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Abstract

We present a model of a ‘gas of circles’, the ensemble
of regions in the image domain consisting of an unknown
number of circles with approximately fixed radius and short
range repulsive interactions, and apply it to the extraction
of tree crowns from aerial images. The method uses the re-
cently introduced ‘higher order active contours’ (HOACs),
which incorporate long-range interactions between contour
points, and thereby include prior geometric information
without using a template shape. This makes them ideal
when looking for multiple instances of an entity in an im-
age. We study an existing HOAC model for networks, and
show via a stability calculation that circles stable to pertur-
bations are possible for constrained parameter sets. Com-
bining this prior energy with a data term, we show results
on aerial imagery that demonstrate the effectiveness of the
method and the need for prior geometric knowledge. The
model has many other potential applications.

1. Introduction

The present paper has two purposes. First, to extend the
range of the recently introduced higher-order active contour
(HOAC) framework for region and image modelling [8]
by introducing a model for a ‘gas of circles’, the ensem-
ble of regions in the image domain consisting of an un-
known number of circles with approximately fixed radius
and short range repulsive interactions; and second, to apply
this model to a problem of current interest in remote sensing
image processing: the extraction of tree crowns. Forestry
services (for example, the French National Forest Inven-
tory (IFN)) are interested in various quantities associated
with forests and plantations, such as the density of trees,
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the mean crown area and diameter, and so on. This infor-
mation is very useful for the management of resources and
the conservation of forestry areas. The tree crown extrac-
tion problem is of importance because it can provide this
information at a reasonable price. Field surveys or semi-
automatic extraction of the necessary information from im-
ages is expensive.

Our model for tree crown extraction will consist of two
parts: a likelihood energyEi describing the image to be
expected given a particular region corresponding to tree
crowns; and a prior energyEg describing the geometry of
the regions corresponding to tree crowns. The latter will
be a HOAC energy. HOACs [8, 9] are a new generation
of active contour models [5]. While classical active con-
tours use only boundary length and interior area (and per-
haps boundary curvature) as prior knowledge, HOACs al-
low the incorporation of non-trivial prior knowledge about
region geometry, and the relation between region geome-
try and the data, via nonlocal interactions between tuples
of contour points. They are intrinsically Euclidean invari-
ant. They differ from most other methods for incorporating
prior geometric knowledge into active contours [2, 3, 6] in
not being based upon perturbations of a reference region or
regions. In consequence, they can detect multiple instances
of an entity at no extra cost, a critical requirement for the
current application.

The prior energyEg will strongly favour regions con-
sisting of an unknown number of approximate circles of
roughly the same radius. To define this energy, we will
adapt the existing HOAC models of network-shaped re-
gions [6, 8]. One of the key properties of these models is
the existence of a repulsive force between anti-parallel tan-
gent vectors that prevents the ‘arms’ of the network region
from collapsing to zero width. We exploit this repulsive in-
teraction in order to create stable circles, but in doing so we
wish to prevent the formation of the ‘arms’ that generate
network-shaped regions. This requires a stability analysis
of the energy in order to ensure that circles of a given radius



are stable to small perturbations of their boundaries, and
that they have low energy. The latter condition means that
circles are relatively easy to create, given supporting image
data. The conditions place constraints on the parameters of
the model. The same prior energy may also be useful in
a broad range of other applications:e.g. the extraction of
craters, missile silos, etc. in remote sensing.

In section 1.1, we recall the nature of HOAC energies.
In section 2, we describe the proposed HOAC model for
tree extraction, and present the stability analysis of the geo-
metric term. In section 2.2, we describe a simple data term
combining intensity and gradient information. In section 3,
we present extraction results on real aerial images.

