. Séarosi, and P. Mihajlik, “Speech recognition experiments
with audiobooks,” Acta Cybernetica, pp. 695-713, 2010.

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly et al., “Deep
neural networks for acoustic modeling in speech recognition: the shared views of
four research groups,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 82-97,
2012,

X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier networks,” in Proceed-
ings of AISTATS, 2011, pp. 315-323.

A. Mohamed, G. E. Dahl, and G. Hinton, “Acoustic modeling using deep belief
networks,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 20,
no. 1, pp. 14-22, 2012.

N. Jaitly, P. Nguyen, A. Senior, and V. Vanhoucke, “Application of pretrained
deep neural networks to large vocabulary conversational speech recognition,” Dept.
Comp. Sci., University of Toronto, Tech. Rep., 2012.

G. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-trained Deep
Neural Networks for large vocabulary speech recognition,” I[EEE Trans. ASLP,
vol. 20, no. 1, pp. 30-42, 2012.

V. Nair and G. E. Hinton, “Rectified linear units improve restricted Boltzmann
machines,” in Proceedings of ICML, 2010, pp. 807-814.

L. Téth, “Phone recognition with Deep Sparse Rectifier Neural Networks,” in Pro-
ceedings of ICASSP, 2013, pp. 6985-6989.

H. Bourlard and N. Morgan, Connectionist Speech Recognition — A Hybrid Ap-
proach. Kluwer Academic, 1994,

X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks,” in Proceedings of AISTATS, 2010, pp. 249-256.

7.6. Az eredmények tézisszerii dsszefoglalasa 101

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise training
of deep networks,” Advances in Neural Information Processing Systems, vol. 19,
pp. 153-160, 2007.

T. Salimans and D. P. Kingma, “Weight normalization: A simple reparameteriza-
tion to accelerate training of deep neural networks,” pp. 901-909, 2016.

K. Abari, G. Olaszy, C. Zainké, and G. Kiss, “Hungarian pronunciation dictionary
on Internet (in Hungarian),” in Proceedings of MSZNY, 2006, pp. 223-230.

|. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of ini-
tialization and momentum in deep learning,” in Proceedings of ICML, 2013, pp.
1139-1147.

L. Téth and T. Grész, “A comparison of deep neural network training methods for
large vocabulary speech recognition,” in Proceedings of TSD, 2013, pp. 36—43.

B. Kingsbury, “Lattice-based optimization of sequence classification criteria for
neural-network acoustic modeling,” in Proceedings of ICASSP, 2009, pp. 3761-
3764.

G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Van-
houcke, P. Nguyen, T. Sainath, and B. Kingsbury, “Deep Neural Networks for
acoustic modeling in Speech Recognition,” IEEE Signal Processing Magazine,
vol. 29, no. 6, pp. 82-97, Nov 2012.

A. Senior, G. Heigold, M. Bacchiani, and H. Liao, “GMM-free DNN training,” in
Proceedings of ICASSP, 2014, pp. 5639-5643.

A. Graves, Supervised Sequence Labelling with Recurrent Neural Networks, ser.
Studies in Computational Intelligence. Springer, 2012, vol. 385.

P. J. Werbos, “Backpropagation Through Time: what it does and how to do it,”
Proceedings of the IEEE, vol. 78, no. 10, pp. 1550-1560, 1990.

A. Graves, A.-R. Mohamed, and G. E. Hinton, “Speech recognition with Deep
Recurrent Neural Networks,” in Proceedings of ICASSP, 2013, pp. 6645-6649.

K. Rao, A. Senior, and H. Sak, “Flat start training of CD-CTC-SMBR LSTM RNN
acoustic models,” in Proceedings of ICASSP, 2016, pp. 5405-5409.

K. Vesely, A. Ghoshal, L. Burget, and D. Povey, “Sequence-discriminative training
of deep neural networks,” in Proceedings of Interspeech, 2013, pp. 2345-2349.

