
Robotino® View2

EN

Weitergabe sowie Vervielfältigung dieses Dokuments, Verwertung und Mitteilung seines
Inhalts verboten, soweit nicht ausdrücklich gestattet. Zuwiderhandlungen verpflichten zu
Schadenersatz. Alle Rechte vorbehalten, insbesondere das Recht, Patent-,
Gebrauchsmuster- oder Geschmacksmusteranmeldungen durchzuführen.

The copying, distribution and utilisation of this document as well as the communication of
its contents to others without express authorisation is prohibited. Offenders will be held
liable for the payment of damages. All rights reserved, in particular the right to carry out
patent, utility model or ornamental design registration.

Sin nuestra expresa autorización, queda terminantemente prohibida la reproducción total
o parcial de este documento, asi como su uso indebido y/o su exhibición o comunicación
a terceros. De los infractores se exigirá el correspondiente resarcimiento de daños y
perjuicios. Quedan reservados todos los derechos inherentes, en especial los de
patentes, de modelos registrados y estéticos.

Toute diffusion ou reproduction du présent document, de même que toute exploitation ou
communication de son contenu sans l'accord express de l'auteur est proscrite. Toute
contravention pourra donner lieu à des demandes de dommages et intérêts. Tous droits
réservés, notamment en termes de demande de brevet, de modèle déposé et de
protection par dessin ou modèle.

© Festo Didactic GmbH & Co. KG, 73770 Denkendorf, Germany, April 2010
Internet: www.festo-didactic.com
e-mail: did@de.festo.com

3© Festo Didactic GmbH & Co. KG

5© Festo Didactic GmbH & Co. KG

Inhalt / Contents / Contenido / Sommaire

__ 81 Welcome

__ 81.1 Improvements

__ 81.2 Installation, update and de-installation

__ 91.3 Changing language

__ 92 Familiarisation with the workspace

__ 92.1 Structure and concept of user interface

__ 10Tool bar 2.1.1

__ 11Function block library 2.1.2

__ 122.2 Terminology

__ 123 Using Robotino® View

__ 123.1 Create a new project

__ 123.2 Load an existing project

__ 133.3 Insert function blocks into sub-programs

__ 133.4 Interlink function blocks

__ 143.5 Global variables

__ 143.6 Execute a sub-program

__ 153.7 Execute the main program

__ 163.8 Connect to Robotino®

__ 173.9 Keyboard shortcuts

__ 173.10 Type conversion

__ 183.11 Updates

__ 183.12 Upload projects to Robotino and execute them

__ 19Browse Robotino 3.12.1

__ 20Upload and execute 3.12.2

__ 213.13 Upgrade Robotino packages

__ 23Robotino firmware installation 3.13.1

__ 23Interna 3.13.2

__ 244 Examples

__ 244.1 Control programs

__ 24Tutorial 2 4.1.1

__ 304.2 Logic

__ 31Multiplexer 4.2.1

__ 31FlipFlop 4.2.2

__ 315 Function block library

__ 325.1 Logic

__ 32Counter up 5.1.1

__ 35Counter down 5.1.2

__ 36Multiplexer 5.1.3

__ 37Demultiplexer 5.1.4

__ 38AND 5.1.5

__ 40AND FL 5.1.6

__ 41NAND 5.1.7

__ 43NAND_FL 5.1.8

__ 44OR 5.1.9

__ 45XOR 5.1.10

__ 46NOT 5.1.11

__ 46NOR 5.1.12

© Festo Didactic GmbH & Co. KG6

__ 48Latching relay 5.1.13

__ 49Sample and hold element 5.1.14

__ 495.2 Mathematics

__ 49Arithmetic operations 5.2.1

__ 53Comparison Operations 5.2.2

__ 55Functions 5.2.3

__ 61Arrays 5.2.4

__ 635.3 Vector analysis

__ 63Vector operations 5.3.1

__ 66Element operations 5.3.2

__ 67Transformations 5.3.3

__ 695.4 Display

__ 70Oscilloscope 5.4.1

__ 71Laser range finder data display 5.4.2

__ 725.5 Image processing

__ 72Segmenter 5.5.1

__ 76Segment Extractor 5.5.2

__ 78Line Detector 5.5.3

__ 80ROI 5.5.4

__ 82Image Information 5.5.5

__ 83Colorspace conversion 5.5.6

__ 845.6 Generators

__ 84Arbitrary waveform generator 5.6.1

__ 86Constant 5.6.2

__ 87Timer 5.6.3

__ 88Random generator 5.6.4

__ 885.7 Filter

__ 88Mean filter 5.7.1

__ 895.8 Navigation

__ 89Position Driver 5.8.1

__ 93Constant pose 5.8.2

__ 93Pose composer 5.8.3

__ 94Pose decomposer 5.8.4

__ 95Path composer 5.8.5

__ 96Path decomposer 5.8.6

__ 97Path driver 5.8.7

__ 105Obstacle avoidance 5.8.8

__ 1065.9 Input Devices

__ 106Control Panel 5.9.1

__ 108Slider 5.9.2

__ 1095.10 Data exchange

__ 109Image Reader 5.10.1

__ 111Image Writer 5.10.2

__ 1125.11 Variables

__ 1126 Devices

__ 1136.1 Add and edit

__ 1146.2 Show dialogs

__ 1146.3 Robotino

__ 114Toolbar 6.3.1

__ 115Dialog 6.3.2

__ 115Function blocks 6.3.3

__ 1376.4 Joystick

__ 138Dialog 6.4.1

__ 138Function blocks 6.4.2

7© Festo Didactic GmbH & Co. KG

__ 1396.5 Local camera

__ 139Dialog 6.5.1

__ 140Function blocks 6.5.2

__ 1416.6 OPC Client

__ 142Dialog 6.6.1

__ 143Function blocks 6.6.2

__ 1456.7 Data exchange

__ 145Server 6.7.1

__ 148Client 6.7.2

__ 152Function blocks 6.7.3

__ 1526.8 UDP data exchange

__ 152Protocol 6.8.1

__ 155Dialog 6.8.2

__ 156Function blocks 6.8.3

__ 157Example 6.8.4

__ 1577 Programming

__ 1577.1 My function blocks

__ 158Tutorial 1 7.1.1

Index __ 161

© Festo Didactic GmbH & Co. KG

Welcome

8

1 Welcome

Robotino® View is the intuitive graphic programming environment for Robotino®. Robotino® View
enables you to create and execute control programs for Robotino®.

1.1 Improvements

Robotino® View 2 combines modern operational concepts, extensibility by the user and intuitive
usage. All innovations preserve the many positive aspects known from Robotino® View 1. The user
being familiar with Robotino® View 1 will recognize many features from the previous version. These
are for example the function block library or the toolbar by which the connection to Robotino is
established. At first sight Robotino® View 2 looks very similar to its predecessor.

Kept feature?
Programs are designed as data flow control programs. The function block library contains the units
the data flow graph is build from.
The connection to Robotino is established via the toolbar.

Whats new?
The sequence control program is replaced by a "real" control program known from PLC
programming following DIN EN 61131.
Robotino® View 2 is not only able to control Robotino, but any device and in unlimited quantities.
I.e. an arbitrary number of Robotinos can be controlled simultaneously from within one Robotino
View project.
Subprograms can be reused within the main program.
Subprograms can be imported from different projects.
The user can design and implement custom function blocks which are loaded into the function
block library at runtime.
The user can design and implement custom devices and load them as Plugin into the device
management.

Changes within this version:
The device manager had been integrated into the function block library. See Add and edit devices

.
Projects can be uploaded to Robotino and also be started on Robotino (requires Robotino CF card
Version 2.0). See upload projects .
New devices for data exchange over network. See Devices for data exchange .

1.2 Installation, update and de-installation

You must be in possession of the administrator rights to be able to install Robotino® View.
To install Robotino® View follow the instructions in the dialog boxes.
If users without administrator rights are to use Robotino® View,
they will need to include the programs released from the restrictions under Windows® XP
in the security centre for the setting for the firewall of Robotino® View (Port 80 and 8080).

113

18

145

Welcome

© Festo Didactic GmbH & Co. KG 9

1.3 Changing language

Robotino® View automatically recognizes the language set in your Windows® System and selects
the corresponding translation of Robotino® View.
You can change the automatic setting at any time via menu item Extras languages. The new
settings immediately take effect.

2 Familiarisation with the workspace

Once you have familiarised yourself with the workspace and the designations used in Robotino®
View, it will be easier for you to follow the remainder of the documentation.
In this section you will learn more about:

The design and concept of the user interface,
The terminology used in Robotino® View.

2.1 Structure and concept of user interface

When starting up Robotino® View an empty project with a single "Robotino" device is opened. The
complete workspace is taken up by the project.

© Festo Didactic GmbH & Co. KG

Familiarisation with the workspace

10

Numbe
r

Name Description

1 Title bar Shows the name of the current project (Unnamed). If there are unsaved
changes within the project, the project name is followed by a *.
Next to the project name the application name and application version is
shown (here Robotino View version 2.2.4).
Default buttons to minimize, maximize and closing.

2 Menu bar Menus to load/save, edit, view ...

3 Tool bar Quickly accessible buttons to the function from the menus.
Buttons to start and stop the simulation.
Input box for Robotini's IP address and connect button (see Robotino tool bar

).
Festo Logo with Link to the Festo homepage.

4 Program
selector

Here you can switch between the main program and the subprograms of a
project. The subprogram "Step1" is visible at present.

5 Program
workspace

Here the program is viewed and edited. Obviously, the subprogram "Step1" is
empty.

6 Function
block
library

The function blocks available for programming are displayed here.

7 Status bar Shows information about project and application status.

2.1.1 Tool bar

Create a new project

Create a new sub-program

Open an existing project

Save current project

Start main program

Start the currently visible program

Pause simulation

Stop simulation

Upload the project to Robotino

IP address input
and connect
button

see Robotino tool bar

Festo-Logo with link to Festo Homepage

114

11

114

Familiarisation with the workspace

© Festo Didactic GmbH & Co. KG 11

2.1.2 Function block library

The folder function block library contains function blocks that are available in every project. Currently
visible are the function blocks Equality, Greater ... Less Equal from the sub folder Comparison
operations.

The folder Robotino® contains function blocks that are provided by the "Robotino® " device. A
new project always contains one "Robotino® ". Currently visible are the function blocks "Motor1

" to "Omnidrive (inverse) " from the folder "Drive system ".

The folder Variables contains function blocks to read and write global Variables.

114

114

116 118 115

© Festo Didactic GmbH & Co. KG

Familiarisation with the workspace

12

You can add function blocks via Drag&Drop to the current sub-program.

Function blocks of devices are bound to concrete hardware resources. "Motor1 " is available once
on Robotino. Therefore you can add "Motor1 " only once to a sub-program. If "Motor1 " had
been added to a sub-program already, the icon of "Motor1 " in the function block library is gray.

2.2 Terminology

Function block Smallest function unit a subprogram consists of. By networking several
function blocks it is possible to realise complex robot behaviour.

Subprogram Function blocks are interlinked by networks in a sub-program

Main program A control program written in sequential function chart connecting the
subprograms.

Project A project consists of a main program and several subprograms. Projects
can be loaded and saved.

Network Function blocks are linked by one or several networks.

Network point Network points are within a network and enable the structuring and
graphic representation of a network. A new sub-network can be started
from a network point.

3 Using Robotino® View

Robotino® View is used to create the control programs for Robotino®. In this section you will learn
how to:

create a new project
load an existing project
insert function blocks into a sub-program
interlink function blocks by networks
execute a sub-program and the main program
establish a connection to Robotino®

3.1 Create a new project

There are two possibilities to create a new project:
Via the menu bar File New

Via the tool bar with the button „Create a new project"

3.2 Load an existing project

There are three possibilities to load an existing project:
Via the menu bar File Open
Via the tool bar with the button "Load a project from file"
Via the keyboard shotcut Ctrl + O

Saved projects do have the file extension .rvw2

116

116 116

116

10

10

Using Robotino® View

© Festo Didactic GmbH & Co. KG 13

3.3 Insert function blocks into sub-programs

After creating a new project or after loading an existing project from file you can start developing your
own control program or modifying the existing one.

Example:
Make sure a sub-program is shown in the current view. With newly created project there is always
the sub-program "Step1". The sub-program "Step1" is shown after creating a new project. The
function block library is only visible when looking at a sub-program.

Expand the folder "Logic " in the function block library. Drag "Counter Up " from the function
block library and drop it in the sub-program.

Expand the folder "Generators " in the function block library. Drag "Arbitrary Waveform Generator
" and drop it left to the "Counter Up ".

3.4 Interlink function blocks

By connecting output connectors to input connectors of function blocks, data is passed from the
function blocks output to the others function block input. The connection is visualized by a line
called network. A network is always connected to exactly one output connector and at least one
input connector.

The current sub-program example contains an "Arbitrary Waveform Generator " and a "Counter
Up " function block. Connect the "Arbitrary Waveform Generator " output to the upper input of "
Counter Up ".

Do a left mouse click on the "Arbitrary Waveform Generator " output connector. By this you are
creating a net line which is attached to the "Arbitrary Waveform Generator " output and with the
other end to the mouse pointer.

By clicking with the left mouse button somewhere in the sub-program you can create net point. To
create the network click on the upper input of "Counter Up ".

To delete a net point mark it by doing a left click on it and press Del.

To erase a net line mark it by doing a left click on it and press Del. This might erase the whole
network.

11

32 32

84

84 32

84

32 84

32

84

84

32

© Festo Didactic GmbH & Co. KG

Using Robotino® View

14

3.5 Global variables

Global variables can be read and written in every subprobram of a project; in the main program they
can be used in the transition conditions.
In the main program view the variable management is located on the right side. It enables you to
add, remove and rename variables and to assign initial values to them.

Main program with variable management

Global variables store floating point numbers only. Support for other data types will be included in
future versions of Robotino View. After creating a variable function blocks for reading and writing the
variable are available in the function block library.

3.6 Execute a sub-program

After connecting the "Arbitrary Waveform Generator " to the "Counter Up " you can start

simulation of the sub-program by clicking „Start" shown in the tool bar .

You can display the values generated by the "Arbitrary Waveform Generator " and "Counter Up
" by selecting View Show Connector Values or by pressing Ctrl + D.

84 32

10

84 32

Using Robotino® View

© Festo Didactic GmbH & Co. KG 15

You can see the "Arbitrary Waveform Generator " generating values between 0 and 10. "Counter
Up " increments its output when the input changes from false (0) to true (>0). At the moment this
only happens when starting the sub-program. See type conversion to read how floating point
numbers are converted to boolean. Furthermore it is very unlikely that the "Arbitrary Waveform
Generator " output matches exactly to 0.