1.1. Higher order energies

Classical active contour energies are constructed from
single integrals over the contour, meaning that they can only
incorporate local differential-geometric information about
the contour. In contrast, HOACs include multiple integrals
over the contour. These integrals correspond to long-range
interactions between tuples of contour points, and allow the
incorporation of sophisticated prior geometric knowledge.
Combined with length and area terms, one of the basic
forms of Euclidean invariant quadratic HOAC models [8]
is

Eg(γ) = λL(γ) + αA(γ)

− β

2

∫∫
dp dp′ t(p) · t(p′) Φ(R(p, p′)) , (1.1)

whereγ is the contour, parameterized byp; L is the length
of the contour;A is its interior area;R(p, p′) = |R(p, p′)|,
whereR(p, p′) = γ(p)− γ(p′); t = γ̇ is the tangent vector
to the contour; andΦ is an interaction function that deter-
mines the geometric content of the model. We will take this
function to be

Φ(x) =

{
1
2 (2− x

dmin
+ 1

π sin(π x
dmin

)) x ≤ dmin ,

0 x > dmin ,
(1.2)

as in [6, 8], where equation (1.1) was used to model
network-shaped regions composed of thin arms that meet at
junctions. Via the stability analysis in section 2.1, we will
adjust the parameters of this model so that the low energy
configurations are not networks, but approximate circles of
approximately fixed radius.

2. Model for circle detection

Our model for tree crown extraction is of the form
E(γ, I) = Ei(I, γ) + Eg(γ). The likelihood energyEi is
described in section 2.2. In the first part of this section, we

analyze the prior energyEg, and show how it can be used to
model a ‘gas of circles’. We want to adjust the parameters
of the model so that configurations consisting of collections
of circles of approximately a certain radiusr0 are stable,
and have low energy. Stability means that if the shape of a
circle of radiusr0 is changed slightly, it will relax back into
the circle. We will thus choose parameters so that a circle
of radiusr0 is a minimum ofEg. To do so, we expand the
energy in a Taylor series to second order in perturbations
around a circle of radiusr0. We will then adjust the param-
eters so that the first derivative is zero, which tells us that the
circle is an energy extremum, and so that the second deriva-
tive is positive definite, which tells us that the extremum is
a minimum. The parameters can be further adjusted so that
the energy of the minimizing circle is not too high.

2.1. Stability analysis

We want to calculateEg(γ) = Eg(γ0 + δγ) to second
order inδγ, whereγ0 is a circle of radiusr0. Since we are
expanding around a circle, it is easiest to use polar coordi-
nates(r, θ), and to chooseθ(p) = p as the parameterization.
Tangential changesδθ can be undone by a diffeomorphism
and hence do not affect the energy. The radial perturbation
δr can be expanded in a Fourier series on the circle:

δr(p) =
∑

k

akeikr0p k = m/r0, m ∈ Z ,

whereak ¿ r0. We can then expressL(γ) andA(γ) to
second order as

L(γ) = 2πr0

{
1 +

a0

r0
+

1
2

∑

k

k2|ak|2
}

(2.1a)

A(γ) = πr2
0 + 2πr0a0 + π

∑

k

|ak|2 . (2.1b)

Note that stability for finiter0 cannot be achieved with these
terms alone. Setting the linear term to zero givesλ = −r0α.
Substituting in the quadratic term reveals that either very
low or very high frequencies are unstable, depending on the
sign ofλ.

The expansion of the quadratic term in equation (1.1) is
of course more complicated, since we have to expandt, R
andΦ, but invariance with respect to translations around the
circle means that the second-order term is diagonal in the
Fourier basis. The result (details can be found in [4]), after
combination with equations (2.1), is that the prior energy is
given to second-order by

Eg(γ0 + δγ) = E0 + a0E1 +
1
2

∑

k

|ak|2E2(k) ,



where

E0 = 2πλr0 + παr2
0 − πβ

∫ 2π
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The F are functions ofp and r0, and depend onΦ. For
example,

F10(p, r0) = r0 cos(p)
(
Φ(X0) + r0

∣∣∣sin p

2

∣∣∣ Φ̇(X0)
)

,

whereX0 = 2r0

∣∣sin p
2

∣∣. The other expressions are given
in [4]. In order to achieve an extremum, the linear term
must be zero. This implies that

