Multiview Absolute Pose Using 3D - 2D Perspective Line Correspondences and Vertical Direction

Nora Horanyi, Zoltan Kato
Research Group on Visual Computation, University of Szeged
(http://www.inf.u-szeged.hu/rvgc/)

Problem statement

Goal: absolute pose estimation, to determine the position and orientation of a multiview camera system with respect to a 3D world coordinate frame.

Contribution: We propose two methods to compute absolute pose from 3D - 2D perspective line pairs. Both can be used as a minimal solver as well as least squares solver without reformulation.

Assumption:
- Vertical direction is available.
- 3D lines are represented as \(L = (V, X) \).
- Projection of line \(L \) is given as \(l = ((x, y)) \).
- \(r \) is the unit normal to the projection plane.

Efficient solutions

How to get rid of the trigonometric functions in \(R(\alpha) \)?

I. Solution: Linear solution (NPnPUpL)

Let \(c = \cos(\alpha) \) and \(s = \sin(\alpha) \) be separate unknowns:

\[R(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c & -s \\ 0 & s & c \end{bmatrix} \]

Substitution into (1) (2) yields a simple linear system of equations.

II. Solution: Cubic polynomial solution (NPnPUpC)

Substituting \(q = \tan(\alpha) \), gives us the following form of \(R(\alpha) \):

\[R(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) \\ 0 & \sin(\alpha) & \cos(\alpha) \end{bmatrix} \]

Substitute \(q = \tan(\alpha) \) into (1) and solve it in the least squares sense. Solved for \(2 \), \(3 \), \(4 \), and \(5 \). Its derivative should vanish:

\[\alpha = \frac{4a^2 + 4b^2 + 4c^2}{16 + 8ab + 8bc + 8ca} \]

The 3 roots are the possible solutions for \(q \).

Method

- Linear solver has good accuracy for reasonable computing time.
- Distributions of the model has been ignored (\(0 < \alpha < \pi \)).
- Solution can be far from a rigid body transformation for noisy input data.

Advantages

- Trigonometric constraint on \(\alpha \) is explicitly taken into account.
- Increased robustness under noisy observations.

Disadvantages

- The estimation of \(n \) and \(d \) is decoupled, no error in \(n \) is directly propagated into the linear system of \(t \).
- Computational complexity is slightly higher than the pure linear solver.

Synthetic data

Various benchmark datasets of 3D-2D line pairs for robustness tests we add random noise to these datasets in the following way:

- 2D lines are corrupted with additive random noise on one endpoint of the line and the direction vector of the line (5% and 8%).
- This corresponds to a quite high noise rate: \([-20, -2] \) pixels for the 5% case and \([-30, -30] \) pixels for the 8% case.
- We evaluate our methods as least squares solver as well as minimal solver.
- We need 3 line pairs in the minimal case.
- Implementation of the methods in MATLAB.

Quantitative evaluation

Comparison of the rotational errors for stereo camera pairs w.r.t. the baseline.

Various benchmark datasets of 3D-2D line pairs for robustness tests we add random noise to these datasets in the following way:

- 2D lines are corrupted with additive random noise on one endpoint of the line and the direction vector of the line (5% and 8%).
- This corresponds to a quite high noise rate: \([-20, -2] \) pixels for the 5% case and \([-30, -30] \) pixels for the 8% case.
- We evaluate our methods as least squares solver as well as minimal solver.
- We need 3 line pairs in the minimal case.
- Implementation of the methods in MATLAB.

Real datasets

Kolozsremeta dataset NPnPUpL NPnPUpC UPnP

- Rotation error (deg): 0.0166 0.0175 0.0498
- Translation error: 0.0402 0.0319 0.0119

Conclusion

- We proposed two direct solutions which can be used as minimal solver (e.g. within RANSAC) as well as general least squares solver without reformulation.
- Methods work for single- and multi-view perspective camera systems.
- Linear solver is computationally more efficient but it is more sensitive to noise and low number of correspondences.
- Cubic solver is much more robust at the price of slightly increased CPU time.
- The proposed method have been evaluated on synthetic and real datasets. Comparative tests confirm state of the art performance both in terms of quality and computing time.

Acknowledgement

- NRHI-6 funded through project EU-STAR
- Agence Universitaire de la Francophonie (AUF) and the Romanian Institute for Atomic Physics (IFIA), through the AUF-RD project NETA3588
- Research & Development Operational Programme for the project “Modernization and Improvement of Tactile Infrastructure for Research and Development of J. Selye University in the Fields of Nanotechnology and Intelligent Space”, ITMS 262101D004, co-funded by the European Regional Development Fund.