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Abstract. We describe a model for tree crown extraction from aerial images, a
problem of great practical importance for the forestry industry. The novelty lies
in the prior model of the region occupied by tree crowns in the image, which is a
phase field version of the higher-order active contour inflection point ‘gas of cir-
cles’ model. The model combines the strengths of the inflection point model with
those of the phase field framework: it removes the ‘phantom circles’ produced
by the original ‘gas of circles’ model, while executing two orders of magnitude
faster than the contour-based inflection point model. The model has many other
areas of application e.g. , to imagery in nanotechnology, biology, and physics.

1 Introduction

Due to the high cost of field studies, forestry services are increasingly turning to image
processing to gather the information they need. An important problem in this context
is the extraction of the region in the domain of any given image corresponding to tree
crowns. Using this information, forestry services can compute or estimate, for example,
the mean diameter of the crowns, the biomass, and so forth. If tree crown extraction
from aerial images could be performed automatically, then, in addition, expensive semi-
automatic and manual image processing could be avoided.

In [1], we addressed this problem using ‘higher-order active contours’ (HOACsS) [2],
a new generation of active contours [3] allowing the incorporation of non-trivial prior
knowledge about region geometry. Unlike most methods for incorporating prior geo-
metric knowledge into active contours [4—6], HOACs do not necessarily constrain re-
gion topology, thereby allowing the detection of multiple instances of a single entity at
no extra cost, a critical requirement for the current application.

To extract tree crowns, the HOAC model was analysed theoretically to find param-
eter values favouring regions composed of a number of approximate circles of approxi-
mately a given radius, by making such regions minima of the energy. The result was the
‘gas of circles’ model [1]. When combined with a likelihood energy, the model works
well, but suffers from some drawbacks: computation time is long, and the model can
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create ‘phantom circles’ in homogenous areas of the image. In [7], the parameters were
further fixed so that circles are energy inflection points: they are not in themselves sta-
ble, but even a small amount of appropriate image information can render them stable.
This removed the second drawback but not the first.

Rochery et al. [8] introduced an alternative formulation of HOACsS, based on the
‘phase field’ framework used in physics. The basic phase field model is, to a good ap-
proximation, equivalent to a classical active contour, with energy given by boundary
length. By adding a nonlocal term, phase field models equivalent to HOACs can be
created. Phase fields have several advantages over other region modelling frameworks:
a neutral initialization, obviating the need to choose an initial region; gradient descent
based solely on the PDE arising from the model energy, thereby simplifying implemen-
tation, especially for HOACs; and enhanced topological freedom.

The purpose of the present paper is to construct the phase field version of the model
of [7], thereby benefitting from all the advantages of the phase field framework, and
solving both drawbacks of the model in [1]. In particular, we will see a gain of two
orders of magnitude in execution time compared to the contour formulation.

In section 2, we give an overview of the original HOAC ‘gas of circles’ model. In
section 3, we describe the phase field version. In section 3.2, we describe the phase
field version of the HOAC inflection point ‘gas of circles’ model. In section 4 apply the
model to the tree crown extraction problem, and we conclude in section 5.

2 Higher-order active contours and the ‘gas of circles’ model

HOAC:S can incorporate not only the local differential-geometric information included
in classical active contours, but also more complex knowledge carried by long-range
dependencies between tuples of contour points. These dependencies are expressed by
multiple integrals over the contour. Combined with the classical region area and bound-
ary length terms, one of the forms of Euclidean invariant quadratic HOAC energy is

EcalR) = A LOR)+ac A@R) - [ [ andy's0)4() 20 0.1),d) . 2.1

where OR is the boundary of region R; v is an embedding defining OR, and + is its
derivative; p is a coordinates on the domain of ~; L is the region boundary length
functional; A is the region area functional; r(p,p’) = |r(p,p’)|, where r(p,p’) =
~v(p) — v(p'); and ¥ is an interaction function, described in [1], parameterized by
d € R, that determines the geometric content of the model.