To see the counter counting, select square from the "Arbitrary Waveform Generator " dialog. The
generated output is now in the range -1 to 1.

3.7 Execute the main program

By clicking on „Start" in the tool bar , simulation of the currently visible program is started. If
the sub-program "Step1" is visible only "Step1" is simulated. "Step1" is part of the main program,
which can be simulated as well.

Use the Program selector to make the main program the current program.

84

32

17

84

84

10

9

© Festo Didactic GmbH & Co. KG

Using Robotino® View

16

By clicking on „Start" in the tool bar simulation of the main program is started. The Init step is
run only once, because the transition condition following the Init step is true. As the transition
condition following Step1 is constantly false, Step1 and the sub-program assigned to it (also called
Step1) is executed.

You can always start simulation of the main program no matter which via is currently visible, by

clicking the "Start main program" button in the tool bar .

3.8 Connect to Robotino®

Enter Robotino's IP address in the IP address input field in the tool bar . The default address is
172.26.1.1. Click onto the connection button left to the address input field. If the connect button
changes from gray to green, the connection is established and data between Robotino and Robotino
View is exchanged.

10

10

10

Using Robotino® View

© Festo Didactic GmbH & Co. KG 17

3.9 Keyboard shortcuts

Function Keyboard shortcut

Open file Ctrl + O

Save file Ctrl + S

Save file as Shift + Ctrl + S

Quit Robotino® View Ctrl + Q

Undo Ctrl + Z

Redo Ctrl + Y or Shift + Ctrl + Z

Delete selection Del

Cut selection Ctrl + X

Copy selection Ctrl + C

Paste selection Ctrl + V

Move object up

Move object down

Move object left

Move object right

Move view up
Ctrl +

Move view down
Ctrl +

Move view left
Ctrl +

Move view right
Ctrl +

Clear selection Esc

Select all Ctrl + A

Demagnify view F3

Magnify view Shift + F3

Magnify grid F4

Demagnify grid Shift + F4

Toggle function block library visibility Ctrl + L

Toggle function block connector values' visibility Ctrl + D

Toggle function block connector descriptions'
visibility

Ctrl + T

3.10 Type conversion

Data type implicit conversion to Description
int float, bool Conversion to bool will result in true if the value is not 0.
float int, bool Conversion to bool will result in true if the value is not 0.
bool int, float True results in 1, false results in 0.
pose path A pose is converted to a path with length 1.
path pose The result of the conversion of a path to a pose is the path's

first pose. If the path is empty, the conversion results in an
invalid pose.

© Festo Didactic GmbH & Co. KG

Using Robotino® View

18

float float array A floating point number is converted to a float array with
length 1.

3.11 Updates

Robotino View has an online update feature. To check the availability of a new software version,
select "Check For Updates" in the "Extras" menu. This check is also done automatically after the
application has been launched. If a new Version is available, it can be downloaded and installed
automatically.

The behaviour of the update feature can be configured in the preferences dialog ("Extras"
"Preferences..."). If the Internet can only be accessed via a proxy, address, port, user name and
password can be entered here. But in enterprise networks, using the Internet Explorer settings will
mostly be the easiest way.

3.12 Upload projects to Robotino and execute them

Since Robotino View version 2.1.0 and Robotino flash card 2.0 it has been possible to upload
projects to Robotino via FTP and directly execute them from Robotino View. This function is
accessible via Robotino Upload project.

The first time the upload dialog is called the first Robotino device's current IP address will be entered
into the "Robotino IP address" input field. If there is no Robotino device in the current project, the
input field remains empty.

When the dialog is opened, the directory view in Robotino will be updated. The execution of an

action is displayed by an animation. The view update can also be invoked via the button . Further
details about browsing the directory structure on Robotino can be found in the section Browse
Robotino .

The button is used to upload the current project into the currently viewed directory. Further
details about uploading and executing projects can be found in the section Upload and execute .

19

20

Using Robotino® View

© Festo Didactic GmbH & Co. KG 19

3.12.1 Browse Robotino

Since version 2.0 of Robotino's flash card a FTP and a Telnet server are installed on the Ubuntu
Linux system. FTP is used to display the files on Robotino and to upload projects.

After the first login the directory /home/robotino is displayed. In this case there are the
subdirectories "examples" and "programs" and the Robotino View project "Unnamed" in the current
directory. By clicking on one of the directories, the view is updated and the contents of the selected
directory is shown. By clicking on a Robotino View project, the execution of this project on Robotino
is started. See Upload and execute .20

© Festo Didactic GmbH & Co. KG

Using Robotino® View

20

The FTP client integrated in Robotino View uses the user login "robotino" with password "robotino".
Thus it is possible to log in e.g. with FileZilla and create subdirectories or remove uploaded projects.

3.12.2 Upload and execute

Before executing a project it is recommendet to check if the Robotino View version installed on
Robotino is the newest one. Package upgrade on Robotino is described in the section Upgrade
Robotino Packages .

By clicking on a Robotino View project in the directory view the execution of this project on
Robotino with the Robotino View Interpreter is invoked. Before the execution of the project starts, the
interpreter must be loaded. This process takes some seconds. The log window shows the current
state.

21

Using Robotino® View

© Festo Didactic GmbH & Co. KG 21

After clicking on a Robotino View project a Telnet session is established with user login "robotino"
and passwort "robotino". Immediately after the message "Loading project", the execution starts. The
process can be canceled any time.

In the window next to the progress indicator the values of the global variables of the project executed
on Robotino are displayed. The update speed can be configured in Extras Options... Upload &
Execute Debug interval.

3.13 Upgrade Robotino packages

Since Robotino View version 2.4.0 and Robotino flash card version 2.0 it has been possible to
upgrade the Linux packages installed on Robotino from Robotino View. This function is accessible
via Robotino Software update.

The first time the upgrade dialog is called the first Robotino device's current IP address will be
entered into the "Robotino IP address" input field. If there is no Robotino device in the current
project, the input field remains empty.

When the dialog is opened, the package information will be refreshed. During the refresh the whole
application is locked. This action can be easily canceled, though.

A refresh can be forced via the symbol .

© Festo Didactic GmbH & Co. KG

Using Robotino® View

22

After a successful refresh the versions of local packages and packages installed on Robotino are
displayed. The status symbols have the following meanings:

 No information is available or installed version is not up-to-date

 The package installed on Robotino is up-to-date

The package "robotino-firmware" is special. The upgrade routine checks if there is an EA09 IO board
in Robotino. If an EA09 IO board is found, the version number will be retrieved directly from the IO

board. If no EA09 board is present, the symbol will be displayed instead of the version number.

However, the package's status is because the package "robotino-firmware" needn't be installed.

In the first column of the version view, packages can be added to or removed from the upgrade
process. By default the packaged "openrobotino1", "openrobotino2" and "robview2" are designated
for an upgrade.

In the screenshot above, the package "robview" installed on Robotino is not up-to-date. The local
version is 2.5.0. On Robotino, the old version 2.2.4 is installed. Installation of new packaged is

invoked with the symbol . The upgrade dialog shows that the action is performed. In the log
windows the progress can be tracked. When the installation has been finished, the version view will
be refreshed.

Using Robotino® View

© Festo Didactic GmbH & Co. KG 23

3.13.1 Robotino firmware installation

The package "robotino-firmware" is special. The upgrade routine checks if there is an EA09 IO board
in Robotino. If an EA09 IO board is found, the version number will be retrieved directly from the IO

board. If no EA09 board is present, the symbol will be displayed instead of the version number.

However, the package's status is because the package "robotino-firmware" needn't be installed.

As the upgrade of Robotino's firmware by the package "robotino-firmware" is critical, this package
won't be upgraded by default. Only if the exact reason for an upgrade is known, this packages
should be added to the upgrade process. The installation of the firmware is described in the section
Robotino firmware installation.

The firmware of the microcontroller (a NXP LPC 2378) on that IO board can be upgraded from
Robotino's PC104. This process is critical. A failure of the firmware upgrade results in the following
effects:

1. Robotino can no longer be turned off by pressing the On/Off button.
2. Pressing the On/Off button turns on Robotino. When the button is released, Robotino is turned off

immediately.

concerning 1) By removing the command bridge, Robotino can be turned off
concerning 2) The On/Off button must be held until an other firmware upgrade was successful

To just upgrade the firmware (or repair it), only the "robotino-firmware" package should be selected.

Then the installation can be forced via the button "Force Update".

3.13.2 Interna

The upgrade process is based on a combination of Telnet, FTP and Linux commands concerning
apt.

First the file pkgtools.tar from the directory install_folder\packages is copied into /home/robotino/.
packages. Via Telnet the file is unpacked. The script pkginfo.sh provides information about the
installed packages.

The packages to be installed are copied via FTP from install_folder\packages to /home/robotino/.

© Festo Didactic GmbH & Co. KG

Using Robotino® View

24

packages. Additionally the file Packages.gz is copied. It contains package informations.

Initially, the script pkginstall.sh modifies /etc/apt/sources.list and enters the directory /home/
robotino/.packages as only package source. Then apt-get is used to install the packages.

pkgremove.sh forces removal of packages.

startOpenRobotino1.sh is invoked to restart the Robotino deamons.

4 Examples

4.1 Control programs

In this chapter a simple control program with alternative branches is realized.

4.1.1 Tutorial 2

This exercise shows how a control program with alternative branches is created. The complete
program is located int the file examples/sfc/tutorial2.rvw2.

The complete control program looks as shown in figure 1.

Examples

© Festo Didactic GmbH & Co. KG 25

Fig. 1: the complete control program

In Step1 the value of a is changed. Thus in every cycle of the program one of the Steps Step2, Step3
and Step4 will be executed. Step5 compares the results produced by the previous steps. After the
6th execution of Step5 the program is stopped. Otherwise it continues with Step1.

Create a new project
Create a new project by

selecting File New
pressing Ctrl + N

selecting the symbol for creating a new project in the tool bar .

The main program contains the steps Init and Step1.

Create global Variables
First, create the following global variables :

timer
a
b
step2count
step3count
step4count
step5count

Assign the initial value -1 to "a". All other variables keep their initial value 0.

Program Step1
In this sub-program the global variable "a" is incremented by 1. To make sure that the value of "a" is
always between 0 and 2, "a" will be calculated Modulo 3 and rewritten to "a". The value of "b" will
just be set 0.

14

© Festo Didactic GmbH & Co. KG

Examples

26

Create steps Step2, Step3 and Step4
Now the steps will be created next to each other in alternative branches. To do that, select the
transition condition below Step1.

You can see that the transition condition is selected by a dashed line round the condition.

Now click on the symbol to add an alternative branch on the right side .

Expand the branching you have just created by selecting the transition condition on the right and

selecting the "Alternative branch right" symbol again.

Now create three Steps in those three alternative branches and call them Step2, Step3 and Step4.

Examples

© Festo Didactic GmbH & Co. KG 27

To do that, select the entering condition of a branch and click on the "insert step after" symbol.
Then assign a sub-program of the same name to each step. To do that, double-click on the step and
enter the name for the sub-program in the following dialog box. Alternatively, you can create a new

sub-program with the tool bar button "Create new subprogram" and assign it to the step.

The entering and exit conditions of all three alternative branches are false at the moment. Change
the entering conditions to a == 0, a == 1 and a == 2. Use timer == 10 as exit condition for all
branches. Finally, change the final jump's destination from Init to Step1.

If you start the main program now, the program will hang in Step2 because "a" is 0 during the first
cycle and the global variable "timer" is not altered.

Program Step2, Step3 and Step4
The sub-programs assigned to the steps Step2 to Step4 are empty at the moment. The sub-program
Step2 is shown below.

© Festo Didactic GmbH & Co. KG

Examples

28

Every 200ms the Arbitrary Waveform Generator creates a pulse of 100ms width and height 1. The
settings for the Arbitrary Waveform Generator are shown below.

I.e. every 200ms there is a rising edge from 0 to 1. With every rising edge the counter increments its
value by 1. After 2s the value will be 10. When the value of the counter is 10, the result of the
comparison of the constant and the counter's value will be added to the current value of step2Count.
As long as the comparision results in false, 0 is added. As soon as the comparision results in true,
1 is added. At the end of every calculation step of the sub-program, the transition condition below
the step in the main program is evaluated. When the global variable "timer" has the value 10, the
sub-program will be left.

The sub-programs of Step3 and Step4 are built equivalently. Select all in Step2 (Ctrl+A) and copy it
to Step3 and Step4. The only difference consists in the fact that step3count respectively step4count
are read and written.

Once you start the main program, Step2, Step3 and Step4 will be executed cyclically for 2s each.

Create and program Step5

Examples

© Festo Didactic GmbH & Co. KG 29

To add a new step after the alternative branching, select the final jump and click on the symbol to

add a step before . Now create a sub-program named Step5 and assign it to Step5 just created.
Change the transition condition below Step5 to b>0 && timer == 10.

The sub-program Step5 is similar to Step2 to Step4. Copy Step2 to Step5 and change step2count to
step5count. Beyond setting the global variables "timer" and "step5count" also a check is performed
if the condition step2count >= step3count >= step4count is valid. If this is the case, the global
variable "b" is set to 1. Otherwise "b" is 0. The condition must always be true when in a correct
program execution because Step2, Step3 and Step4 are executed one after another because Step1
increments "a" by 1 in every cycle.

© Festo Didactic GmbH & Co. KG

Examples

30

If the main program is started now, Step5 remains active for 2s if "b" is greater than 0.

Create program termination and jump to Step1
Now the program should be terminated when the value of "step5count" has reached 6. To achieve
this, insert an alternative branch below Step5. Select the transition condition below Step5 and klick

on the symbol to insert an alternative branch on the left . Select the new branch's transition

condition (at the moment it is false) and click on the symbol to create a new jump . Change the
transition condition to step5count == 6 and select TERMINATE as new jump destination.
The main program now looks as it was shown at the beginning.
By the way, the alternative branch containing the jump to TERMINATE must be left of the branch
with the condition b>0 && timer == 10 because the initial conditions of alternative branches are
evaluated from left to right. In the first 6 cycles the condition step5count == 6 is not fulfilled. So the
second branch's condition is evaluated.
One run of the main program lasts 24s now.

4.2 Logic

In this chapter well-known electrical circuits are realized with logical modules.

Examples

© Festo Didactic GmbH & Co. KG 31

4.2.1 Multiplexer

4.2.2 FlipFlop

5 Function block library

The control programs created with Robotino® View consist of interlinked function blocks.
These are located in the function block library and can be inserted into a sub-program via
Drag&Drop.
Function blocks are assigned to different categories. By clicking onto a category name with the left
mouse button,
the category folder is expanded. The following categories are available:

Name Description

Logic Components as recognised from electronic logic modules

9

32

© Festo Didactic GmbH & Co. KG

Function block library

32

Mathematics Simple mathematical operations

Vector analysis Analysis using two-dimensional vectors

Display Function blocks for visualization

Image processing Basic image processing functionalities

Generators Generation of signals

Filter Smoothing of signals

Navigation Driving mobile Robots

Input devices Function blocks for the interaction of the user with the control program

Data exchange Exchange data with external programs

My function blocks Tutorials for the development of own function blocks

5.1 Logic

The Logic category contains components as recognized from the electronic logic modules.

