

7

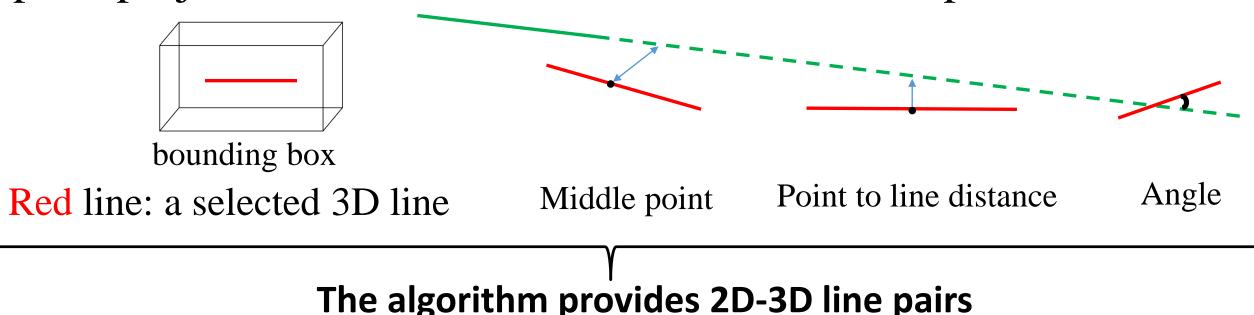
4

Hichem Abdellali¹, Robert Frohlich¹, Viktor Vilagos¹, Zoltan Kato ^{1,2} ¹University of Szeged, Hungary; ²J. Selye University, Slovakia

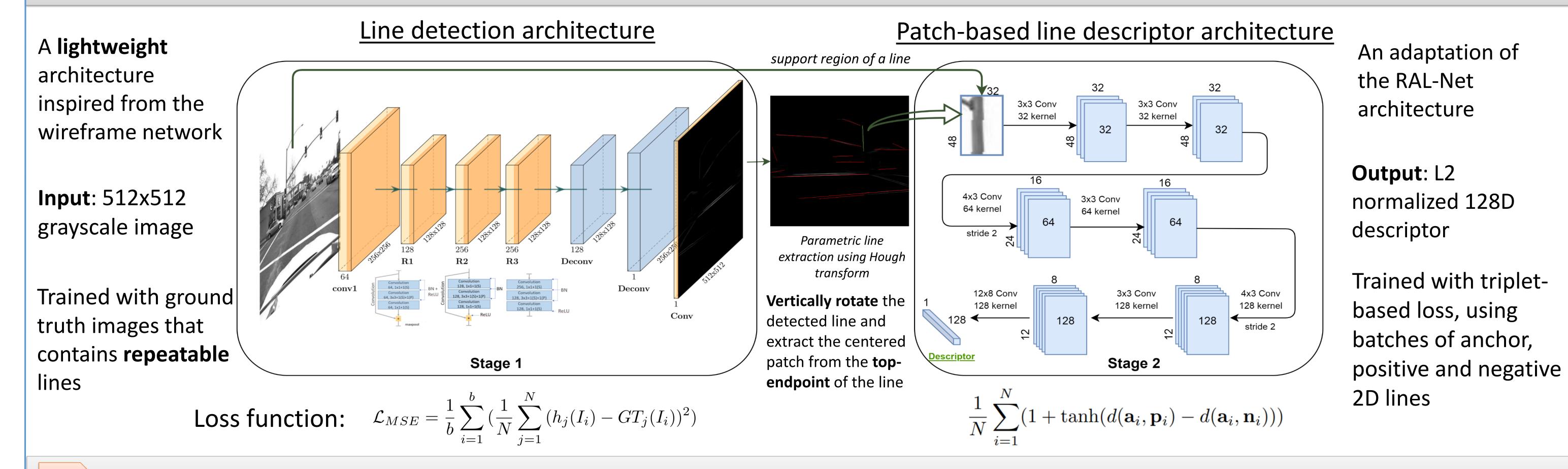
Goal and Applications	3 Automatic Training Data Generation	
Detect and match repeatable line segments A repeatable line is a line which can be detected on multiple images	We proposed a novel fully automatic procedure to generate training data from datasets with 2D images and 3D point cloud 1. Detect lines on all 2D images (length >= 48 pixels)	
 Many handcrafted/deep features were proposed for keypoints, only a few methods exist for line segments detection and matching Line segments are commonly found in man-made environments, in particular urban scene 	 2. Project 2D lines (in all images) into the 3D point cloud using the ground truth pose 3. Group the projected 3D lines then fit a line to their 3D points. 	
No solution focuses on line-based camera pose estimation and tracking using repeatable lines.	bounding box	