2.1 The HOAC ‘gas of circles’ model

For certain parameter ranges, circles, with radius 7o depending on the parameters, are
stable configurations of E¢ . These parameter ranges can be found by expanding E¢c g
to second order in a functional Taylor series about a circle [1]. The series is most simply
expressed in terms of the Fourier components of the perturbation: the first order term £
is zero for non-zero frequency k£ # 0, while the second order term FE5 is diagonalized
by the Fourier basis. Thus we require £ (ro) = 0 (energy extremum) and E(k, ro) >



0 for all k£ (energy minimum). These two quantities are also functions of the model
parameters Ac, ac, (¢, and d. The F; constraint determines ¢ in terms of the other
parameters, while the E'5 constraint restricts the range of «¢ for given A¢ and d.

2.2 The HOAC inflection point ‘gas of circles’ model

The above model has a disadvantage when minimized using gradient descent. Circles of
the stable radius, once created, cannot disappear again because they are local minima,
even if they have no support from the data. This problem was solved in [7], by further
constraining the parameters so that the energy function has an inflection point at ry with
respect to changes of radius (i.e. F5(0,r9) = 0), rather than a minimum. In this case,
the effect of the data can easily create an energy minimum, but otherwise the circle will
vanish. This second constraint fixes both cc and (B¢ in terms of rg, d, and A¢. Since
ro is fixed by the application, the only remaining parametric degrees of freedom are the
value of d, and the overall strength of the prior term, represented by A¢.

We also require ¢ and (¢ to be positive. When combined with the other con-
straints [7], this means that there is only a small range of permissible values of © =
ro/d, to wit 0.6897 < 7 < 0.7827. This effectively enables d to be fixed, once rg is
known. Thus despite the initial complexity of the model, we are able to fix all except
one parameter, A¢, representing the overall strength of the prior term.

3 Phase fields and the ‘gas of circles’ model

A phase field ¢ is a real-valued function on the image domain (2. Given a threshold z, a
phase field determines a region by the map (. (¢) = {z € £2: ¢(x) > z}. Thus phase
fields are a level set representation. The difference with the usual distance function level
set representation is that the functions are not constrained: the set of possible ¢, @, is a
linear space. The simplest phase field energy is

Bulo) = [ do {506-004 36" - ) 4 a0~ 36}

With D = 0, ¢ £ argming, ¢_(s)=r Eo(®), i.e. the minimizing phase field for a given
fixed region, would take the value 1 inside R and —1 outside. The effect of D # 0 is to
smooth ¢ so that it has an interface of finite width around OR. The phase field model
is approximately? equivalent to a classical active contour in the sense that

Eo(¢r) =~ A\cL(OR) + acA(R) £ Ec , 3.1

Equation (3.1) means that gradient descent on ¢ using Ey will duplicate gradient de-
scent on 7y using E¢ o. The contour parameters are given by

ac =4a/3, Mo =16DANK/15, K =1+5(a/))?, w?=15D/A\K . (3.2)

3 For a detailed discussion of why the approximation error does not matter, see [8].



Rochery et al. [8] added the following nonlocal term to E:

Byi(0) = =5 [ ded! 96(a) - 00(a/) Gla — ') (3:3)
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where G(xz — 2') = ¥(|lz — 2'|/d). With fc = 43, E; = Ey + En is equivalent (as

usual, to a good approximation) to the HOAC model E¢ g, and can be used in its place,

thus allowing the incorporation of non-trivial prior knowledge about region geometry

while still profiting from all the advantages of the phase field framework.

3.1 The phase field ‘gas of circles’ model

Using the relations between the phase field and contour parameters, we can now cre-
ate a phase field ‘gas of circles’ model equivalent to the HOAC model described in
section 2.1 (units are chosen so that d = 1):

1. Choose w. It cannot be too small, or a subpixel discretization will be needed, and
it cannot be too large or the phase field model will not be a good approximation to
the HOAC model [8]. We have found that w = 3 or w = 4 work well.