5.1.1 Counter up

The counter counts the number of events at its Input connector

Inputs Type Defau
lt

Description

Input bool false Counter input. Counter value is increased if the input changes from false
to true and/or from true to false.

Initial value int32 0 Counting starts with the value given here at sub-program start or if Reset
is true.

Reset bool false The counter is reset to its initial value if this input is true.

Outputs

Output int32 Counter value

49

63 63

69

72

84

88

89

106

109

157

Function block library

© Festo Didactic GmbH & Co. KG 33

5.1.1.1 Dialog

Count on rising edge Increment the counter by 1 if the input at time t is false and at time t+1
true.

Count on falling edge Increment the counter by 1 if the input at time t is true and at time t+1
false.

5.1.1.2 Example

The "Arbitrary Waveform Generator " generates a sin waveform with amplitude 2 and frequency 1
Hz. The output of the generator is of type float. Values less equal 0 are converted to false. Value
greater 0 are converted to true (see type conversion). The counter counts on rising edge, i.e.
when the input changes from false to true. This happens exactly once per second at the beginning of
the sine wave. The counter values represents therefore the time in seconds since sub-program start.

The following example shows how to use the initial value input to count over sub-program

84

17

© Festo Didactic GmbH & Co. KG

Function block library

34

boundaries. The main program executes Step1 and Step2 sequentially. After Step2 is finished, we
restart with Step1.

Hauptprogramm

Step1

The Counter writes its result into the global variable "count". After restart of Step1 the global variable
count is used as inital value for the Counter. Step1 is active until the second "Arbitrary Waveform
Generator " generates a value greater 9. This happens after 10s.

Step2

84

Function block library

© Festo Didactic GmbH & Co. KG 35

Step2 is also 10s active.

5.1.2 Counter down

Counter down is similar to Counter up . The only difference is that the counting value is
decremented by 1 if a counting event occurs.

5.1.2.1 Dialog

See dialog of Counter up .

32

33

© Festo Didactic GmbH & Co. KG

Function block library

36

5.1.3 Multiplexer

The Multiplexer connects its output to a selectable input.

Inputs Type Defau
lt

Description

Control
signal

int 0 Determines the input that is connected to the output. If the control signal
is less 0 or greater equal the number of inputs the output is 0.

Input 0 float 0 The value of input 0 is available at the output if the control signal is 0.

...

Input 9 float 0 The value of input 9 is available at the output if the control signal is 9.

Outputs

Output float The value of an input or 0 if the control signal is less 0 or greater equal the
number of inputs.

5.1.3.1 Dialog

Function block library

© Festo Didactic GmbH & Co. KG 37

5.1.3.2 Example

see also Examples Logic Multiplexer

5.1.4 Demultiplexer

The demultiplexer connects one input to a selectable output.

Inputs Type Defau
lt

Description

Control
signal

int 0 Determines the output that is connected to the input. If the control signal
is less 0 or greater equal the number of outputs all outputs are reset to 0.

Input float 0 The value of an output if the control signal is greater equal 0 and less the
number of outputs.

Outputs

Output 0 float Value of the input if the control signal is 0, otherwise 0.

...

Output 9 float Value of the input if the control signal is 9, otherwise 0.

31

© Festo Didactic GmbH & Co. KG

Function block library

38

5.1.4.1 Dialog

5.1.4.2 Example

5.1.5 AND

The Output of the AND is true only if all Inputs are true. See type conversion how numbers are
converted to bool.

Inputs Type Defau
lt

Description

Input 1 bool true

...

17

Function block library

© Festo Didactic GmbH & Co. KG 39

Input 8 bool true

Outputs

Q bool see table below

Inputs

1 2 3 4 5 6 7 8 Q

0 0 0 0 0 0 0 0 0

1 0

1 0

1 1 0

1 0

1 1 0

1 1 0

1 1 1 0

1 0

1 1 0

1 1 0

1 1 1 0

1 1 0

1 1 1 0

1 1 1 0

1 1 1 1 0

1 0

1 1 1 1 1 1 1 1 1

5.1.5.1 Dialog

5.1.5.2 Example

© Festo Didactic GmbH & Co. KG

Function block library

40

5.1.6 AND FL

The output Q of the AND FL (with edge control) is only set to true if all inputs are true, and if at least
one input was false during the previous cycle. See type conversion how numbers are converted to
bool.

Inputs Type Defau
lt

Description

Input 1 bool true

...

Input 8 bool true

Outputs

Q bool see timing diagram

Timing diagram for the AND FL and four inputs.

17

Function block library

© Festo Didactic GmbH & Co. KG 41

5.1.6.1 Dialog

5.1.6.2 Example

When the output of the generator changes from 0 to 1 the output of the AND FL is true for one cycle.

5.1.7 NAND

The Output of the NAND is false only if all Inputs are true. See type conversion how numbers are
converted to bool.

Inputs Type Defau
lt

Description

17

© Festo Didactic GmbH & Co. KG

Function block library

42

Input 1 bool true

...

Input 8 bool true

Outputs

Q bool see table below

Inputs

1 2 3 4 5 6 7 8 Q

0 0 0 0 0 0 0 0 1

1 1

1 1

1 1 1

1 1

1 1 1

1 1 1

1 1 1 1

1 1

1 1 1

1 1 1

1 1 1 1

1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1

1 1

1 1 1 1 1 1 1 1 0

5.1.7.1 Dialog

5.1.7.2 Example

see Example Logic FlipFlop 31

Function block library

© Festo Didactic GmbH & Co. KG 43

5.1.8 NAND_FL

The output Q of the NAND with edge control is only set to true if at least one input is false, and if all
inputs were true during the previous cycle. See type conversion how numbers are converted to
bool.

Inputs Type Defau
lt

Description

Input 1 bool true

...

Input 8 bool true

Outputs

Q bool see timing diagram

Timing diagram for the NAND with edge control and four inputs.

17

© Festo Didactic GmbH & Co. KG

Function block library

44

5.1.8.1 Dialog

5.1.9 OR

The Output of the OR is true only if at least one Input is true. See type conversion how numbers
are converted to bool.

Inputs Type Defau
lt

Description

Input 1 bool false

...

Input 8 bool false

Outputs

Q bool see table below

Inputs
1 2 3 4 5 6 7 8 Q
0 0 0 0 0 0 0 0 0

1 1
1 1
1 1 1

1 1
1 1 1
1 1 1
1 1 1 1

1 1
1 1 1
1 1 1
1 1 1 1
1 1 1
1 1 1 1
1 1 1 1
1 1 1 1 1

1 1

17

Function block library

© Festo Didactic GmbH & Co. KG 45

1 1 1 1 1 1 1 1 1

5.1.9.1 Dialog

5.1.9.2 Example

5.1.10 XOR

The Output of the XOR is true if the inputs have different values. See type conversion how
numbers are converted to bool.

Inputs Type Defau
lt

Description

Input 1 bool false

Input 2 bool false

Outputs

Q bool see table below

Inputs

1 2 Q

0 0 0

0 1 1

1 0 1

1 1 0

17

© Festo Didactic GmbH & Co. KG

Function block library

46

5.1.10.1 Example

5.1.11 NOT

The Output of the NOT is true if the input is false. See type conversion how numbers are
converted to bool.

Inputs Type Defau
lt

Description

Input bool false

Outputs

Q bool see table below

Inputs

1 Q

0 1

1 0

5.1.11.1 Example

The example shows a especialness of the NOT function block. Input and output values are not
shown next to its input or output connector. This has the advantage that the NOT takes only a very
small amount of space and the data display does not overlap with data displayed by other function
blocks.

5.1.12 NOR

The NOR's Output Q is true if all inputs are false. See type conversion how numbers are
converted to bool.

17

17

Function block library

© Festo Didactic GmbH & Co. KG 47

Inputs Type Defau
lt

Description

Input 1 bool false

...

Input 8 bool false

Outputs

Q bool see table below

Inputs

1 2 3 4 5 6 7 8 Q

0 0 0 0 0 0 0 0 1

1 0

1 0

1 1 0

1 0

1 1 0

1 1 0

1 1 1 0

1 0

1 1 0

1 1 0

1 1 1 0

1 1 0

1 1 1 0

1 1 1 0

1 1 1 1 0

1 0

1 1 1 1 1 1 1 1 0

5.1.12.1 Dialog

© Festo Didactic GmbH & Co. KG

Function block library

48

5.1.12.2 Example

5.1.13 Latching relay

Output Q is set by input S. Input R resets output Q. See type conversion how numbers are
converted to bool.

Inputs Type Defau
lt

Description

S bool false If S is true Q becomes true.

R bool false If R is true Q is reset to false. R overrules S.

Par bool false Remanence:
false: No remanence
true: The current status is saved to remanent memory (independent of S
or R).

Outputs

Q bool Q is switched to true by S and remains true until R becomes true.

Timingdiagramm

17

Function block library

© Festo Didactic GmbH & Co. KG 49

5.1.14 Sample and hold element

If Sample is set false, the signal at Input can be kept at the current value. See type conversion
how numbers are converted to bool.

Inputs Type Defau
lt

Description

Input float 0 Input signal

Sample bool false If true, Output will be connected to Input. If false, the current value will be
frozen at Output.

Outputs

Output float 0 Last value of Input before Sample has been changed from true to false.

5.2 Mathematics

This category contains simple mathematical operations.

5.2.1 Arithmetic operations

5.2.1.1 Modulo

In mathematics, modular arithmetic (sometimes called clock arithmetic) is a system of arithmetic for
integers, where numbers "wrap around" after they reach a certain value—the modulus. Modular
arithmetic was introduced by Carl Friedrich Gauss in his book Disquisitiones Arithmeticae,
published in 1801. (Source: http://en.wikipedia.org/wiki/Modular_arithmetic)

Inputs Type Defau
lt

Description

Dividend int 0

Divisor int 1

Outputs

Remainder int Dividend mod Divisor

17

http://en.wikipedia.org/wiki/Modular_arithmetic

© Festo Didactic GmbH & Co. KG

Function block library

50

5.2.1.2 Division

Calculates the quotienten from dividend and divisor. See http://en.wikipedia.org/wiki/Division_
(mathematics).

Inputs Type Defau
lt

Description

Dividend float 0

Divisor float 1

Outputs

Quotient float Dividend divided by divisor.

If the dividend is unequal to 0 and the divisor equals 0 the simulation is stopped with the following
error:

5.2.1.3 Multiplication

The Multiplication function block multiplies floating point numbers. See also http://en.wikipedia.org/
wiki/Multiplication.

Inputs Type Defau
lt

Description

Factor 1 float 1

...

Factor 10 float 1

Outputs

Product float "Factor 1" * "Factor 2" * ... * "Factor 10"

http://en.wikipedia.org/wiki/Division_(mathematics)
http://en.wikipedia.org/wiki/Division_(mathematics)
http://en.wikipedia.org/wiki/Multiplication
http://en.wikipedia.org/wiki/Multiplication

Function block library

© Festo Didactic GmbH & Co. KG 51

5.2.1.3.1 Dialog

5.2.1.4 Subtraction

The Subtraction function block calculates the difference between the minuend and up to 10
subtrahends. See also http://en.wikipedia.org/wiki/Subtraction.

Inputs Type Defau
lt

Description

Minuend float 0

Subtrahend
1

float 0

...

Subtrahend
10

float 0

Outputs

Difference float Minuend - "Subtrahend 1" - "Subtrahend 2" - ... - "Subtrahend 10"

http://en.wikipedia.org/wiki/Subtraction

© Festo Didactic GmbH & Co. KG

Function block library

52

5.2.1.4.1 Dialog

5.2.1.5 Addition

The Addition function block adds up to 10 summands. See also http://en.wikipedia.org/wiki/Addition.

Inputs Type Defau
lt

Description

Summand
1

float 0

...

Summand
10

float 0

Outputs

Sum float "Summand 1" + "Summand 2" + ... + "Summand 10"

http://en.wikipedia.org/wiki/Addition

Function block library

© Festo Didactic GmbH & Co. KG 53

5.2.1.5.1 Dialog

5.2.2 Comparison Operations

5.2.2.1 Inequal

The output is true, if the absolute value of Input1 - Input2 is greater equal epsilon, with epsilon =
0.0000002384185792.

Inputs Type Defau
lt

Description

Input 1 float 0

Input 2 float 0

Outputs

Output bool fabs(Input1 - Input 2) >= epsilon

5.2.2.2 Equal

The output is true, if the absolute value of Input1 - Input2 is less epsilon, with epsilon =
0.0000002384185792

Inputs Type Defau
lt

Description

Input 1 float 0

Input 2 float 0

© Festo Didactic GmbH & Co. KG

Function block library

54

Outputs

Output bool fabs(Input1 - Input 2) < epsilon

5.2.2.3 Less equal

The Output is true, if Input1 is less equal Input2.

Inputs Type Defau
lt

Description

Input 1 float 0

Input 2 float 0

Outputs

Output bool "Input1" less or equal "Input2"

5.2.2.4 Less

The Output is true, if Input1 is less Input2.

Inputs Type Defau
lt

Description

Input 1 float 0

Input 2 float 0

Outputs

Output bool "Input1" less "Input2"

5.2.2.5 Greater equal

The Output is true, if Input1 is greater equal Input2.

Inputs Type Defau
lt

Description

Input 1 float 0

Input 2 float 0

Outputs

Output bool "Input1" greater or equal "Input2"

Function block library

© Festo Didactic GmbH & Co. KG 55

5.2.2.6 Greater

The Output is true, if Input1 is greater Input2.

Inputs Type Defau
lt

Description

Input 1 float 0

Input 2 float 0

Outputs

Output bool "Input1" greater "Input2"

5.2.3 Functions

5.2.3.1 Absolute Value

Gives the absolute value of Input.

Inputs Type Defau
lt

Description

Input float 0

Outputs

Output float abs(Input)

5.2.3.2 Transfer Function

With the transfer function, it is possible to realize any mapping of the input x to the output y.