Contributes to:

- Navigation
- Visual Odometry
- Localization
- Pose estimation and tracking



Proposed Solution: A 2-stage Network Named L2D2



Experimental Validation

Evaluation of the Detector Only

Evaluation of the Descriptor Only

Top part of the table is the detected line segments with each SotA methods and how many unique infinite lines they belong to

Statistics/Detector	L2D2	SOLD2	EDLines
detected line segments	73,063	70,836	66,887
unique infinite detected lines	59,395	53,381	44,485
percentage	81.29%	75.36%	66.51%
validated line segments	10,685	13,552	17,771
unique infinite validated lines	9,785	11,771	13,762
percentage	91.58%	86.86%	77.44%

In the second part of the table, we have the validated line segments which are repeatable lines supported by the point cloud

EDLines detects more lines but, L2D2 detects the longest line segments and has the highest ratio of detected individual repeatable infinite lines, that are more useful for real applications like pose estimation

Full Detector-Descriptor performance

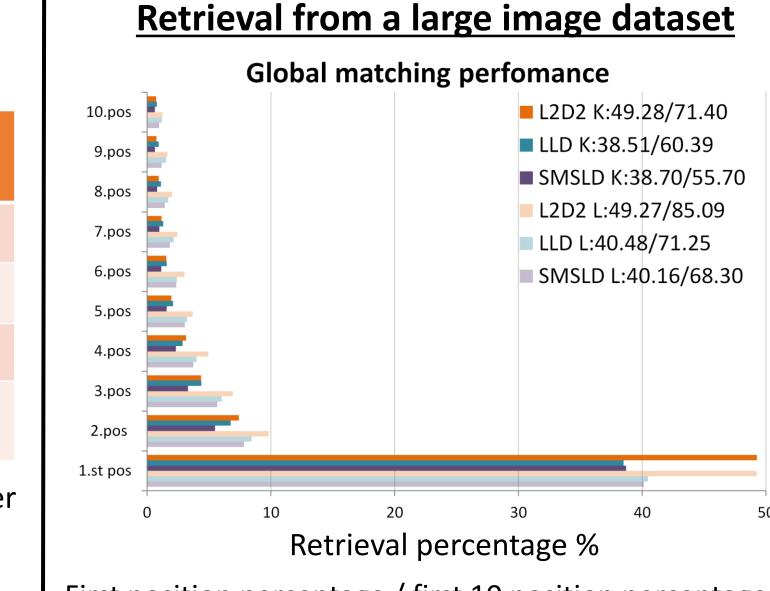
- descriptor: **SOLD2**
- **EDLines** detector combined

Detector-Descriptor	Line Matching %	
L2D2	84.08 % (5398 / 6420)	
SOLD2	70.15% (5685 / 8103)	
EDLines with SMSLD	74.78% (8667 / 11590)	

Pairwise Matching				
Matching ratio on 45000 image pairs				
	Matching %	Matching % With τ		
L2D2	79.92%	93.17%		
SMSLD	74.40%	87.69%		
LLD	73.75%	78.27%		
SOLD2	73.05%	73.05%		