Choose @c < v/5/(2w). This constraint arises from inverting equations (3.2).
Determine the BC parameter corresponding to 7o and ¢ic using the method in [1].
Set A = 221+ /1 —4aZw?/5), & = 3ac/4, B = fc/4,and D = w/4.
Choose A\¢ and multiply D, )\, &, and B by it to get D, A, «, and 3.

nohk v

3.2 The phase field inflection point ‘gas of circles’ model

We now want to combine the phase field ‘gas of circles’ model with the constraint
that the circle energy have an inflection point rather than a minimum at the desired
radius. This is a non-trivial requirement. The relations between the phase field and
contour parameters were derived using an approximate ansatz for ¢ r [8]. For the ‘gas of
circles’ model, the approximations are not expected to be important, since small errors
in the parameters will produce small changes in behaviour. However, an inflection point
represents a set of measure zero in the parameter space. It is important to see whether
these approximate parameter relations preserve the inflection point behaviour.

In the previous section, we chose & according to the constraint o < V5 /(2w).
In section 2, we described how a given value of 7 fixes &vc and 3¢ To satisfy both these
constraints we need to choose w < /5 /2a¢. To determine the parameters of the new
phase field inflection point ‘gas of circles’ model, we therefore take the following steps:

1. Choose an 7 value satisfying 0.6897 < 7 < 0.7827. This fixes a¢ and BC-
2. Choose w using the above criterion.

3. Determine 5\, a, B, and D as before.

4. Multiply these parameters by A¢.

To test that the parameter transformations work in practice, we fixed a set of contour
parameters corresponding to an inflection point at 7o = 10, and then translated these
parameters to give an equivalent phase field model. We then performed three gradient



Fig. 1. Preservation of the inflection point when translating from contour to phase field: gradient
descent evolutions using Ey, starting from a circle of radius rg = 10, for values of (3 close to 3%,
the value giving an inflection point at 7o = 10. Row 1: evolution using ¢ = 0.963™; row 2:
evolution using 8 = 1.048™; row 3: evolution using § = (.

descent experiments using Es. One used the value of 3 corresponding to the inflection
point, 3*, while the other two used (3 values 4% above and below 3*. The region was
initialized to a circle of radius ro. Figure 1 shows the results. In the first row, with
B8 < 3*, the region shrinks and disappears. In the second row, with 3 > 3*, the region
grows until it reaches the corresponding energy minimum, at a radius of 12 pixels. In
the third row, with 5 = 3%, the circle grows only very slightly, to a radius of 10.5 pixels.
The inflection point behaviour is therefore preserved to a very good approximation.

4 Tree crown extraction

The tree crown extraction problem has been studied in several papers. Gougeon [9]
uses a valley following method to delineate the crowns, while Larsen [10] introduces
a species-specific method based on the matching of 3D tree templates. Both these, and
other similar methods, look for local maxima of certain features. Perrin et al. [11] use
a global method, modelling tree crown configurations as a marked point process. This
has the advantage over our method that overlapping trees are easily handled, but the
disadvantage that trees are represented by ellipses: their outlines are not found.

Our model for tree crown extraction is the sum of two terms: a prior energy F,,
as described above, and a likelihood energy, Fj, which we will now describe. We will
model the image I, both in R and in the background R, using Gaussian distributions.*
We add a term that predicts high gradients along the boundary OR:

—_ )2 _ 2
s m) = [ ar{nvor-oo o[ Ul o Uotedy 1

* We ignore the normalization constant Z(R) = J DI e~ BB gince in our case it merely
changes A and «, and we are interested in stability of the posterior in the absence of image-
dependent terms.



Fig. 2. (a) an image of poplars (©) IFN (0.6, 0.06, 0.33, 0.19, 2.5); (b) the result with the HOAC
‘gas of circles’ model with inflection point (1160, 0.7); (c) result with the phase field ‘gas of
circles’ model (1111, 278, 177.2, 55.8, 30, 4); (d): result with the new model (1160, 0.7, 4).

where ¢ = (1 £ ¢)/2. Note that to facilitate comparison of parameters in the prior
energy, we set A = 1 in F, and introduce a weight o; in E;.