Inputs Type Defau
lt

Description

x float 0

Outputs

x float see Dialog 56

© Festo Didactic GmbH & Co. KG

Function block library

56

5.2.3.2.1 Dialog

With the dialog of the Transfer function function block it is possible to define interpolation points for
the mapping y(x). The default interpolation points are

p0 = (x0, y0) = (0, 0)
p1 = (x1, y1) = (10, 10)

These points define the following mapping y(x)

y = y0 if x <= x0
y = x if x > x0 and x <= x1
y = y1 if x > x1

Boundaries
p0 = (x0, y0) is the first interpolation point
pn = (xn, yn) is the last interpolation point

If x < x0: y = y0
If x > xn: y = yn

Mapping
If we have a list of interpolation points p0, p1, ... pn the mapping y(x) is given by:

y = y0 if x <= x0
y = (y1 - y0) / (x1 - x0) * (x - x0) + y0 if x > x0 and x <= x1
y = (y2 - y1) / (x2 - x1) * (x - x1) + y1 if x > x1 and x <= x2
...
y = yn if x > xn

Move points
Interpolation points can be moved, added and removed. To move an interpolation points you can use
the Graphics-View and move the points with the mouse pointer. In the Table-View the x,y values of
the interpolation points can be edited. The x value of an interpolation point can never be smaller than
the x value of the earlier interpolation point and never be greater than the x value of the following
interpolation point.

Function block library

© Festo Didactic GmbH & Co. KG 57

Adding points
In the Graphics-View you can add a new point anywhere by using the context menu available by
clicking with the right mouse button.

In the Table-View the context menu is available by clicking with the right mouse button into a row.

You can choose to insert the new point before or after the current row.

Delete points
Points are deleted in both the Graphics-View and the Table-View via the context menu after right
mouse click onto a point or row. If there is only a single interpolation point left, the function for
deleting this point is deactivated.

Import/Export of interpolation points
The clipboard can be used to import and export the list of interpolation points. By this data can be
exchanged with programs like Excel or Matlab. The function for Import/Export is available via the
context menu in both the Graphics and Table-View.

© Festo Didactic GmbH & Co. KG

Function block library

58

5.2.3.2.2 Example

The Counter up is incremented every simulation step. The counting value is restricted to the range
[0,10]. The Transferfunction defines a sine wave with 10 interpolation points.

5.2.3.3 Minimum

The value of the output is the minimal value from all inputs.

Inputs Type Defau
lt

Description

Input 1 float 1e+03
7

...

Input 10 float 1e+03

Function block library

© Festo Didactic GmbH & Co. KG 59

7

Outputs

Output float min("Input 1", "Input 2", ... , "Input 10")

1e+037 = 10 pow 37
largest possible floating point number

5.2.3.3.1 Dialog

5.2.3.4 Maximum

The value of the output is the maximal value from all inputs.

Inputs Type Defau
lt

Description

Input 1 float -
1e+03
7

...

Input 10 float -
1e+03
7

Outputs

Output float max("Input 1", "Input 2", ... , "Input 10")

-1e+037 = - (10 pow 37)
smallest possible floating point number

© Festo Didactic GmbH & Co. KG

Function block library

60

5.2.3.4.1 Dialog

5.2.3.5 Scale

Easy scaling of values.

Inputs Type Defau
lt

Description

x float 0

Outputs

y float see Dialog

5.2.3.5.1 Dialog

Choose a function from the combo box. The default function is the identity mapping.

Depending on the function selected the parameters are editable or not. If you choose the function
y=a*x+b, you can edit the parameters a and b.

60

Function block library

© Festo Didactic GmbH & Co. KG 61

The mapping here is y(x) = 345 * x - 39874,4239

5.2.4 Arrays

5.2.4.1 Float array composer

The Float array composer creates a float array from up to 10 float values or arrays. For the type
conversion from float values to float arrays see type conversion .

Inputs Type Defau
lt

Description

Index 1 float
array

empty
array

...

Index 10 float
array

empty
array

Outputs

Array float
array

empty
array

(Index 1, ..., Index 10)

17

© Festo Didactic GmbH & Co. KG

Function block library

62

5.2.4.1.1 Dialog

5.2.4.2 Float array decomposer

The Float array decomposer extracts a sub array from a float array.

Inputs Type Defau
lt

Description

Array float
array

empty
array

The array decompose.

Start index int 1 The value at position Start index of the array will be the first value of the
resulting array.

Length int 1 The resulting array consists of Length values beginning at the value at
position Start index of the input array.

Outputs

Sub array float
array

empty
array

(Array[Start index], ..., Array[Start index + Length - 1])

5.2.4.3 Float array index access

The index access module allows access to the single values of a float array.

Inputs Type Defau
lt

Description

Function block library

© Festo Didactic GmbH & Co. KG 63

Array float
array

empty
array

Array to be accessed.

Index int 1 Index of the value to be accessed.

Outputs

Value float 0 Value at position Index.

5.3 Vector analysis

This category contains the basic vector analysis methods for two-dimensional vectors.

5.3.1 Vector operations

5.3.1.1 Dot product

Gives the scalar product (or dot product) of two vectors. See also http://en.wikipedia.org/wiki/
Scalar_product.

Inputs Type Defau
lt

Description

Vector 1 vecto
r2f

(0, 0)

Vector 2 vecto
r2f

(0, 0)

Outputs

Product float

5.3.1.2 Subtraction

The Subtraction function block calculates the difference between the minuend and up to 10
subtrahends. See also http://en.wikipedia.org/wiki/Vector_addition#Vector_addition_and_subtraction
.

Inputs Type Defau
lt

Description

http://en.wikipedia.org/wiki/Scalar_product
http://en.wikipedia.org/wiki/Scalar_product
http://en.wikipedia.org/wiki/Vector_addition#Vector_addition_and_subtraction

© Festo Didactic GmbH & Co. KG

Function block library

64

Minuend vecto
r2f

(0, 0)

Subtrahend
1

vecto
r2f

(0, 0)

...

Subtrahend
10

vecto
r2f

(0, 0)

Outputs

Difference vecto
r2f

Minuend - "Subtrahend 1" - "Subtrahend 2" - ... - "Subtrahend 10"

5.3.1.2.1 Dialog

5.3.1.3 Addition

The Vector-Addition function block adds up to 10 summands. See also http://en.wikipedia.org/wiki/
Vector_addition#Vector_addition_and_subtraction.

Inputs Type Defau
lt

Description

Summand
1

vecto
r2f

(0, 0)

http://en.wikipedia.org/wiki/Vector_addition#Vector_addition_and_subtraction
http://en.wikipedia.org/wiki/Vector_addition#Vector_addition_and_subtraction

Function block library

© Festo Didactic GmbH & Co. KG 65

...

Summand
10

vecto
r2f

(0, 0)

Outputs

Sum vecto
r2f

"Summand 1" + "Summand 2" + ... + "Summand 10"

5.3.1.3.1 Dialog

5.3.1.4 Norm

Calculates the Euclidean norm of the input vector. See also http://en.wikipedia.org/wiki/Vector_norm
.

Inputs Type Defau
lt

Description

Vector vecto
r2f

(0, 0)

Outputs

Norm float

http://en.wikipedia.org/wiki/Vector_norm

© Festo Didactic GmbH & Co. KG

Function block library

66

5.3.1.4.1 Example

The norm of vector (1, 1) is square root of 1+1 = 1.41421....

5.3.2 Element operations

5.3.2.1 Division

Per element division of Vector by Divisor.

Inputs Type Defau
lt

Description

Vector vecto
r2f

(0, 0)

Divisor float 1

Outputs

Result vecto
r2f

Vector = (x0, x1)
Result = (x0 / Divisor, x1 / Divisor)

5.3.2.2 Subtraction

Per element subtraction of Minuend from Vector.

Inputs Type Defau
lt

Description

Vector vecto
r2f

(0, 0)

Minuend float 0

Outputs

Result vecto
r2f

Vector = (x0, x1)
Result = (x0 - Minuend, x1 - Minuend)

Function block library

© Festo Didactic GmbH & Co. KG 67

5.3.2.3 Addition

Per element addition of Summand to Vector.

Inputs Type Defau
lt

Description

Vector vecto
r2f

(0, 0)

Summand float 0

Outputs

Result vecto
r2f

Vector = (x0, x1)
Result = (Summand + x0, Summand + x1)

5.3.2.4 Multiplication

Per element multiplication of vector by factor.

Inputs Type Defau
lt

Description

Vector vecto
r2f

(0, 0)

Factor float 1

Outputs

Result vecto
r2f

Vector = (x0, x1)
Result = (Factor * x0, Factor * x1)

5.3.3 Transformations

5.3.3.1 Vector to Polar

Split up Vector into its polar components. See also http://en.wikipedia.org/wiki/
Polar_coordinate_system.

Inputs Type Defau
lt

Description

Vector vecto (0, 0)

http://en.wikipedia.org/wiki/Polar_coordinate_system
http://en.wikipedia.org/wiki/Polar_coordinate_system

© Festo Didactic GmbH & Co. KG

Function block library

68

r2f

Outputs

Length float The length (norm) of Vector

Phi float The angle in degrees between Vector and the x-axis.

5.3.3.2 Vector to Cartesian

Split up Vector into its cartesian components. See also http://en.wikipedia.org/wiki/
Cartesian_coordinate_system.

Inputs Type Defau
lt

Description

Vector vecto
r2f

(0, 0)

Outputs

x float x component of Vector

y float y component of Vector

5.3.3.3 Polar to Vector

Create a vector from its length and orientation.

Inputs Type Defau
lt

Description

Length float 0 Length (norm) of the Vector.

Phi float 0 Angle in degrees between Vector and the x-axis.

Outputs

Vector vecto
r2f

Vector with length Length and orientation Phi.

5.3.3.4 Cartesian to Vector

Create a vector from its cartesian components.

Inputs Type Defau Description

http://en.wikipedia.org/wiki/Cartesian_coordinate_system
http://en.wikipedia.org/wiki/Cartesian_coordinate_system

Function block library

© Festo Didactic GmbH & Co. KG 69

lt

x float 0 x component.

y float 0 y component.

Outputs

Vector vecto
r2f

Vector (x, y).

5.3.3.5 Rotate

Rotates the vector by the specified value in degrees.

Inputs Type Defau
lt

Description

Vector vecto
r2f

(0, 0)

Phi float 0 Rotation angle

Outputs

Result vecto
r2f

Vector rotated by Phi.

5.3.3.5.1 Example

5.4 Display

This category contains the function blocks for the visualization of data.

© Festo Didactic GmbH & Co. KG

Function block library

70

5.4.1 Oscilloscope

The Oscilloscope is used to visualize up to 16 channels.

Inputs Type Defau
lt

Description

Channel 0 float 0

Channel 1 float 0

...

Channel 16 float 0

Function block library

© Festo Didactic GmbH & Co. KG 71

5.4.1.1 Dialog

The dialog visualizes the signals on the channels.For every channel, settings can be changed, like
amplification, e.g. It is also possible to deactivate single channels.

5.4.2 Laser range finder data display

The Laser range finder data displays the data from a optional laser-scanner

Input Typ Description

Data laser range
data

© Festo Didactic GmbH & Co. KG

Function block library

72

5.4.2.1 Dialog

5.5 Image processing

This category contains function blocks for image processing.

5.5.1 Segmenter

The Segmenter function block partitions the input image in multiple segments. The output image
contains a list of segments found.

Inputs Type Defau
lt

Description

Input imag
e

Input image

Outputs

Output imag
e

Output image augmented with the list of segments found

Function block library

© Festo Didactic GmbH & Co. KG 73

5.5.1.1 Dialog

Button
/
Displa
y

Description

0 Display of the input image and of segments found
1 When checked the input image is displayed
2 When checked found segments are display
3 When checked the current input image is hold
4 Add the current selection in the input image to the list of segments
5 Delete a segment
6 Move segment up
7 Move segment down
8 List of segments
9 Selector of the color channel for segment optimization
10 Display of values within the selected channel of the currently active segment
11 Close gaps within the values of the selected channel
12 Thin out values of the selected channel

To recognize the red square as a single segment, mark a region within the red square with the
mouse.

© Festo Didactic GmbH & Co. KG

Function block library

74

Click onto the + (button 4) to add your selection to the list of segments.

The center of gravity of the segment is displayed with a cross. When the image is changing
(deactivate the Freeze image checkbox) the center of gravity moves with the red square. Now repeat
the procedure to add the green square to the list of segments.

Function block library

© Festo Didactic GmbH & Co. KG 75

Now there are two segments within the list of segments. The currently selected segment is marked
with a bold cross.

5.5.1.2 Example

The image reader operates in test mode and generates a sequence of test images. The109

© Festo Didactic GmbH & Co. KG

Function block library

76

segmenter searches for connected regions within the input image that fit the colors in the list of
segments. The center of gravity of the segments found is shown.

5.5.2 Segment Extractor

Get the position and size of a segment from an image augmented with a list of segments by the
Segmenter function block.

Inputs Type Defau
lt

Description

Input imag
e

Augmented image

Selected
segment

int 0 Number of the segment information is queried from.

Minimum
area

int 200 The Segment found output will become true only if the segment contains
at least number of pixel given here.

Outputs

x int x-coordinate of the center of gravity of the segment found. If no segment
is found x=0.

y int y-coordinate of the center of gravity of the segment found. If no segment
is found y=0.

Area int Number of pixel within the segment. If no segment is found Area = 0.

Segment
found

bool True if the segment is found. False otherwise.

72

Function block library

© Festo Didactic GmbH & Co. KG 77

5.5.2.1 Dialog

Selected
segment

The spinbox is editable if the input connector "Selected segment" is not connected. The
segment number to search for.

Minimum
area

The spinbox is editable if the input connector "Minimum area" is not connected. The
minimum number of pixel the segment must contain.

Shows the segments within the input image. The selected segment is marked by a cross (if the
segment is found).

5.5.2.2 Example

© Festo Didactic GmbH & Co. KG

Function block library

78

The image reader creates a test sequence with three colored squares. The segmenter searches the
image for red, green and blue regions. The segment extractor looks for the segment with number 1
(the green segment) and marks its center of gravity with a cross.

5.5.3 Line Detector

Searches for a line in the input image.

Inputs Type Defau
lt

Description

Input imag
e

Input image

Threshold int 0 The threshold is defines the sensitivity of the line detection algorithm to
discontinuities within the image. To cancel noises choose a higher
threshold.
Range: [0, 255]

Search
start

int 20 The algorithm starts searching for a line starting at "Search start" from the
bottom.

Search
height

int 20 The image is searched from the bottom up for the detection of edges. The
limit value defines the number of lines the image is searched starting at
the bottom plus "Search start" in order to detected a segment in the form
of a line.

Outputs

x int x-position of the line located at the bottom edge of the image

Line found bool True if a line is found. False otherwise.

Function block library

© Festo Didactic GmbH & Co. KG 79

5.5.3.1 Dialog

The area which is search for a line is marked by the horizontal red lines. The bottom line marks the
"Search start". The top line marks "Search start" + "Search height".