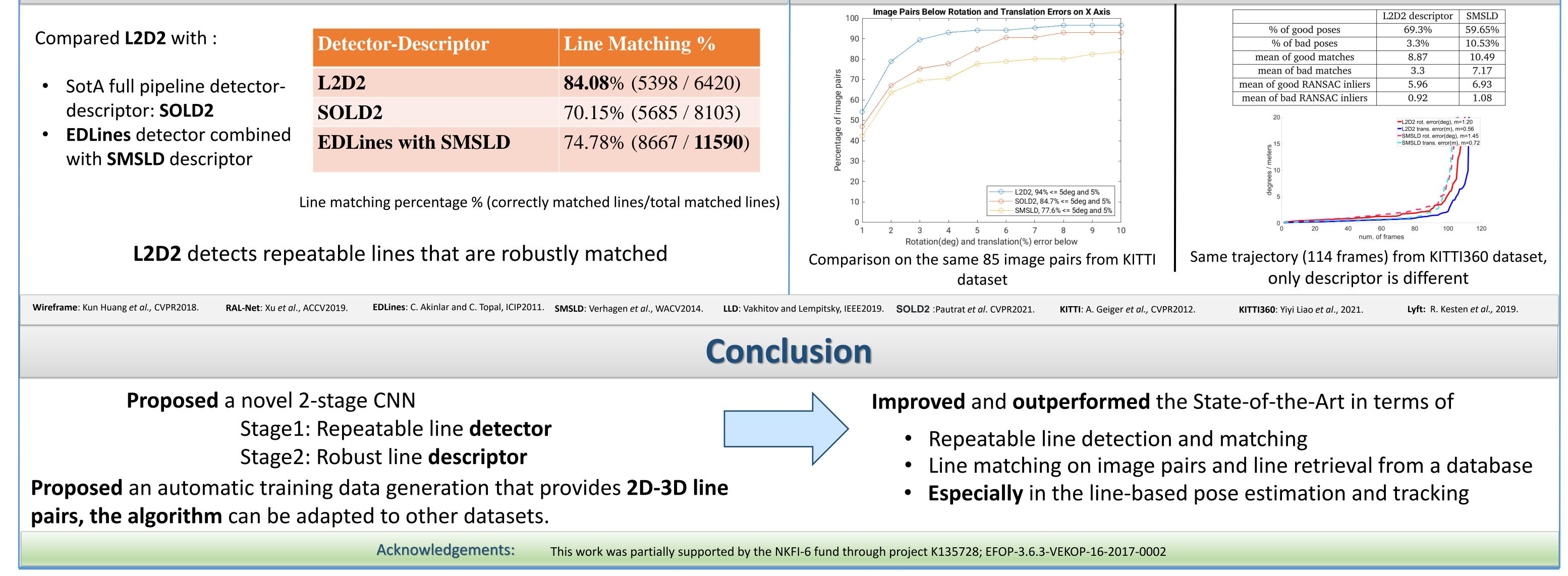
Number of correct matches found over the number of true line- pairs in an image pair

τ threshold value set to drop maximum 10% of the correct matches

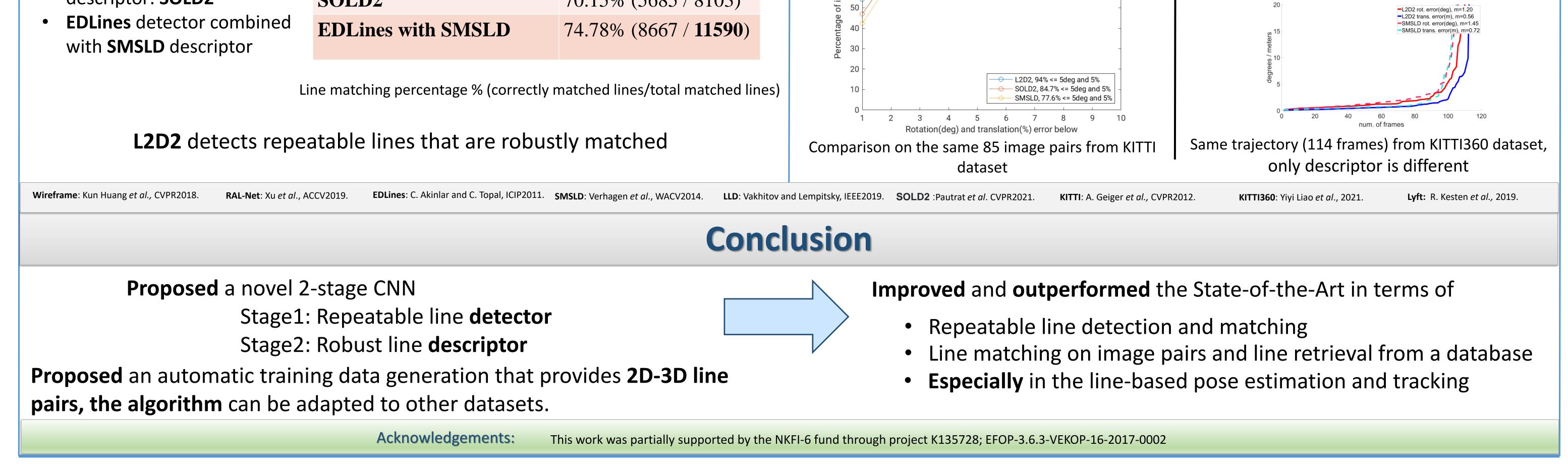


First position percentage / first 10 position percentage % K: KITTI dataset L: Lyft dataset

Pose Estimation and Pose Tracking



	L2D2 descriptor	SMSLD
% of good poses	69.3%	59.65%
% of bad poses	3.3%	10.53%
mean of good matches	8.87	10.49
mean of bad matches	3.3	7.17
mean of good RANSAC inliers	5.96	6.93
mean of bad RANSAC inliers	0.92	1.08



International Conference on 3D Vision (3DV), December 01-03, 2021 Online (London, UK)