102

Chapter 7. Summary in Hungarian

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

P. Zhou, L. Dai, and H. Jiang, “Sequence training of multiple Deep Neural Net-
works for better performance and faster training speed,” in Proceedings of ICASSP,
2014, pp. 5664-5668.

E. McDermott, G. Heigold, P. Moreno, A. Senior, and M. Bacchiani, “Asyn-
chronous stochastic optimization for sequence training of Deep Neural Networks:
Towards big data,” in Proceedings of Interspeech, 2014, pp. 1224-1228.

A. Mohamed, D. Yu, and L. Deng, “Investigation of full-sequence training of Deep
Belief Networks for speech recognition,” in Proceedings of Interspeech, 2010, pp.
2846-2849.

G. Saon and H. Soltau, “A comparison of two optimization techniques for sequence
discriminative training of Deep Neural Networks,” in Proceedings of ICASSP, 2014,
pp. 5604-5608.

S. Wiesler, P. Golik, R. Schiiter, and H. Ney, “Investigations on sequence training
of neural networks,” in Proceedings of ICASSP, 2015, pp. 4565-4569.

D. Chen, B. Mak, and S. Sivadas, “Joint sequence training of phone and grapheme
acoustic model based on multi-task learning Deep Neural Networks,” in Proceed-
ings of Interspeech, 2014, pp. 1083-1087.

X. Huang, A. Acero, and H.-W. Hon, Spoken Language Processing: A Guide to
Theory, Algorithm, and System Development, 1st ed. Prentice Hall PTR, 2001.

G. Gosztolya, A. Banhalmi, and T. Laszlé, “Using one-class classification tech-
niques in the anti-phoneme problem,” in Proceedings IbPRIA, 2009, pp. 433-440.

X. He and L. Deng, Discriminative Learning for Speech Recognition. San Rafael,
CA, USA: Morgan & Claypool, 2008.

D. Yu and L. Deng, “Chapter 8: Deep neural network sequence-discriminative train-
ing,” in Automatic Speech Recognition — A Deep Learning Approach. Springer,
2014.

S. J. Rennie, V. Goel, and S. Thomas, “Annealed dropout training of deep net-
works,” in Proceedings of SLT, 2014, pp. 159-164.

H. Su, G. Li, D. Yu, and F. Seide, “Error back propagation for sequence training
of context-dependent deep networks for conversational speech transcription,” in
Proceedings of ICASSP, 2013, pp. 6664—6668.

7.6. Az eredmények tézisszerii dsszefoglalasa 103

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

S. S. Lamel L., Kassel R., “Speech database development: Design and analysis
of the acoustic-phonetic corpus,” in DARPA Speech Recognition Workshop, 1986,
pp. 121-124.

L. Téth, “Convolutional deep rectifier neural nets for phone recognition,” in Pro-
ceedings of Interspeech, 2013, pp. 1722-1726.

T. Grész, G. Gosztolya, and L. Téth, “A sequence training method for Deep Rec-
tifier Neural Networks in speech recognition.” in Proceedings of SPECOM, Sep
2014, pp. 81-88.

G. Gosztolya, T. Grész, and L. Téth, “GMM-free flat start sequence-discriminative
DNN training,” in Proceedings of Interspeech, San Francisco, CA, USA, Sep 2016,
pp. 3409-3413.

G. Gosztolya, T. Grész, L. Téth, and D. Imseng, “Building context-dependent DNN
acousitc models using Kullback-Leibler divergence-based state tying,” in Proceed-
ings of ICASSP, 2015, pp. 4570-4574.

A. Senior, G. Heigold, M. Bacchiani, and H. Liao, “GMM-free DNN acoustic model
training,” in Proceedings of ICASSP, 2014, pp. 5639-5643.

C. Zhang and P. Woodland, “Standalone training of context-dependent Deep Neu-
ral Network acoustic models,” in Proceedings of ICASSP, 2014, pp. 5597-5601.