The red + marks the dark to light edge of the line seen from left to right.

© Festo Didactic GmbH & Co. KG

Function block library

80

5.5.3.2 Example

The image from Robotino's camera (here from the Robotino Simulator) is used as input for the line
detector. We use the Image Information function block to map the x position of the line from the
range [0, image width] to [-image width/2, image width/2] which is in our case [-160,160]. The scale

 function block is used to switch the sign and to scale the output of the subtraction function
block.

The value can be used directly to rotate Robotino so that Robotino turn right if the line is to its right
and turns left if the line is to its left. With a constant forward velocity Robotino follows the line.

5.5.4 ROI

Select an interesting region inside the input image (Region Of Interest, ROI).

Inputs Type Defau
lt

Description

Input imag
e

Input image

Outputs

82

60 51

Function block library

© Festo Didactic GmbH & Co. KG 81

Output imag
e

The output image is augmented with the ROI information. Later image
processing takes place inside the ROI only.

5.5.4.1 Dialog

The region of interest can be marked with the mouse.

© Festo Didactic GmbH & Co. KG

Function block library

82

5.5.4.2 Example

The Image reader generates a test sequence of images. The bottom Line Detector uses the whole
image while the upper Line Detector searches the ROI only.

5.5.5 Image Information

Get the width and height of the input image.

Inputs Type Defau
lt

Description

Input imag
e

Input image

Outputs

Breite int Image width in pixel.

Function block library

© Festo Didactic GmbH & Co. KG 83

Höhe int Image height in pixel.

5.5.5.1 Dialog

The dialog shows the input image.

5.5.5.2 Example

The images of the test sequence generated by the image reader have a resolution of 320 x 240
Pixel.

5.5.6 Colorspace conversion

Inputs Type Defau
lt

Description

Input imag Input image

© Festo Didactic GmbH & Co. KG

Function block library

84

e

Outputs

Output imag
e

Converted image

5.5.6.1 Dialog

In the colorspace conversion dialog the target color space can be selected.

5.6 Generators

This category contains numerous function blocks to create signals.

5.6.1 Arbitrary waveform generator

Generation of adjustable waveforms. See also http://en.wikipedia.org/wiki/
Arbitrary_waveform_generator.

Inputs Type Defau
lt

Description

Outputs

Output float The generated signal.

http://en.wikipedia.org/wiki/Arbitrary_waveform_generator
http://en.wikipedia.org/wiki/Arbitrary_waveform_generator

Function block library

© Festo Didactic GmbH & Co. KG 85

5.6.1.1 Dialog

The upper part of the dialog is similar to the dialog known from the Transfer Function .

In addition the Arbitrary wavefrom generator has the following parameters and buttons:

Amplitud
e

The output of the generator is multiplied by this value.

Time
base

The unit of the x-axis. In the current example with a time base of 100ms the value 10 is
reached after 1s.

Sine Generates interpolation point approximating a sine wave.
Cosine Generates interpolation point approximating a cosine wave.
Triangle Generates interpolation point approximating a triangle wave.
Square Generates interpolation point approximating a square puls wave.

55

© Festo Didactic GmbH & Co. KG

Function block library

86

5.6.1.2 Example

Robotino's Motor 1 rotates driven by a sine waveform.

5.6.2 Constant

Generation of a constant value. The type of the constant and also the graphical display changes with
the type of the connected input connector.

The input of the value can be performed directly within the program.

Inputs Type Default Description

Function block library

© Festo Didactic GmbH & Co. KG 87

Outputs

Value float,
int,
bool

0 /
false

The value displayed.

5.6.3 Timer

Measures the time in milliseconds since program start. If reset is true, the measurement is
restarted.

Inputs Type Defau
lt

Description

Reset bool false If true, the measurement is restarted.

Outputs

Time float Time in milliseconds since program start or since Reset changes from
true to false.

5.6.3.1 Example

Timer and Transfer Function generate a puls of amplitude 10 1s after program start.55

© Festo Didactic GmbH & Co. KG

Function block library

88

5.6.4 Random generator

The random generator creates random numbers within a specific range.

Inputs Type Defau
lt

Description

Maximum float 1 Upper bound of the range.

Minimum float 0 Lower bound of the range.

Outputs

Value float 0 Random number between Minimum and Maximum.

5.7 Filter

This category contains function blocks for filtering and smoothing of signals.

5.7.1 Mean filter

Calculates the mean of the input value for up to 1000 steps.

Inputs Type Defau
lt

Description

Input float 0 Input signal

Outputs

Output float Mean value

5.7.1.1 Dialog

Depth is the number of previous time steps which are taken to calculate the mean value.

Function block library

© Festo Didactic GmbH & Co. KG 89

5.8 Navigation

This category comprises function blocks used for navigation.

5.8.1 Position Driver

The position driver is used to drive Robotino to a given position.

The position driver generates velocity and angular velocity set values to drive Robotino from the
actual to the set position.

Inputs Type Unit Description

x set float mm x coordinate of the set position in the global coordinate system.

y set float mm y coordinate of the set position in the global coordinate system.

phi set float deg phi angle of the set position in the global coordinate system.

x actual float mm x coordinate of the actual position in the global coordinate system.

y actual float mm y coordinate of the actual position in the global coordinate system.

phi actual float deg phi angle of the actual position in the global coordinate system.

restart bool Restart movement

Outputs

vx float mm/s set velocity in x direction in Robotino's local coordinate system

vy float mm/s set velocity in y direction in Robotino's local coordinate system

omega float deg/s set angular velocity.

Position
reached

bool Is true if vx=vy=0, i.e. the set position is reached.

Orientation
reached

bool Is true if omega=0, i.e. the set orientation is reached.

Pose
reached

bool Is true if both position and orientation are reached.

See Movements 91

© Festo Didactic GmbH & Co. KG

Function block library

90

5.8.1.1 Dialog

The dialog is split into three parts.

The upper part reflects the mapping from distance to the target position d (in mm) to the driving
velocity v (in mm/s).

The middle part reflects the mapping from angular distance to the target orientation d (in 1°) to

Function block library

© Festo Didactic GmbH & Co. KG 91

angular velocity omega (in 1°/s). The angular distance is in the range [0°, 180°]. Clockwise and
counter clockwise rotations are treated similar. Rotation will be performed clockwise or counter
clockwise so that the angular distance is minimal.

With the ComboBox

the kind of movement can be selected (see Movements). The selected movement becomes the
active movement
1. at program start.
2. when the input "restart" is set true.

The velocity ramp is the time in milliseconds after which 100% of the desired velocity is reached.
This avoids an abrupt jump of velocity at the beginning of the movement.

The angular velocity ramp is the time in milliseconds after which 100% of the desired angular velocity
is reached. This results in a damping of the movement when a new rotation begins.

5.8.1.2 Example

5.8.1.3 Movements

Four different kinds of movements are possible. Two of them are applicable for holonomic and
nonholonomic vehicles each. As Robotino has a holonomic drive - all three degrees of freedom can
be altered independently - Robotino can perform all four kinds of movement. For nonholonomic
movements the output vy is 0.

Movements start when the program starts or when the input "restart" becomes true. Effectively, in
the 2nd case the movement begins when the input "restart" is reset to false.

Movement 1 - drive, turn - (holonomic)

91

© Festo Didactic GmbH & Co. KG

Function block library

92

Step 1: drive to the target position keeping the orientation at the initial position
Step 2: after reaching the target position turn until the target orientation is reached

Movement 2 - drive & turn - (holonomic)
Step 1: drive and simultaneously turn to the target orientation

Movement 3 - turn, drive, turn - (nonholonomic)
Step 1: turn to the driving direction
Step 2: drive to the target position
Step 3: after reaching the target position turn to the target orientation

Movement 4 - drive & turn, turn - (nonholonomic)
Step 1: Drive and turn in to driving direction
Step 2: after reaching the target position turn until the target orientation is reached

Function block library

© Festo Didactic GmbH & Co. KG 93

5.8.2 Constant pose

In the input box the pose is specified. Coordinates are separated by spaces characters.

Input Resulting pose

x y phi (x, y, phi)

x y (x, y, invalid)

x invalid Pose

invalid Pose

The orientation phi is specified in degrees.

Example:

10.5 20 120
results in x=10.5 y=20 and orientation=120°

Inputs Type Defau
lt

Description

Outputs

Pose pose invalid
pose

The constant pose's value. The value for the orientation is displayed in
radians at the output.

5.8.3 Pose composer

Inputs Typ Unit Defa
ult

Description

x float 0 The pose's x component.

y float 0 The pose's y component.

phi float degr
ees

0 The pose's orientation in degrees. The unit can be switched to
radians in the Dialog .94

© Festo Didactic GmbH & Co. KG

Function block library

94

Outputs

Pose pose (0, 0,
0)

The pose (x, y, phi) composed from the single values. The value for
the orientation is displayed in radians at the output.

5.8.3.1 Dialog

Valid pose Specifies if the pose is valid. Invalid poses will be ignored in paths.

Orientation Specifies if the orientation is valid and its unit (degrees or radians).

5.8.4 Pose decomposer

Inputs Type Unit Defa
ult

Description

Pose pose (0, 0,
0)

Pose to decompose.

Outputs

x float 0 The pose's x component.

y float 0 The pose's y component.

phi float Grad 0 The pose's orientation in degrees. The unit can be switched to
radians in the Dialog .

Pose valid bool false true if the pose is valid.

Orientation
valid

bool false true if the orientation stored in the pose is valid.

94

Function block library

© Festo Didactic GmbH & Co. KG 95

5.8.4.1 Dialog

5.8.5 Path composer

Inputs Type Defau
lt

Description

Path 1 path empty
path

The first sub-path. A single Pose will also be accepted because pose is
convertible into path. See Type conversion .

...

Path 20 path empty
path

The last sub-path. A single Pose will also be accepted because pose is
convertible into path. See Type conversion .

Outputs

Path path empty
path

The path composed from the sub-paths Path 1 + ... + Path 20

5.8.5.1 Dialog

17

17

© Festo Didactic GmbH & Co. KG

Function block library

96

5.8.6 Path decomposer

Cuts a subpath out of a path. A path consists of a list of poses.

Index Pose

1 p1

2 p2

...

N pN

The inputs Start and Length specify the initial pose and the length of the decomposed path. Start
must be in [1;N]. If Start < 1, value 1 is used internally. If Start > the length of the path, the result
will be an empty path. Length must be in [0;N-Start+1]. If Length <= 0 the result will be an empty
path. If Length > N-Start+1, the result will be the subpath starting at index Start.

Examples:

Path = p1, p2, p3, p4, p5, p6, p7, p8, p9, p10
Start = 3
Length = 5
Subpath = p3, p4, p5, p6, p7

Path = p1, p2, p3, p4, p5, p6, p7, p8, p9, p10
Start = 0
Length = 1
Subpath = p1

Path = p1, p2, p3, p4, p5, p6, p7, p8, p9, p10
Start = 11
Length = 1
Subpath = empty path

Path = p1, p2, p3, p4, p5, p6, p7, p8, p9, p10
Start = 1
Length = 0
Subpath = empty path

Path = p1, p2, p3, p4, p5, p6, p7, p8, p9, p10
Start = 2
Length = 20
Subpath = p2, p3, p4, p5, p6, p7, p8, p9, p10

Inputs Type Defau
lt

Description

Path path empty
path

The path to decompose.

Start int 1 The pose at index Start of the path becomes the first pose of the
decomposed path.

Function block library

© Festo Didactic GmbH & Co. KG 97

Length int 1 The decomposed path consists of Length poses starting at the pose at
index Start of the path to decompose.

Outputs

Subpath path empty
path

The resulting path begins with the pose at index Start and consists of
Length poses.

5.8.7 Path driver

With the path driver it is possible to drive along paths.

From the path and the actual pose the velocity and the angular velocity are calculated so that
Robotino drives straightforward along the path's single poses.

Inputs Type Unit Defa
ult

Description

Path path empty
path

The path to drive.

Actual
pose

pose (0, 0,
0)

The actual pose determined by odometry or SLAM.

Restart bool false Restart the movement.

Outputs

Velocity float mm/
s

Forward velocity.

Angular
velocity

float deg/
s

Angular velocity.

Position
reached

bool True, if the path is empty.
Otherwise true, when the virtual point is located on the last path
segment and v(d) = 0.

Next way
point

pose The next target way point.

© Festo Didactic GmbH & Co. KG

Function block library

98

5.8.7.1 Configuration dialog 1

Top left
Correlation between angular velocity and angular error dφ.

Top right
Correlation between forward velocity and angular error dφ.

Bottom left
Correlation between forward velocity and distance to the next way point.

Bottom right
Correlation between forward velocity and angle to the next path segment.

Function block library

© Festo Didactic GmbH & Co. KG 99

5.8.7.2 Configuration dialog 2

Top left
Correlation between the robot's distance to the virtual way point and the angle to the next path
segment.

Top right
Correlation between the robot's distance to the virtual way point and the distance to the next way
point.

Bottom
Correlation between forward velocity and distance to the end of the path.

© Festo Didactic GmbH & Co. KG

Function block library

100

5.8.7.3 Configuration dialog 3

Top
Adaption of the coupling factor between the velocity calculated due to the configuration in dialogs 1
and 2 and the real velocity.

Unten
Adaption of the coupling factor between the angular velocity calculated due to the configuration in
dialogs 1 and 2 and the real angular velocity.

Function block library

© Festo Didactic GmbH & Co. KG 101

5.8.7.4 Path view

© Festo Didactic GmbH & Co. KG

Function block library

102

Function block library

© Festo Didactic GmbH & Co. KG 103

5.8.7.5 Strategy

The path driver function block creates a path which first connects the way points straight-lined.

The robot is driven with a virtual way point (painted as a red dot in the figure above). Given the robot's
current position, the virtual way point will be placed on the path that the distance between robot and
virtual way point is dp (distance virtual point). The virtual way point can only move along the path
towards the path's end, i.e. if the robot moves away from the virtual way point, it remains unchanged.
Due to the regulation on the virtual point, the path will be smoothed. The greater dp is, the greater is
the smoothing.

Angular velocity parameterization
The angular velocity (dφ) is specified via the function block dialog dependent from the angular error
dφ. dφ is the angle between the robot's current orientation and the line from the robots center to the
virtual way point.

Velocity parameterization
The velocity is also specified dependent from dφ and named v(dφ). So it is possible to slow down the
movement if the robot is no longer oriented properly.

To be able to reduce velocity if the path has a bend, the velocity is also specified as a function v(dn)
of the distance between the virtual point and the next way point. A typical curve of v(dn) is

I.e. the velocity shall decline if the robot gets closer to the way point.