4.1 Energy minimization
We minimize F = I, + Ej using gradient descent. The functional derivative of En is

0ENT
o)

The nonlocal force arising from the HOAC term makes gradient descent using Ec g
complex to implement. One must extract the contour, perform numerical contour inte-
grations, and extend the force off-contour [2]. In contrast, the force (4.1) arising from
the nonlocal phase field term is simply a convolution. Implementation is thereby made
much simpler, and execution much faster. The time for one iteration in the HOAC for-
mulation scales as the square of the boundary length, which scales as the number of
trees, which in turn scales as the number of pixels. Thus execution time for the HOAC
formulation can be expected to scale as the number of pixels squared. In contrast, exe-
cution time for the phase field formulation scales linearly with the number of pixels.

(x) = /6’/9 d’ *°G(x — 2') (') . 4.1)

4.2 Experimental results

Our data are ~ 0.5m resolution colour infrared aerial images of the ‘Sadne et Loire’
region in France provided by the French National Forest Inventory. The images show
regularly and irregularly planted poplar forests.

We compared the new phase field inflection point ‘gas of circles’ model (section 3.2)
with the HOAC inflection point ‘gas of circles’ model (section 2.2) and with the phase
field ‘gas of circles’ model with a minimum rather than an inflection point (section 3.1).
The parameters (i, Tin, fout> and ooy are learned from examples using maximum like-
lihood, and then fixed. >

5 In the figure captions, the image parameters are (ftin, Gin, fout> Tout T0); in the HOAC ‘gas of
circles’ case, the prior parameters are (o, 7), in the phase field ‘gas of circles’ case they are
(ai, D, A, a, B, w); while in the case of the new model they are («a;, 7, w).
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Fig. 3. (a) an image of regularly planted poplar stands with a less regularly planted trees at the
upper part (© IFN (0.8, 0.06, 0.43, 0.2, 3.5); (b) result with the phase field ‘gas of circles’ model
(500, 50, 34.2, 9.3, 5.2); (c) result with the new model (500, 0.74, 4).

Figure 4.1(a) shows an image (200 x 200) of a regularly planted poplar forest. In
the top right and bottom left there are fields, while in the middle, two different sizes of
poplars. The aim is to extract the larger trees. Figure 4.1(b) shows the result with the
HOAC inflection point ‘gas of circles’ model. The result is good, but the method found
two small trees, and there is another false positive in the bottom left of the image. The
execution time was 89 minutes. Figure 4.1(c) shows the result using the phase field ‘gas
of circles’ model. There were no false negatives, but the model found false positives in
the fields. Figure 4.1(d) shows the result with the new phase field inflection point ‘gas
of circles’ model. All but two somewhat smaller circles were successfully found. For
the phase field models, the execution time was less than 3 minutes.

Figure 4.2(a) shows an image (133 x 271) of a planted forest. Figure 4.2(b) shows
the result with the phase field ‘gas of circles’ model. The result is good, with only a few
joined tree crowns. Figure 4.2(c) shows the result with the new model. There are fewer
joined tree crowns. Both results were obtained in less than 2 minutes.

Figure 4.2(a) shows a difficult image (129 x 139) to analyse. It has two fields
with different intensities on the right. The result with the phase field ‘gas of circles’
model is shown in figure 4.2(b). This result clearly demonstrate the disadvantage of
the non-inflection point model: phantom objects are created in the homogenous areas.
Figure 4.2(c) shows the result with the new model. The result is very good, with only
one false positive. Both results were obtained in less than 1 minute.

5 Conclusion

We have described a phase field version of the HOAC inflection point ‘gas of circles’
model described in [7]. The model was applied to the problem of tree crown extraction
from aerial images, a problem of great practical importance for the forestry industry.
The model combines the strengths of the inflection point model with those of the phase



Fig. 4. (a) an image of regularly planted poplars with different fields in the right part © IFN (0.8,
0.06, 0.43, 0.2, 3.5); (b) result with the phase field ‘gas of circles’ model (500, 50, 34.2, 9.3, 5.2);
(c) result with the new model (500, 0.74, 4).

field framework: it removes the ‘phantom circles’ produced by the original ‘gas of cir-
cles’ model, while executing two orders of magnitude faster than the contour model.
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