D. Yu, L. Deng, and G. Dahl, “Roles of pretraining and fine-tuning in context-
dependent DNN-HMMs for real-world speech recognition,” in Proceedings of NIPS,
2010.

S. J. Young, J. J. Odell, and P. C. Woodland, “Tree-based state tying for high
accuracy acoustic modelling,” in Proceedings of HLT, 1994, pp. 307-312.

A. Senior, G. Heigold, M. Bacchiani, and H. Liao, “GMM-free DNN training,” in
Proceedings of ICASSP, 2014.

M. Bacchiani and D. Rybach, “Context dependent state tying for speech recogni-
tion using deep neural network acoustic models,” in Proceedings of ICASSP, 2014,
pp. 230-234.

M. Razavi, R. Rasipuram, and M. Magimai-Doss, “On modeling context-dependent
clustered states: Comparing HMM/GMM, hybrid HMM/ANN and KL-HMM ap-
proaches,” in Proceedings of ICASSP, 2014.

104

Chapter 7. Summary in Hungarian

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

L. Zhu, K. Kilgour, S. Stiiker, and A. Waibel, “Gaussian free cluster tree construc-
tion using Deep Neural Network,” in Proceedings of Interspeech, Sep 2015, pp.
3254-3258.

W. Wang, H. Tang, and K. Livescu, “Triphone state-tying via Deep Canonical
Correlation Analysis,” in Proceedings of Interspeech, 2016, pp. 3444-3448.

K. Beulen and H. Ney, “Automatic question generation for decision tree based
state tying,” in Proceedings of ICASSP, 1998, pp. 805-808.

J. Odell, “The use of context in large vocabulary speech recognition,” Ph.D. dis-
sertation, University of Cambridge, 1995.

D. Imseng and J. Dines, “Decision tree clustering for KL-HMM,” IDIAP Research
Institute, Tech. Rep. Idiap-Com-01-2012, 2012.

D. Imseng, J. Dines, P. Motlicek, P. Garner, and H. Bourlard, “Comparing dif-
ferent acoustic modeling techniques for multilingual boosting,” in Proceedings of
Interspeech, 2012.

S. Kullback and R. Leibler, “On information and sufficiency,” The Annals of Math-
ematical Statistics, vol. 22, no. 1, pp. 79-86, 1951.

D. B. Paul and J. M. Baker, “The design for the Wall Street Journal-based CSR
corpus,” in Proceedings of HLT, 1992, pp. 357-362.

P. C. Woodland, J. J. Odell, V. Valtchev, and S. J. Young, “Large vocabulary
continuous speech recognition using htk,” in Proceedings of ICASSP, 1994, pp.
11/125-11/128 vol.2.

P. Mat&jka, O. Glembek, O. Novotny, O. Plchot, F. Grézl, L. Burget, and J. H.
Cernocky, “Analysis of DNN approaches to speaker identification,” in Proceedings
of ICASSP, 2016, pp. 5100-5104.

Y. Bar, N. Levy, and W. L., “Classification of artistic styles using binarized features
derived from a Deep Neural Network,” in Proceedings of ECCV, 2015, pp. 71-84.

M. Bacchiani, A. Senior, and G. Heigold, “Asynchronous, online, GMM-free train-
ing of a context dependent acoustic model for speech recognition,” in Proceedings
of Interspeech, 2014, pp. 1900-1904.

T. Grész, G. Gosztolya, and L. Téth, “A comparative evaluation of GMM-free state
tying methods for ASR,” in Proceedings of Interspeech, 2017, pp. 1626-1630.

7.6. Az eredmények tézisszerii dsszefoglalasa 105

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

G. M. Weiss and F. Provost, “The effect of class distribution on classifier learning:

an empirical study,” Technical Report, Rutgers Univ., 2001.

K. Andric and D. Kalpic, “The effect of class distribution on classification algo-
rithms in credit risk assessment,” in Proceedings of MIPRO, 2016, pp. 1241-1247.