But we want to slow down the robot depending on the angle α
n
. α

n
 is the angle between the current

and the next path segment. If α
n
 = 180° (i.e. the path leads straight-forward through the way point)

the velocity is not to be reduced. If α
n
 approaches 0° (a very strong bend) the robot must be slowed

down strongly. Therefore the function v(α
n
) is needed. A typical curve of v(α

n
) looks like this

© Festo Didactic GmbH & Co. KG

Function block library

104

I.e. the smaller α
n
 is the smaller is the velocity.

These three velocity profiles v(dφ), v(dn) und v(α) are used to calculate the overall velocity V(dφ,dn,
α):

 Vp(dφ,dn,α) = min(v(dφ), max(v(dn), v(α)))

Driving to the last way point
To slow down when the end of the path is reached, the velocity depending on the remaining distance
to be driven is specified and called v(d). The target is supposed to be reached when the velocity as a
function of the remaining distance to be driven is zero.

The unsmoothed velocity results in:

V(d,dφ,dn,γ) = min(v(d), Vp(dφ,dn,γ))

Smoothing of velocity and angular velocity
There are two other parameters available to smooth the movement.
The velocity coupling is the time in milliseconds that is needed for the coupling vCC between the
calculated velocity Vp(dφ,dn,α) and the real velocity to reach the value 1.
The angular velocity coupling is the time in milliseconds that is needed for the Coupling omegaCC
between the calculated angular velocity (dφ) and the real velocity omega to reach the value 1.

dv = vCC * (Vp
t
 - Vp

t-1
)

velocity = Vp
t-1

 + dv

domega = omegaCC * ((dφ)
t
 - (dφ)

t-1
)

velocity = (dφ)
t-1

 + domega

The subscript t means the value at time t. t-1 means the value one time step before t.

At restart vCC is initialized with 0 and increases to 1 within the time specified by the velocity
coupling.
At restart omegaCC is initialized with 0 and increases to 1 within the time specified by the angular
velocity coupling.

If the virtual point jumps to a new path segment, vCC and omegaCC will be reset to 0.

Function block library

© Festo Didactic GmbH & Co. KG 105

5.8.7.6 Example

5.8.8 Obstacle avoidance

The module Obstacle avoidance calculates a detour for a path round a circular obstacle.

Inputs Type Unit Defa
ult

Description

Path path empty
path

The path to be driven.

Obstacle
pose

pose (0, 0,
0)

The position of the circular obstacle.

Obstacle
radius

float mm 100 The radius of the circular obstacle.

Angular
distance

float Grad 10 The maximum angular distance between two points of the detour
round the obstacle.

Outputs

Detour path empty
path

Detour round the obstacle.

© Festo Didactic GmbH & Co. KG

Function block library

106

5.8.8.1 Dialog

The dialog shows the original path, the obstacle and the detour.

5.9 Input Devices

This category supplies the function blocks for realizing the interaction with the user.

5.9.1 Control Panel

A control panel usable with the mouse.

Outputs Type Description

Function block library

© Festo Didactic GmbH & Co. KG 107

vx float Velocity in x-direction

vy float Velocity in y-direction

omega float Angular velocity.

5.9.1.1 Dialog

The control panel can be used as follows:
By clicking one of the buttons the robot system is moved into the arrow's direction.
By clicking one of the two circular arrows a rotation into the corresponding direction is performed.
By clicking the button in the middle the movement is stopped.
The movement's velocity is adjusted via the slider.

© Festo Didactic GmbH & Co. KG

Function block library

108

5.9.1.2 Example

5.9.2 Slider

The slider creates any integer value within a specified range.

5.9.2.1 Dialog

Function block library

© Festo Didactic GmbH & Co. KG 109

In the dialog the slider's range and orientation (1 = horizontal, 0 = vertical) can be adjusted.

5.10 Data exchange

This category contains function blocks for data exchange within Robotino® View or with external
applications.

5.10.1 Image Reader

The image reader reads single JPEG images from a picture sequence from the file system. Path and
prefix can be specified in the dialog .

Inputs Type Defau
lt

Description

Number int16 -1 Number of the desired image.
If Number = -1, the image number is automatically increased by 1 in every
step, starting with 0.

Outputs

Output imag
e

JPEG image from file "<Path>/<Prefix><Number>.jpg" or "<Path>/
<Prefix>_<Number>.jpg".
If the file does not exist, the number will be prepended leading zeros up to
a total length of 4 until the image file is found.

110

© Festo Didactic GmbH & Co. KG

Function block library

110

5.10.1.1 Dialog

In the dialog it is possible to specify the path and prefix of the picture sequence that is to be read.

Function block library

© Festo Didactic GmbH & Co. KG 111

5.10.1.2 Example

5.10.2 Image Writer

The image writer writes a sequence of JPEG images to the file system. Path and prefix can be
specified in the dialog . The image's number is increased by 1 in every step, starting with 0.
Every single image is saved under "<Path>/<Prefix>_<Number>.jpg". The number has at least 4
digits, including leading zeros.

Inputs Type Defau
lt

Description

Input imag
e

Next image of the sequence.

Enable bool true The image writer is active.

112

© Festo Didactic GmbH & Co. KG

Function block library

112

5.10.2.1 Dialog

5.10.2.2 Example

See example image reader .

5.11 Variables

Global variables are a kind of special. For all global variables there are function blocks for reading
and writing available in every sub-program. These function blocks do always show the variable's
name and can't be renamed.

Global variables can be added, removed and renamed in the variable manager (main program view)
. Furthermore, they can be assigned initial values.

Adding, removing and renaming global variables is also possible in the function block library by right-
clicking on the device "Variables" and selecting "Add" or right-clicking on the variable's reader or
writer and selecting "Remove" or "Rename".

6 Devices

Devices establish the connection between Robotino View and the outside world. The device
"Robotino" can communicate with real Robotino or a simulated one. The device "Joystick" can read
the positions of the axes of a joystick attached to the computer.

111

14

Devices

© Festo Didactic GmbH & Co. KG 113

6.1 Add and edit

When creating a new project the device "Robotino" is automatically added. To add more devices you
have to change the current view to a subprogram.

Below the function block library devices can be added using the "Add" button. The device chosen will
appear underneath the device "Robotino" in the function block library.

New devices get a unique name. This name can be changed using the "Rename" button, if the
device has been selected in the function block library.

The "Remove" button is used to remove devices from the current project. This function is available
only if no function blocks of the devices are used within the project.

© Festo Didactic GmbH & Co. KG

Devices

114

6.2 Show dialogs

Every device has a configuration dialog. This dialog is opened by double clicking the device in the
function block library

6.3 Robotino

The Robotino Device provides access to sensors and actors of the Robotino® robot system.

6.3.1 Toolbar

You can find the IP address input field and connect button within the main tool bar . The IP
address input and connect button refer to the first Robotino device in the list of devices in the device

10

Devices

© Festo Didactic GmbH & Co. KG 115

manager. The function of the IP address input field and the connect button is identical to the one in
the device dialog.

6.3.2 Dialog

The dialog of the Robotino device will be shown after double-clicking on the Robotino device.

1 IP address input Robotino's default IP address is 172.26.1.1. If you want to connect to
Robotino Sim (running on the same computer as Robotino View) the IP
address is 127.0.0.1:8080. 8080 is the port number, at which the
Robotino server listens to incoming connections. If more than one
Robotino is simulated, the port number can be higher.

2 Connect button By clicking on this button a connection to Robotino will be established
or closed.

3 Resolution The requested resolution of images taken by Robotino's camera.

4 Frequency Frequency of image updates

5 Disable drive system If checked, Robotino's motors are deactivated

6 Message window Display of various message in text form.

6.3.3 Function blocks

The function blocks allow the usage of the Robotino device in a subprogram.

6.3.3.1 Drive system

This folder contains function blocks to control Robotino's drive system.

© Festo Didactic GmbH & Co. KG

Devices

116

6.3.3.1.1 Motor

Access to one Robotino's motors. The motor number is displayed.
.

Inputs Type Unit Defa
ult

Description

Speed set-
point

float rpm 0 The speed set-point of the motor control in rounds per minute.
Please note that there is a 16:1 gear between motor and Robotino's
wheel.

Reset
position

bool false If true the tick counter of the motor's encoder is reset to 0.

Brake bool false If true the motor is stopped.

Accelerati
on

int 100 Coupling of speed set-point at the input and the speed set-point
really transmitted (see Dialog)

Outputs

Actual
velocity

float rpm The actual velocity of the motor.

Actual
position

int The number of ticks counted since power up of Robotino or since
"Reset position" had been true and the false. The ticks are
generated by the motor's encoder which generates 2000 ticks per
round.

Current float A The current measured at the motor's H-bridge.

117

Devices

© Festo Didactic GmbH & Co. KG 117

6.3.3.1.1 Dialog

Parameter Description

Acceleration Acceleration/Deceleration factor. With the maximum value 100 speed set-
points are given directly to the motor's controller. With smaller values
differences between speed set-points are flattened over time. This can be
used to generate smooth motions of Robotino.

© Festo Didactic GmbH & Co. KG

Devices

118

kp Proportional term of the motor's PID controller

ki Integral term of the motor's PID controller

kd Differential term of the motor's PID controller

Use default parameters Use the values for kp, ki and kd implemented in Robotinos firmware. These
default values are also used if you set kp=ki=kd=255.

Reset on start Initialize the Actual position with 0 at program start

Velocity control of each motor is performed by a PID controller

The parameters are:

K
p

K
i
 = 1/T

n

K
d

From the values set in the dialog the controller parameters are calculated as:

K
p
= kp / 2

K
i
= ki / 1024

K
d
= kd / 2

Default values are
kp = 25
ki = 25
kd = 25

6.3.3.1.2 Omnidrive

Calculates the speed set-points of motor 1, 2 and 3 according to set-velocities vx, vy and omega.

Inputs Type Unit Defa
ult

Description

vx float mm/s 0 Set-velocity in x-direction in Robotino's local coordinate system.

vy
zurücksetz
en

float mm/s 0 Set-velocity in y-direction in Robotino's local coordinate system.

omega float deg/s 0 Set-rotational velocity.

Devices

© Festo Didactic GmbH & Co. KG 119

Outputs

m1 float rpm Speed set-point motor 1

m2 float rpm Speed set-point motor 2

m3 float rpm Speed set-point motor 2

The function block "Omnidrive (inverse)" calculates vx, vy and omega from the motors' rotation
speeds.

The image shows Robotino's local coordinate system. A positive rotational velocity omega generates
a counter-clockwise rotation when looking from top onto Robotino.

6.3.3.2 Collision detection

Here you can find function blocks referring to sensors for detecting obstacles.

6.3.3.2.1 Bumper

A tactile sensor is integrated into the bumper. If contacted, the sensor supplies an output signal.

Inputs Type Defau
lt

Description

© Festo Didactic GmbH & Co. KG

Devices

120

Outputs

Value bool True if there is a contact.

6.3.3.2.2 Distance sensors

The sensor reading of a distance sensor.

Inputs Type Unit Defa
ult

Description

Outputs

Value float Volt Analog reading of the distance sensor in V. The scaling and
conversion of a distance value must be effected by the user.

Heading float Degre
e

The heading of the sensor in Robotino's local coordinate system
(see image below). The heading is calculated from the sensor
number as
Heading = 40° x (Number - 1)

Devices

© Festo Didactic GmbH & Co. KG 121

© Festo Didactic GmbH & Co. KG

Devices

122

6.3.3.2.2 Example

The data sheet of the distance sensor (its a Sharp GP2D120) shows the mapping between distance
to an object in cm and the sensor's analog output signal in Volt.

With this mapping it is easy to configure a transfer function so that the analog voltage is mapped
to distance to object in cm. Please notice that this mapping is the inverse of the mapping shown
above. This means that we have to skip distances smaller 4cm. Distance smaller 4cm can not be
distinguished from distances larger 4cm, because the analog voltage output of the sensor is the
same.

Furthermore the analog digital converter measures voltages up to 2,55V only.

The mapping from analog voltage to distance is also influenced by the material of the detected
object. Overall it is best practice to measure the mapping by yourself.

55

Devices

© Festo Didactic GmbH & Co. KG 123

The values of the transfer function are given below. You can Copy&Paste these values into your
own transfer function .

0.3 40
0.39 35
0.41 30
0.5 25
0.75 18
0.8 16
0.95 14
1.05 12
1.3 10
1.4 9
1.55 8
1.8 7
2 6
2.35 5
2.55 4

6.3.3.3 Image system

This folder contains function blocks to use Robotino's camera.

6.3.3.3.1 Camera

The live image of Robotino's camera.

55

55

© Festo Didactic GmbH & Co. KG

Devices

124

Inputs Type Defau
lt

Description

Outputs

Image imag
e

The image from Robotino' camera

To set the image resolution you can use Robotino's device dialog .

6.3.3.3.1 Dialog

Shows the latest image. To adjust the image resolution see device dialog .

115

115

Devices

© Festo Didactic GmbH & Co. KG 125

6.3.3.4 I/O connector

Here you can find function blocks to access Robotino's I/O connector.

6.3.3.4.1 Relay

Switch relay 1 and 2.

Inputs Type Defau
lt

Description

Value bool false If false the relay is switched off.

The connectors for relay 1 are REL1_NO, REL1_CO and REL1_NC.

© Festo Didactic GmbH & Co. KG

Devices

126

The connectors for relay 2 are REL2_NO, REL2_CO and REL2_NC.

6.3.3.4.2 Digital output

Set a digital output.

Inputs Type Defau
lt

Description

Value bool false If true the output at Robotino's I/O connector is +10V. Otherwise the

Devices

© Festo Didactic GmbH & Co. KG 127

output is 0V.

The connector for digital output x is DOx with x in [1;8].

6.3.3.4.3 Analog input

Reads the value of an analog input.

© Festo Didactic GmbH & Co. KG

Devices

128

Outputs Type Unit Description

Value float Volt The measured voltage. Range [0;10].

The connector for analog input x is AINx with x in [1;8].

6.3.3.4.4 Digital input

Reads the value of a digital input.

Devices

© Festo Didactic GmbH & Co. KG 129

Outputs Type Description

Value bool The value at Robotino's I/O connector. Voltages less 5.75V are mapped to
false. Values greater 8.6V are mapped to true. If the voltage at the connector is
between 5.75V and 8.6V the value remains unchanged.

The connector for digital input x is DIx with x in[1;8].

6.3.3.5 Navigation

This folder contains function blocks for the location of Robotino.

© Festo Didactic GmbH & Co. KG

Devices

130

6.3.3.5.1 Odometry

For this functionality a 1GB Compact-Flash memory card for Robotino (V 1.7 or higher) is
needed.
(No functionality with 256MB memory cards, Version <=1.6)

Odometry is the use of data from the movement of actuators to estimate change in position over
time. See http://en.wikipedia.org/wiki/Odometry.

