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Regularization

Overfitting

Although it’s often possible to achieve high accuracy on the
training data, our real goal is to develop models that generalize well
to data they haven’t seen before.

Possible causes
Training the model too long
Too large model
Small training set
The network learns patterns from the training data that don’t
generalize well (are not present in the test set)
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Regularization

Underfitting

The opposite of overfitting.
There is still room for improvement on the test data.

Possible causes
If the model is not powerful enough -> more neurons and
layers
We over-regularize the model -> less regularization
The network was not trained long enough -> more epoch

Solution
The solution for bot problem is to use more training data.
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Regularization

Early stopping

A very simple regularization technique
Utilizes the validation set simulating the test set during
training

After every epoch, the model is evaluated on the validation
data
If we see no improvement on the validation set in the last N
epochs, then we stop the training.
We always back up the best model (on the validation set), and
in the end, we restore its weights.
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Parameter regularization

Basic principle: we need to prevent the network from having too
large weights

Weight decay
After each update, the weights are multiplied by a factor slightly
less than 1. This prevents the weights from growing too large

Another solution is to add a new penalty term to the loss function.
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L1, L2 regularization

We add a penalty term tot the optimized loss function

LossRegularized = Loss + λPenalty

L1
Penalty term:

∑
i |wi |

L2

Penalty term:
∑

i (wi )
2

The key difference between these techniques is that L1 shrinks the
less important feature’s coefficient to zero thus, removing some
feature altogether.
This works well for feature selection in case we have a huge number
of features, but reduces the models capacity.
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Regularization

Sparse networks

The new principle is that the larger and deeper a network is,
the better it can perform.
As a result, computational resources have become a key
limiting factor in achieving better performance.

Forcing sparsity: after each epoch, the small parameters are
pruned (changed to 0)
This way we decrease the computations required to evaluate
the net
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Regularization

Ensemble learning

Ensemble learning
Ensemble learning is the process by which multiple models, such as
classifiers or experts, are strategically generated and combined to
solve a particular computational intelligence problem.

Train multiple small DNNs, then combine their predictions
Voting: use majority vote to determine the final prediction
Pobabilistic voting: average the probabilities of the DNNs then
choose the most probable one
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Regularization

Dropout

During training we ignore some randomly choosen neurons.
Technically a random binary mask is generated and applied for
each batch and layer.

Why does it work?
Dropout forces a neural network to
learn more robust features that are
useful in conjunction with many
different random subsets of the ot-
her neurons. One can also say
that we train many different small
DNNs for each batch (ensemble
learning)



Regularization

Dropout

During training we ignore some randomly choosen neurons.
Technically a random binary mask is generated and applied for
each batch and layer.

Why does it work?
Dropout forces a neural network to
learn more robust features that are
useful in conjunction with many
different random subsets of the ot-
her neurons. One can also say
that we train many different small
DNNs for each batch (ensemble
learning)



Regularization

Batch normalization

Normalizes the output of a previous hidden layer by subtracting the
batch mean and dividing by the batch standard deviation.

It allows each layer to learn more independently
We can use higher learning rates because there’s no really high
or really low activation
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Regularization

Data augmentation

Data augmentation
Data augmentation is another method we can use to avoid
overfitting. We simply increase the amount of training data using
only original training data.

How do I get more data, if I don’t have “more data”?

We just need to make minor alterations to our existing dataset:
Flipping, Cropping, translating, rotating images
Slowing down or speeding up speech or video
Adding some noise to the data
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Multitask learning

DNNs usually solve a single problem from a single example
Sometimes it is beneficial to solve two optimization problems
(i.e. two related problems) at the same time
Weight regularization is basicaly multitask learning
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Practice

Python tutorial: practice_06.ipynb


