
Deep Neural Networks

Deep Neural Networks

Tamás Grósz



Deep Neural Networks

Simple neural networks (ANN)

Traditional NNs have one or two hidden layers
There is a theorical proof that a ANN with two hidden layer
can learn any function (assuming that we can use infinite
amount of neurons)

(a) One hidden layer can
learn to recognize convex
areas

(b) Two hidden layer can
learn to recognize any
non-covex, non-continous
area



Deep Neural Networks

Deep Neural Networks



Deep Neural Networks

Why is a DNN better than a shallow ANN?

More hidden layer means it can learn more complex functions
It can learn hierarchical features
If we have limited amount of neurons (computationsal power)
it is advisable to use a deep structure
DNNs have new training algorithms, which allow them to learn
better models

A large drawback is their computational requirements, this is why
they were not used before.
Solution: use GPU for the computations (reminder: each layer
requires a matrix multiplication, that can be done in parallel)



Deep Neural Networks

Why is a DNN better than a shallow ANN?

More hidden layer means it can learn more complex functions
It can learn hierarchical features
If we have limited amount of neurons (computationsal power)
it is advisable to use a deep structure
DNNs have new training algorithms, which allow them to learn
better models

A large drawback is their computational requirements, this is why
they were not used before.
Solution: use GPU for the computations (reminder: each layer
requires a matrix multiplication, that can be done in parallel)



Deep Neural Networks

Training DNNs

Despite all their advantages, DNNs have many drawbacks too.
During training, we propagate the error signal back through the
layers, this process becomes problematic if we have many layers.
We have to face two problem mainly:

Vanishing Gradient problem
Explaining Away effect



Deep Neural Networks

Vanishing Gradient

Reminder
The training algorithm propagates the gradient:
Gradient = (gradient of the error) * (gradient of the activation)

The problem is with the gradient of the Sigmoid function
(o ∗ (1− o)) as o ≤ 1.

As we propagate the error signal, it becomes smaller and
smaller
To update the weights we also multiply by the learning rate
(lr < 1)
In DNNs the gradient simply ”vanishes”, casing the deepest
layers to stay randomly initialized.



Deep Neural Networks

Vanishing Gradient

Reminder
The training algorithm propagates the gradient:
Gradient = (gradient of the error) * (gradient of the activation)

The problem is with the gradient of the Sigmoid function
(o ∗ (1− o)) as o ≤ 1.
As we propagate the error signal, it becomes smaller and
smaller
To update the weights we also multiply by the learning rate
(lr < 1)

In DNNs the gradient simply ”vanishes”, casing the deepest
layers to stay randomly initialized.



Deep Neural Networks

Vanishing Gradient

Reminder
The training algorithm propagates the gradient:
Gradient = (gradient of the error) * (gradient of the activation)

The problem is with the gradient of the Sigmoid function
(o ∗ (1− o)) as o ≤ 1.
As we propagate the error signal, it becomes smaller and
smaller
To update the weights we also multiply by the learning rate
(lr < 1)
In DNNs the gradient simply ”vanishes”, casing the deepest
layers to stay randomly initialized.



Deep Neural Networks

Explaining Away

During training, the parameters associated with a single layer could
become dependent if they are parents of common children in other
layers.

A simple example:
A car’s engine can fail (X). The reason might either be a dead
battery Y or a blocked fuel pump Z.

The problem: Given that you know the
engine is broken, the event of a dead
battery and a blocked fuel pump are
suddenly not independent anymore!



Deep Neural Networks

Explaining Away

During training, the parameters associated with a single layer could
become dependent if they are parents of common children in other
layers.
A simple example:
A car’s engine can fail (X). The reason might either be a dead
battery Y or a blocked fuel pump Z.

The problem: Given that you know the
engine is broken, the event of a dead
battery and a blocked fuel pump are
suddenly not independent anymore!



Deep Neural Networks

Explaining Away

During training, the parameters associated with a single layer could
become dependent if they are parents of common children in other
layers.
A simple example:
A car’s engine can fail (X). The reason might either be a dead
battery Y or a blocked fuel pump Z.

The problem: Given that you know the
engine is broken, the event of a dead
battery and a blocked fuel pump are
suddenly not independent anymore!



Deep Neural Networks

Explaining Away

During training, the parameters associated with a single layer could
become dependent if they are parents of common children in other
layers.
A simple example:
A car’s engine can fail (X). The reason might either be a dead
battery Y or a blocked fuel pump Z.

The problem: Given that you know the
engine is broken, the event of a dead
battery and a blocked fuel pump are
suddenly not independent anymore!



Deep Neural Networks

Possible solutions

Pre-training methods
Use a pre-training step that initializes the parameters of each layer
(layer-by-layer) so that the final training could find a better local
minimum.

Change the activation function
Use other activation functions, which do not cause the vanishing
gradient effect.

New structure
Change the structure of the network or the behaviour of the neurons



Deep Neural Networks

Possible solutions

Pre-training methods
Use a pre-training step that initializes the parameters of each layer
(layer-by-layer) so that the final training could find a better local
minimum.

Change the activation function
Use other activation functions, which do not cause the vanishing
gradient effect.

New structure
Change the structure of the network or the behaviour of the neurons



Deep Neural Networks

Possible solutions

Pre-training methods
Use a pre-training step that initializes the parameters of each layer
(layer-by-layer) so that the final training could find a better local
minimum.

Change the activation function
Use other activation functions, which do not cause the vanishing
gradient effect.

New structure
Change the structure of the network or the behaviour of the neurons



Deep Neural Networks

Pre-training algorithms

The goal is to prevent vanishing gradient.
The training is done in two steps:

1 Pre-training: use some algorithm to learn the initial weights
layer-by-layer

2 Finetuning: train the DNN with traditional methods

Deep Belief Network pre-training: unsupervised pre-training of
hidden layers
Discriminative pre-training: use the standard SGD and start
with a simple ANN, then gradualy add more hidden layers



Deep Neural Networks

Changing the activation function

The main problem is with the Sigmoid function, let’s change it!
The criteria for an activation function:

It needs to be non-linear
Must be continuous, so that we can calculate its gradient

Some options: https://en.wikipedia.org/wiki/Activation_function



Deep Neural Networks

Rectified Linear Units

One of the most famous ones, it is widely used.

ReLU(x) = max(0, x)
Properties

Biological plausibility: inactive neurons (in the case of negative
output)
No vanishing gradient problems: the gradient is the step
function
Efficient computation: could be evaluated much faster than
Sigmoid
Sparse activation (usually half of the neurons are inactive), it
can be exploited



Deep Neural Networks

New structures/neurons

Structures
Use skip-layer connections
Residual blocks

Neurons
Convolutional neurons: they see only a small portion of the
input, but we convolve them over the entire input
LSTM: a new type of recurrent neuron



Deep Neural Networks

New structures/neurons

Structures
Use skip-layer connections
Residual blocks

Neurons
Convolutional neurons: they see only a small portion of the
input, but we convolve them over the entire input
LSTM: a new type of recurrent neuron



Deep Neural Networks

Practice

Python tutorial: practice_05.ipynb