The rotation of wheels is measured with the highest time resolution possible. In every time step the
distance driven by the vehicle is calculated from the wheels rotational speed. These very small
distances from the single time steps are integrated over time. This leads to the actual position
relative to the starting position. This method yields good local performance. On long distances or
under adverse conditions (wheels slip because of dust on the floor, drift because of preferential
direction of the carpet) this method leads to very large errors. On this account odometry is always
combine with other methods to compensate for the described errors.

Inputs Type Unit Defa
ult

Description

x float mm 0 The new x-position. Odometry is reset to the new position if "Set" is
true.

y float mm 0 The new y-position. Odometry is reset to the new position if "Set" is
true.

phi float Degre
e

0 The new orientation. Odometry is reset to the new position if "Set" is
true.

Set bool false If true, the odometry is set to the values from inputs x, y, and phi. To
reset the odometry to (0,0,0) you only need to set this input true for
one time step. The other inputs do not need to be connected,
because the default values are 0.

Outputs

x float mm The current x-position from the odometry in global coordinates.

y float mm The current y-position from the odometry in global coordinates.

phi float Degre
e

The current orientation from the odometry in global coordinates.

6.3.3.5.2 North Star

North Star ® is a sensor which determines Robotino®'s absolute position with the help of projectors.

http://en.wikipedia.org/wiki/Odometry

Devices

© Festo Didactic GmbH & Co. KG 131

Inputs Type Unit Defa
ult

Description

Room
number

int 1 The room number in which Robotino is currently located.
Rooms are enumerated starting with 1.

Ceiling
calibration

float mm 1 Distance between detector and ceiling. If the ceiling height is 3m the
distance between detector and ceiling is about 2800mm.

x float mm 0 x-position of the origin set by the input "Set".

y float mm 0 y-position of the origin set by the input "Set".

phi float Degre
e

0 Orientation of the origin set by the input "Set".

Set bool false If true, the current pose (x,y,phi) is used as origin.

Outputs

x float mm The current x-position in global coordinates.

y float mm The current y-position in global coordinates.

phi float Degre
e

The current orientation in global coordinates.

Projektore
n

int Number of visible projectors.

The Northstar detector can be attached to Robotino in different ways. Depending on the configuration
the file /etc/robotino/robotino.xml on robotino must be adapted with a text editor. The value for the
orientation must be set according to the figure below.

<NorthStar>

 <!--The orientation of the northstar sensor. See www.openrobotino.org-->

<Orientation value="1" />

</NorthStar>

© Festo Didactic GmbH & Co. KG

Devices

132

Devices

© Festo Didactic GmbH & Co. KG 133

6.3.3.5.2 Dialog

Spot A Intensity of the first light spot emitted by the projector.

Spot B Intensity of the second light spot emitted by the projector.

Current room The room number detected by the North Star sensor.

Number of projectors The number of visible projectors.

Sequence number The sequence number is incremented by one each time the North Star
sensor provides new readings.

© Festo Didactic GmbH & Co. KG

Devices

134

6.3.3.5.2 Example

The control panel is used to move Robotino.

Northstar shall detect the projector that belongs to room 4. The new NorthStar projector must be set
to room 1.

Devices

© Festo Didactic GmbH & Co. KG 135

Via the boolean constant (true/false) the coordinate systems of Northstar and the odometry can be
transformed so that "current Northstar pose" == "current odometry pose" == (100,100,90).

By subtracting the components of Northstar and odometry, you can see the error occurring between
odometry and Northstar.

6.3.3.6 I/O extension

This folder contains function blocks to Robotino's other hardware interfaces.

6.3.3.6.1 Encoder input

This function block reads values from Robotino's encoder input.
The encoder input interprets signals from a digital motor encoder (A,B-channel gray-code).
Rising and falling edges are considered. This leads to a quad effective resolution.

Example: The motor encoder of Robotino' s drive motors has a resolution of 500 ticks.
Effectively 2000 ticks are counted.

Inputs Type Unit Defa
ult

Description

Reset
position

bool 0 If true the actual position is reset to 0.

© Festo Didactic GmbH & Co. KG

Devices

136

Outputs

Actual
velocity

int ticks
/s

The measured velocity.

Actual
position

int ticks The sum of all ticks measured since the start of robotino or since
"Reset position" = true.

6.3.3.6.2 Power output

This function block assigns set point values to Robotino's power output (former Motor 4). The power
output can only be used if the sub-program doesn't use the gripper.

The output is instantiated by a H-bridge, which can deliver up to 5A continuous current.
The H-bridge is driven by a high frequency PWM signal and one bit for direction.
The sign of the set point given by the input corresponds to the direction bit.
The absolute value of the set point influences the PWM signal.
A set point of 0 does not generate any PWM signal, i.e. no current is delivered by the H-bridge.
A set point of 50 leads to a high-low-ratio of the PWM signal of 50%.
A set point of 100 generates a constant high, i.e. the H-Bridge delivers maximum current.

Inputs Type Unit Defa
ult

Description

Set-point int 0 Sets direction bit and PWM signal. Range -100 to 100. Values less -
100 are interpreted as -100. Values greater 100 are interpreted as
100.

Outputs

Current float A Der durch die H-Brücke fließende Strom.

The current delivered by the power output is limited by default.
To change or disable this limitation edit /etc/robotino/robotino.xml on Robotino.
The new values are assigned after 2 seconds.

6.3.3.6.3 Gripper

Use this module with a Festo Robotino Gripper. The Gripper can only be used if the current sub-
program does not contain a power output .

Inputs Type Defau
lt

Description

Open bool false If true the gripper is opened.

Outputs

Opened bool True if the gripper reached its opened position

136

Devices

© Festo Didactic GmbH & Co. KG 137

Closed bool True if the gripper reached its closed position.

The Gripper must be connected to port X15 at the PCB behind the battery:
brown cable (+) to the left, blue cable (-) to the right.

6.3.3.7 Internal sensors

6.3.3.7.1 Power management

The power management module of Robotino.

Inputs Type Unit Defa
ult

Description

Outputs

Power
consumpti
on

float A The current drawn from Robotino's batteries.

Battery float Volt Battery voltage.

6.3.3.7.2 Shutdown

Shut down and switch off Robotino.

Inputs Type Defau
lt

Description

Shutdown bool false If true, Robotino shuts down and is turned off.

6.4 Joystick

The device "Joystick" allows access to a locally attached joystick.

© Festo Didactic GmbH & Co. KG

Devices

138

6.4.1 Dialog

1 List of available
joysticks

The combo box contains an entry for every joystick available at this
computer. This list is updated whenever a new joystick is attached are
detached from this computer. By selecting a joystick its buttons and
axes become available through the corresponding function blocks.

2 Number of axes The number of axes of the selected joystick.

3 Number of buttons The number of button of the selected joystick.

6.4.2 Function blocks

Function blocks to read button and axis states.

6.4.2.1 Button

Reads the state of a joystick's button.

Outputs Type Description

Value bool True if the button is pressed, false otherwise.

6.4.2.2 Axis

Devices

© Festo Didactic GmbH & Co. KG 139

Read the position of a joystick's axis.

Outputs Type Description

Value int Range -1000 to 1000.

6.5 Local camera

The device "Local camera" allows access to a camera that is attached to the computer (e.g. a
webcam).

6.5.1 Dialog

1 List of available
cameras

All cameras attached to the system are shown here. The list is
updated when a new camera is attached to or removed from the
computer.

2 Scan Update the list of available cameras.

3 Connect/Disconnect Establish/Close a connection to the selected camera.

4 Resolution/Color depth Coose the resolution and color depth here. All resolutions supported by
the camera are available.

5 Message window Display of various message in text form.

After selecting a camera a connection must be established. Than it is possible to set the resolution.

© Festo Didactic GmbH & Co. KG

Devices

140

6.5.2 Function blocks

The function blocks allow to use the device "Local camera" in a sub-program.

6.5.2.1 Camera

Live image of the local camera.

Inputs Type Defau
lt

Description

Outputs

Image imag
e

Live image

Color depth and resolution can be selected in the device dialog .139

Devices

© Festo Didactic GmbH & Co. KG 141

6.5.2.1.1 Dialog

The camera dialog shows the current image. To adjust the image resolution see device dialog .

6.6 OPC Client

OPC is a standardised interface between different software applications and drivers of different
hardware modules (e.g. PLC).
Multiple OPC-Clients can connect to one OPC-Server.
A (special) OPC-Server will often be provided by the common PLC manufacturers.

In the below sample a Festo EasyPort will be connected to RobotinoView via the free Festo EzOPC-
Server.

The EzOPC-Server allocates the in-/outputs of up to 4 EasyPorts using so called "Groups" and
"Tags":

Device1 shows as group "EasyPort1"
Output 1 therefore shows as Tag "EasyPort1.OutputPort1"

Please follow these steps:

1. Install the EzOPC-Server.
2. Start the EzOPC Server and choose "Process Simulation…" and "PLC via EasyPort".
3. Start RobotinoView.
4. Add the "OPC Client" device.
5. From the device dialog's context menu select Predefined settings "Festo EzOPC EasyPort".
The default values for the EasyPort will be loaded.
6. If needed select "FestoDidactic.EzOPC.1".
7. Start the connection.
8. Use the OPC Client function blocks to access the OPC-data of the EasyPort's in-/outputs.

Hint: if you would like to use a PLC of a different manufacturer you need a OPC server or OPC client
of this manufacturer. Use an OPC client to see which tags are available on your PC's OPC server.

139

© Festo Didactic GmbH & Co. KG

Devices

142

Downloads and additional information can be found at http://www.opcconnect.com/

6.6.1 Dialog

1 Select OPC server The combocox lists all available local OPC servers.

2 Connect Establish a connection to the selected OPC server.

3 Scan Update the list a OPC servers.

4 Mapping This table defines the mapping from function blocks to OPC "Tags".

Row function block
DO_Port_1 digital Output 1
DO_Port_2 digital Output 2
DO_Port_3 digital Output 3
DO_Port_4 digital Output 4

http://www.opcconnect.com/

Devices

© Festo Didactic GmbH & Co. KG 143

DI_Port_1 digital Input 1
DI_Port_2 digital Input 2
DI_Port_3 digital Input 3
DI_Port_4 digital Input 4
AO_Port_1 analog Output 1
AO_Port_2 analog Output 2
AO_Port_3 analog Output 3
AO_Port_4 analog Output 4
AI_Port_1 analog Input 1
AI_Port_2 analog Input 2
AI_Port_3 analog Input 3
AI_Port_4 analog Input 4

The context menu provides the following functionality:

Predefined settings
Festo EzOPC
VirtualPLC

Load a mapping suitable for VirtualPLC

Predefined settings
Festo EzOPC
EasyPort

Load a mapping suitable for EasyPort

Load Load a mapping from file.

Save Save the current mapping to a file.

Help Show this help page.

6.6.2 Function blocks

Function blocks allow use of the "OPC Client" device in a sub-program.

6.6.2.1 Inputs

6.6.2.1.1 Analog input

Reading of the "Tag" mapped to AI_Port_x with x in [1;4]

Outputs Type Description

Value int Range 0 to 65535

© Festo Didactic GmbH & Co. KG

Devices

144

6.6.2.1.2 Digital input

Read bit values of the "Tag" mapped to DI_Port_x with x in [1;4]

Outputs Type Description

Bit 0 bool True if bit 0 is set.

...

Bit 7 bool True if bit 7 is set.

6.6.2.2 Outputs

6.6.2.2.1 Analog output

Write Value to the "Tag" mapped to AO_Port_x with x in [1;4]

Inputs Type Description

Value int Range 0 to 65535

6.6.2.2.2 Digital output

Set bits of "Tag" mapped to DO_Port_x with x in [1;4]

Inputs Type Description

Devices

© Festo Didactic GmbH & Co. KG 145

Bit 0 bool If true the value send to the OPC server is increased by 2 0̂ = 1.

...

Bit 7 bool If true the value send to the OPC server is increased by 2 7̂ = 128.

6.7 Data exchange

Devices from this category are used to exchange data between different Robotino View instances
over a network.

6.7.1 Server

The data exchange server can be used by an arbitrary number of clients to exchange data over an
arbitrary number of communication channels. The communication channels are create at server side.
The communication channels created are broadcasted to all clients. The clients can choose over
which channels they are going to exchange data with the server.

Server and clients are have equal rights when exchanging data. When a client writes data into a
communication channel the data is transfer to the server and from there to all other clients. If more
than one participant is writing to the same channel it is unpredictable which datum the
communication channel contains in the end.

After adding the data exchange server device to the function block library the communication
channels can be added via the servers context menu.

© Festo Didactic GmbH & Co. KG

Devices

146

A dialog is displayed to enter the name and the type of the new channel.

The channel's name must be unique and must contain ASCII characters excluding the "/" character
only. By pressing Ok the channel is created. In the function block library two new function blocks
appear named "channel name Writer" and "channel name Reader". These function blocks are used
to write to or read from a communication channel.

Devices

© Festo Didactic GmbH & Co. KG 147

© Festo Didactic GmbH & Co. KG

Devices

148

6.7.1.1 Dialog

The data exchange server's dialog is opened by double clicking onto the device symbol in the
function block library.

Server port is the TCP port the server is listening for incoming connections.
Sending interval is the time intervall after a transmission that must elapse before the next
transmission is permitted.

By "Start server" the server starts listening. From now on clients can connect to the server.

6.7.2 Client

The data exchange client connects to a data exchange server . Afterwards data can be exchange
with the server using the server's communication channels.

After the client successfully connected to the data exchange server the list of communication
channels is available.

145

145

Devices

© Festo Didactic GmbH & Co. KG 149

At server side the communication channels a,b of type I32 (integer with 32 bit) and c,d of type
FLOAT32 (floating point with 32 bit) had been created. These channels can now be added to the
client in the function block library.

© Festo Didactic GmbH & Co. KG

Devices

150

As with the data exchange server the function block library shows two function blocks after
adding a channel to the client. Via the client's context menu channels can be added one by one or
all at once. Using the "Connect" entry from the context menu the connection to the server can be
established without using the clients's dialog.

145

Devices

© Festo Didactic GmbH & Co. KG 151

6.7.2.1 Dialog

Server address is the IP address of the server the client wants to connect to. If only the IP address
is given the connection is established using the server's default port 9080. If the server is listening on
a different port the port number can be specified after the IP address separated by a ":".

If the server is listening on the local host at port 8000, the clients server address should be
127.0.0.1:8000.

If "Auto reconnect" is active the clients tries to establish a new connection after the current
connection goes down.
Sending interval is the time intervall after a transmission that must elapse before the next
transmission is permitted.

© Festo Didactic GmbH & Co. KG

Devices

152

6.7.3 Function blocks

The function blocks are used to exchange data with the devices.