G. Gosztolya, T. Grész, R. Busa-Fekete, and L. Té6th, “Detecting the intensity of
cognitive and physical load using AdaBoost and Deep Rectifier Neural Networks,”
in Proceedings of Interspeech, 2014, pp. 452-456.

A. 1. Garcia-Moral, R. Solera-Urefia, C. Pelaez-Moreno, and F. Diaz-de-Maria,
“Data balancing for efficient training of hybrid ANN/HMM automatic speech
recognition systems,” |[EEE Trans. Audio, Speech & Language Processing, vol. 19,
no. 3, pp. 468481, 2011.

S. Lawrence, |. Burns, A. Back, A. Tsoi, and C. Giles, “Chapter 14: Neural network
classification and prior class probabilities,” in Neural Networks: Tricks of the Trade.
Springer, 1998, pp. 299-313.

L. Téth and A. Kocsor, “Training HMM/ANN hybrid speech recognizers by prob-
abilistic sampling,” in Proceedings of ICANN, 2005, pp. 597-603.

M. Song, Q. Zhang, J. Pan, and Y. Yan, “Improving HMIM/DNN in asr of under-
resourced languages using probabilistic sampling,” in Proceedings of ChinaSIP,
2015, pp. 20-24.

G. Gosztolya, T. Grész, R. Busa-Fekete, and L. Té6th, “Determining native language
and deception using phonetic features and classifier combination,” in Proceedings
of Interspeech, San Francisco, CA, USA, Sep 2016, pp. 2418-2422.

G. Gosztolya, R. Busa-Fekete, T. Grész, and L. Té6th, “DNN-based feature extrac-
tion and classifier combination for child-directed speech, cold and snoring identi-
fication,” in Proceedings of Interspeech, 2017, pp. 3522-3526.

A. Rousseau, P. Deléglise, and Y. Estéve, “TED-LIUM: an automatic speech recog-
nition dedicated corpus,” in Proceedings of LREC, 2012, pp. 125-129.

J. Carletta, “Unleashing the killer corpus: experiences in creating the multi-
everything AMI Meeting Corpus,” Language Resources and Evaluation, vol. 41,
no. 2, pp. 181-190, 2007.

D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M. Hanne-
mann, P. Motlicek, Y. Qian, P. Schwarz, J. Silovsky, G. Stemmer, and K. Vesely,

106 Chapter 7. Summary in Hungarian

“The Kaldi Speech Recognition Toolkit,” in Proceedings of ASRU. IEEE Signal
Processing Society, 2011.

84. B. Schuller, S. Steidl, A. Batliner, J. Epps, F. Eyben, F. Ringeval, E. Marchi,
and Y. Zhang, “The INTERSPEECH 2014 computational paralinguistics challenge:
Cognitive & physical load,” in Proceedings of Interspeech, 2014, pp. 427-431.

85. B.Schuller, S. Steidl, A. Batliner, J. Hirschberg, J. K. Burgoon, A. Baird, A. Elkins,
Y. Zhang, E. Coutinho, and K. Evanini, “The Interspeech 2016 computational
paralinguistics challenge: Deception, sincerity & native language,” in Proceedings
of Interspeech.

86. B. Schuller, S. Steidl, A. Batliner, S. Hantke, E. Bergelson, J. Krajewski, C. Jan-
ott, A. Amatuni, M. Casillas, A. Seidl, M. Soderstrom, A. S. Warlaumont, G. Hi-
dalgo, S. Schnieder, C. Heiser, W. Hohenhorst, M. Herzog, M. Schmitt, K. Qian,
Y. Zhang, G. Trigeorgis, P. Tzirakis, and S. Zafeiriou, “The INTERSPEECH 2017
computational paralinguistics challenge: Addressee, Cold & Snoring,” in Proceed-
ings of Interspeech, 2017, pp. 3442-3446.

87. T. Gro6sz, G. Gosztolya, and L. Téth, “Training context-dependent DNN acoustic
models using probabilistic sampling,” in Proceedings of Interspeech, 2017, pp.
1621-1625.

