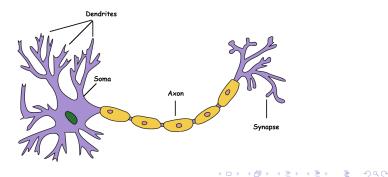
Artificial neurons, neural networks

Tamás Grósz

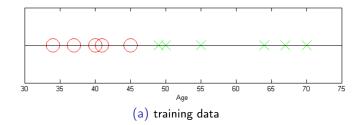
<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Background

- Artificial neurons are mathematical functions conceived as a model of biological neurons
- They are the basic building blocks of artificial neural networks
- Invented by Rosenblatt in 1957

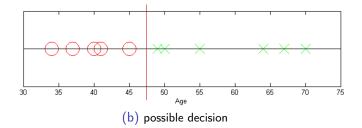


Let's say we have collected 1D data (see below), what would be an optimal decision?



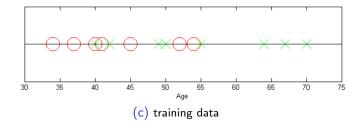
▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Let's say we have collected 1D data (see below), what would be an optimal decision?

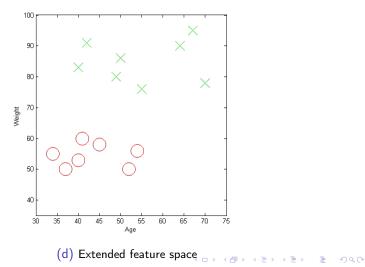


▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Sometimes we cannot separate the data in low dimensions.

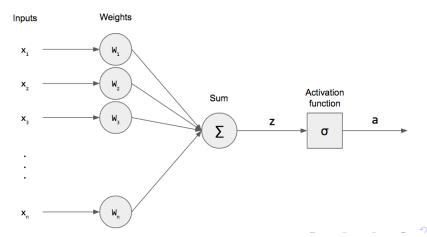


▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで



Perceptron model

• The artificial neuron (Perceptron) learns a hyperplane in the feature space



Perceptron

Bias

The bias value allows the shifting of the activation function to the left or the right, which may be critical for successful learning. Usualy it is stored in w_0 and the input vextor (x) is extended with $x_0 = 1$.

ション ふゆ く 山 マ チャット しょうくしゃ

Activation functions

- Step function: $Step(x) = \begin{cases} 0, & \text{if } x < 0 \\ 1, & \text{otherwise} \end{cases}$
- Sigmoid: Sigmoid(x) = $\frac{1}{1+e^{-x}}$
- Tangent hyperbolicus: $Tanh(x) = \frac{e^{x} e^{-x}}{e^{x} + e^{-x}}$

Loss functions

To train the neuron, we need to define a function that measures its loss during training

Mean Squared Errror

$$MSE(w) = rac{1}{N} \sum_{d=1}^{D} (y_d - o_d)^2$$
 $o_d = Sigmoid(\sum_i w_i x_i)$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Note: here D=1, because we have only one neuron

- Initialy we set each w_i to some samll random value
- Our goal is find new values for *w* so that the Loss becomes minimal

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Initialy we set each w_i to some samll random value
- Our goal is find new values for *w* so that the Loss becomes minimal

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• It is a global optimization problem, if the input is high dimensional we cannot solve it!

- Initialy we set each w_i to some samll random value
- Our goal is find new values for *w* so that the Loss becomes minimal
- It is a global optimization problem, if the input is high dimensional we cannot solve it!
- Solution: look for a local minimum of the Loss function

ション ふゆ アメリア メリア しょうくしゃ

- Initialy we set each w_i to some samll random value
- Our goal is find new values for *w* so that the Loss becomes minimal
- It is a global optimization problem, if the input is high dimensional we cannot solve it!
- Solution: look for a local minimum of the Loss function

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

• It can be achieved by a hill climbing optimizer

Gradient descent algorithm

It is a first-order iterative optimization algorithm for finding the minimum of a function.

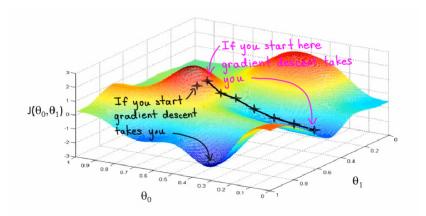
To find a local minimum of a function using gradient descent, one takes steps proportional to the negative of the gradient.

Gradient of a neuron

$$\frac{\partial MSE(w)}{\partial w_i} = \underbrace{2 \times (t_d - o_d) \times o_d \times (1 - o_d) \times x_i}_{\text{derivate of MSE}} \underbrace{o_d \times (1 - o_d) \times x_i}_{\text{Sigmoid function}} \underbrace{w_X}_{\text{WX}}$$

ション ふゆ アメリア メリア しょうくしゃ

Gradient descent algorithm



Perceptron update rule

•
$$w^t = w^{t-1} + \alpha \frac{\partial MSE(w^{t-1})}{\partial w^{t-1}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $\bullet \ \alpha$ is the learning rate

Perceptron update rule

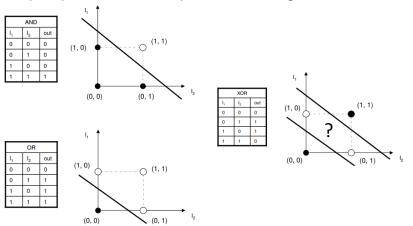
•
$$w^t = w^{t-1} + \alpha \frac{\partial MSE(w^{t-1})}{\partial w^{t-1}}$$

- α is the learning rate
- To calculate the new weights, we can use many examples (batch)
- If the batchsize<N, then the optimization method is called Stochasatic Gradien Descent
- Epoch/iteration: all the available data was show to the neuron

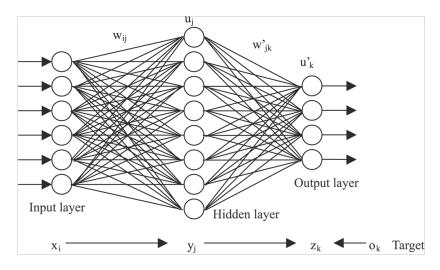
ション ふゆ アメリア メリア しょうくしゃ

Perceptron representation strength

One perceptron has limited representation strength:



Artificial Neural Networks



Practice

https://playground.tensorflow.org Python tutorial: practice_02.ipynb

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●