6.7.3.1 Reader

The Reader reads data from a communication channel.

Outputs Type Description

Value int, float, float
array, laser range
data

The value of the communication channel.

6.7.3.2 Writer

The Writer writes data into a communication channel.

Inputs Type Default Description

Value int, float, float array,
laser range data

0 The value is send to the server and the broadcasted to
all clients.

6.8 UDP data exchange

With the UDP data exchange device data can be exchanged between Robotino View and external
applications via UDP.

6.8.1 Protocol

Specification of the data structure

Byte Function

0 Message ID

1-2 Number of Bytes of the whole message N. Type is UINT16

3 Checksum (to be initialized with 0 when the package is generated, see Checksum)

N-1 Message's last byte

153

153

Devices

© Festo Didactic GmbH & Co. KG 153

6.8.1.1 Checksum

If the message is shorter than 100 byte, the sum s0 will be calculated from the whole package's
single bytes. If the message contains 100 bytes or more, s0 will be calculated from the message's
first and the last 50 bytes.

In both cases the checksum byte must be initialized with 0. The checksum is calculated to

checksum = 0xff - s0

unsigned char checksum(const unsigned char* payload, unsigned int payloadLength) const

{

unsigned char s0 = 0;

if(payloadLength < 100)

{

for(int i = 0; i < payloadLength; ++i)

{

s0 += payload[i];

}

}

else

{

for(int i = 0; i < 50; ++i)

{

s0 += payload[i];

}

for(int i = payloadLength-1; i >= payloadLength - 50; --i)

{

s0 += payload[i];

}

}

return (0xFF - s0);

}

To check if the package has been transmitted correctly, the whole message's single bytes will be
accumulated to the byte sum s1 if the message is shorter than 100 byte. If it contains 100 bytes or
more, s1 is calculated from the message's first and last 50 bytes.

The package is correct if

s1 = 0xFF

6.8.1.2 Data types

Ty
pe

Width
in
bytes

Description

UIN
T16

2 Byte0: low
Byte1: high
On a little endian system a UINT16 data value can be copied directly into the payload.
Example:
//encoding
uint16 value = 9873;

char payload[2];

uint16* p = reinterpret_cast<uint16*>(payload);

© Festo Didactic GmbH & Co. KG

Devices

154

*p = value;

//decoding

value = *(reinterpret_cast<const uint16*>(payload));

INT
32

4 Byte0: low
Byte3: high
On a little endian system a INT32 data value can be copied directly into the payload.
Example:
//encoding
int32 value = -3459873;

char payload[4];

int32* p = reinterpret_cast<int32*>(payload);

*p = value;

//decoding

value = *(reinterpret_cast<const int32*>(payload));

UIN
T32

4 Byte0: low
Byte3: high
On a little endian system a UINT32 data value can be copied directly into the payload.
Example:
//encoding
uint32 value = 3459873;

char payload[4];

uint32* p = reinterpret_cast<uint32*>(payload);

*p = value;

//decoding

value = *(reinterpret_cast<const uint32*>(payload));

6.8.1.3 Message 0

Byte Function
0 0
1 36
2 0
3 Checksum
4-7 INT0 of type INT32
8-11 INT1 of type INT32
12-15 INT2 of type INT32
16-19 INT3 of type INT32
20-23 INT4 of type INT32
24-27 INT5 of type INT32
28-31 INT6 of type INT32
32-35 INT7 of type INT32

6.8.1.4 Message 1

Byte Function
0 1
1 36
2 0
3 Checksum
4-7 INT0 of type INT32

153

153

153

153

153

153

153

153

153

153

153

Devices

© Festo Didactic GmbH & Co. KG 155

8-11 INT1 of type INT32
12-15 INT2 of type INT32
16-19 INT3 of type INT32
20-23 INT4 of type INT32
24-27 INT5 of type INT32
28-31 INT6 of type INT32
32-35 INT7 of type INT32

6.8.2 Dialog

The dialog of the UDP data exchange device can be opened by double-clicking on the device entry in
the function block library.

In the dialog both sending and receiving UDP datagrams can be configured:

With "Server port" the UDP port number at which the server listens for datagrams and from which
datagrams are sent is configured.
With "Start server" the server is started. Once the server has been startet, UDP data packages are
received and interpreted and sent.

153

153

153

153

153

153

153

© Festo Didactic GmbH & Co. KG

Devices

156

"Interval" is the time intervall after a transmission that must elapse before the next transmission is
permitted.
For each message (message 0 or message 1) sending can be turned on and off individually.
IP adresses and ports of data receivers can be entered into the "Listeners" table. If no port is
specified, port 9180 will be used by default.

6.8.3 Function blocks

The function blocks are used to exchange data with the devices.

6.8.3.1 Message 0

The function blocks in category Message 0 allow sending and receiving data.

6.8.3.1.1 Input

The inputs of message 0 provide received values.

6.8.3.1.1 Reader

The reader reads data and outputs received data. There is a reader for each of INT0 to INT7.

Outputs Type Description

Value int The received value

6.8.3.1.2 Output

The outputs are used to send values.

6.8.3.1.2 Writer

Devices

© Festo Didactic GmbH & Co. KG 157

The writer takes the data to send and passes them to the device to send it to the receivers via UDP.
There is a writer for each of INT0 to INT7.

Inputs Type Description

Value int The value to send

6.8.3.2 Message 1

Message 1 is identical to Message 0 .

6.8.4 Example

7 Programming

To compile function blocks and devices the Robotino® View 2 API is necessary.

7.1 My function blocks

You can find the following examples in

%ProgramFiles%\Festo\RobotinoView2\units\robview\MyFunctionsBlocks

or respectively

%ProgramFiles(x86)%\Festo\RobotinoView2\units\robview\MyFunctionsBlocks

156

© Festo Didactic GmbH & Co. KG

Programming

158

on 64 bit systems. The environment variable %ProgramFiles% stores the path to the installed
application. Normally this is "C:\Program Files".

Before opening Visual Studio Solution tutorialx.sln you should run the script

RUN THIS FIRST THEN START VS.cmd

from the current tutorial folder. The script generates user specific settings, that can not be stored in
the sln file and enable debugging of function blocks.

For the debugging to work, Robotino View 2 must be specified as executable with the correct
working directory in the project settings as shown below. This settings will be set correctly
automatically if you have executed "RUN THIS FIRST THEN START VS.cmd" before as described
above.

7.1.1 Tutorial 1

Folder: tutorial1.unit

This tutorial explains how the build a function block with one input and one output connector. The
relevant code can be found in Tutorial1.cpp in the step() function.

Programming

© Festo Didactic GmbH & Co. KG 159

The input value "in" is multipled by 2 and then written to the output. Do whatever you like here. To
see what happens in your code start the debugger by pressing the F5 key. The function block is
compiled and linked and Robotino View 2 is started. Please ignore the dialog that Robotino View 2
does not contain debugging information. As you do not want to debug Robotino View 2, but only
your function block, this message is irrelevant.

Create a sub-program in Robotino View 2 containing the Tutorial 1 function block from My function
blocks. Start the simulation of the sub-program.

Place a break point in your step() method.

© Festo Didactic GmbH & Co. KG

Programming

160

Index

161© Festo Didactic GmbH & Co. KG

- A -
ABS 55

absolute value 55

add devices 113

addition 52, 64, 67

analog input 127

AND 38, 40, 41, 43, 44, 45, 46, 48, 49

AND FL 40

arrays 61

- B -
bumper 119

- C -
C++ 158

camera 123, 139

cartesian 67, 68, 69

changes 8

client 141, 145, 152

color space 83

compare 53, 54, 55

connect to Robotino 16

constant 86, 93

control panel 106

Cosine wave 84

counter 32, 35

create function block in C++ 158

- D -
data exchange 109, 141, 145, 152

devices 112, 114, 137

devision 66

digital input 128

digital output 126

display 70

distance 120

division 50

- E -
encoder input 135

equal 53, 54, 55

example 24, 30, 158

- F -
filter 88

firmware 23

FlipFlop 31, 48

function 55, 58, 59, 60

function block 13, 31, 32, 35, 36, 37, 38, 40, 41,
43, 44, 45, 46, 48, 49

function block connection 13

function blocks 115

- G -
generator 84, 86, 87, 88

getting started 12

global variables 14, 112

greater 54, 55

gripper 136

- I -
image information 82

image processing 72, 76, 78, 80, 82, 83

input 106, 108, 119, 120, 127, 128, 135, 137

install 8

- J -
joystick 137

- K -
keyboard shortcuts 17

- L -
language 9

latching relay 31, 48

length 65

less 54

line detector 78

load program 12

- M -
math function 49, 50, 51, 52, 53, 54, 55, 58, 59,
60, 61

maximum 59

mean filter 88

minimum 58, 59

Modulo 49

motor 116, 118

multiplexer 36, 37

multiplication 50, 67

© Festo Didactic GmbH & Co. KG162

Index

- N -
NAND 41

NAND FL 43

navigation 89, 93, 94, 95, 96, 97, 105, 129, 130

new project 12

NOR 46

norm 65

North Star 130

NOT 38, 40, 41, 43, 44, 45, 46, 48, 49

- O -
obstacle avoidance 105

odemetry 130

omnidrive 118

OPC 141, 145

operating sytem 23

OR 38, 40, 41, 43, 44, 45, 46, 48, 49

oscilloscope 70

output 125, 126, 136

- P -
path 95, 96, 97, 105

path driver 97

polar 67, 68, 69

pose 93, 94

position 89

position driver 89

power management 137

power output 136

- R -
random 88

reagion of interest 80

relay 125

robotino 114, 116, 118, 119, 120, 123, 125, 126,
127, 128, 135, 136, 137, 139

ROI 80

rotate 69

RS 48

RS-FlipFlop 31, 48

- S -
Sample and Hold 49

scalar 63, 67

scale function 60

scope 70

segment 76

segment extractor 76

segmenter 72

sensor 120, 123, 139

server 141, 145, 152

shortcuts 17

Sine wave 84

slider 108

Square wave 84

sub program 14

substraction 63, 66

subtraction 51

- T -
terminology 12

timer 87

transfer function 55

Triangle wave 84

tutorial 24, 30, 158

type conversion 17

- U -
UDP 152

uninstall 8

updates 8, 18, 23

upload project 18

- V -
variable 93

vector 63, 64, 65, 66, 67, 68, 69

- W -
waveform generator 84

workspace 9

- X -
XOR 38, 40, 41, 43, 44, 45, 46, 48, 49

	Welcome
	Improvements
	Installation, update and de-installation
	Changing language

	Familiarisation with the workspace
	Structure and concept of user interface
	Tool bar
	Function block library

	Terminology

	Using Robotino® View
	Create a new project
	Load an existing project
	Insert function blocks into sub-programs
	Interlink function blocks
	Global variables
	Execute a sub-program
	Execute the main program
	Connect to Robotino®
	Keyboard shortcuts
	Type conversion
	Updates
	Upload projects to Robotino and execute them
	Browse Robotino
	Upload and execute

	Upgrade Robotino packages
	Robotino firmware installation
	Interna

	Examples
	Control programs
	Tutorial 2

	Logic
	Multiplexer
	FlipFlop

	Function block library
	Logic
	Counter up
	Dialog
	Example

	Counter down
	Dialog

	Multiplexer
	Dialog
	Example

	Demultiplexer
	Dialog
	Example

	AND
	Dialog
	Example

	AND FL
	Dialog
	Example

	NAND
	Dialog
	Example

	NAND_FL
	Dialog

	OR
	Dialog
	Example

	XOR
	Example

	NOT
	Example

	NOR
	Dialog
	Example

	Latching relay
	Sample and hold element

	Mathematics
	Arithmetic operations
	Modulo
	Division
	Multiplication
	Dialog

	Subtraction
	Dialog

	Addition
	Dialog

	Comparison Operations
	Inequal
	Equal
	Less equal
	Less
	Greater equal
	Greater

	Functions
	Absolute Value
	Transfer Function
	Dialog
	Example

	Minimum
	Dialog

	Maximum
	Dialog

	Scale
	Dialog

	Arrays
	Float array composer
	Dialog

	Float array decomposer
	Float array index access

	Vector analysis
	Vector operations
	Dot product
	Subtraction
	Dialog

	Addition
	Dialog

	Norm
	Example

	Element operations
	Division
	Subtraction
	Addition
	Multiplication

	Transformations
	Vector to Polar
	Vector to Cartesian
	Polar to Vector
	Cartesian to Vector
	Rotate
	Example

	Display
	Oscilloscope
	Dialog

	Laser range finder data display
	Dialog

	Image processing
	Segmenter
	Dialog
	Example

	Segment Extractor
	Dialog
	Example

	Line Detector
	Dialog
	Example

	ROI
	Dialog
	Example

	Image Information
	Dialog
	Example

	Colorspace conversion
	Dialog

	Generators
	Arbitrary waveform generator
	Dialog
	Example

	Constant
	Timer
	Example

	Random generator

	Filter
	Mean filter
	Dialog

	Navigation
	Position Driver
	Dialog
	Example
	Movements

	Constant pose
	Pose composer
	Dialog

	Pose decomposer
	Dialog

	Path composer
	Dialog

	Path decomposer
	Path driver
	Configuration dialog 1
	Configuration dialog 2
	Configuration dialog 3
	Path view
	Strategy
	Example

	Obstacle avoidance
	Dialog

	Input Devices
	Control Panel
	Dialog
	Example

	Slider
	Dialog

	Data exchange
	Image Reader
	Dialog
	Example

	Image Writer
	Dialog
	Example

	Variables

	Devices
	Add and edit
	Show dialogs
	Robotino
	Toolbar
	Dialog
	Function blocks
	Drive system
	Motor
	Dialog

	Omnidrive

	Collision detection
	Bumper
	Distance sensors
	Example

	Image system
	Camera
	Dialog

	I/O connector
	Relay
	Digital output
	Analog input
	Digital input

	Navigation
	Odometry
	North Star
	Dialog
	Example

	I/O extension
	Encoder input
	Power output
	Gripper

	Internal sensors
	Power management
	Shutdown

	Joystick
	Dialog
	Function blocks
	Button
	Axis

	Local camera
	Dialog
	Function blocks
	Camera
	Dialog

	OPC Client
	Dialog
	Function blocks
	Inputs
	Analog input
	Digital input

	Outputs
	Analog output
	Digital output

	Data exchange
	Server
	Dialog

	Client
	Dialog

	Function blocks
	Reader
	Writer

	UDP data exchange
	Protocol
	Checksum
	Data types
	Message 0
	Message 1

	Dialog
	Function blocks
	Message 0
	Input
	Reader

	Output
	Writer

	Message 1

	Example

	Programming
	My function blocks
	Tutorial 1