β(λ, α, r0) =
λ + αr0∫ 2π

0
dp F10

, (2.3)

which fixesβ givenλ, α, andr0. We setλ = 1.0 without
loss of generality. Givenr0, we therefore have only two free
parameters (the other isdmin) to adjust to achieve stability,
i.e. to makeE2 positive for allk. In figure 1(a), we plotβ
versusr0 andα for dmin = 4. A given r0 defines a slice
of the surface, the potentially stable pairs of (α,β), but only
those pairs for whichE2 ≥ 0 for all k are actually stable.
Figure 1(b) shows the plot ofE0 for one such pair. Note
that it has a minimum atr0, so that it is stable against radial
perturbations (k = 0). It is also stable with respect to per-
turbations withk 6= 0. Figure 2 shows experiments using
just the prior energy, starting from various initial conditions,
illustrating the formation of circles of the desired radius.

2.2. Data term and energy minimization

Having constructed a suitable prior energy,Eg, we must
now couple the contour to the data. We use the likelihood
energy

Ei(γ) = λi

∫
dp n(p) · ∂I(p)

+
∫

Ωin

d2x
(I(x)− µin)2

2σ2
in

+
∫

Ωout

d2x
(I(x)− µout)2

2σ2
out

,

whereΩin,out are the interior and exterior regions of the con-
tour, andI is the image. The first term is a standard gradient
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Figure 1. (a): plot of β against α and r0 from
equation (2.3) (dmin = 4); (b): plot of E0 versus
r for α = 1.0, β = 0.96, and r0 = 4.0.

(a) (b) (c) (d)

Figure 2. Formation of stable circles, (b) and
(d), with r0 = 10 and 20 respectively, from two
different initial conditions, (a) and (c).

flux term, while the other terms, first used in an active con-
tour context by [1], model the classes ‘inside’ and ‘outside’
as white Gaussian noise around a mean. We note that the
normalization constant for this likelihood can be expressed
in terms of the length and interior area of the contour, and
the parametersµ andσ. These parameters are learned ini-
tially from examples of each of the classes using maximum
likelihood, and then fixed. We therefore do not include the
normalization constant explicitly, since it amounts to a sim-
ple change in the parametersλ and α, and we are inter-
ested in stability of the posterior in the absence of image-
dependent terms. Ifµ andσ were estimated during gradient
descent, it would be important to include the normalization
constant explicitly, since it depends on these parameters.

The energy is minimized by gradient descent starting
from a generic initialization: a rounded rectangle just
smaller than the image domain. The functional derivatives
of all except the quadratic term are standard. The functional
derivative of the quadratic term gives rise to a gradient de-
scent force given by

n̂ · ∂γ

∂τ
(p) = β

∫
dp′ R̂(p, p′) · n(p′)Φ̇(R(p, p′)) , (2.4)

wheren is the outward-pointing normal vector, and̂R =
R/R. To evolve the contour we use the level set frame-
work [7] extended to the demands of nonlocal forces such
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Figure 3. a and c: aerial images of plantations ( c© IFN); b and d: corresponding segmentation results
((b): α = 1.0, β = 0.96, λ = 1.0, r0 = 4.0; (d): α = 5.8, β = 4.6, λ = 1.0, r0 = 6.0); e: the best result with
β = 0.

as equation (2.4) [8].

3. Experimental results

Here we present extraction results on54 cm/pixel aerial
images of plantations located in Saône et Loire in France.
(For references to other techniques applied to the same
problem see [4].) Figure 3(a) shows a regularly planted
poplar stand. The tree crowns are∼ 8–10 pixels in diam-
eter, i.e.∼ 4–5m. The result is shown in figure 3(b). We
have applied the algorithm only in the central part of the
image; we do not deal with the dashed areas. Figure 3(c)
shows a small piece of an irregularly planted poplar forest.
The image is difficult because the intensities of the crowns
are very varied, some trees overlap, and the gradients are
blurred. The result is shown on figure 3(d). From the re-
sults, it is simple to calculate various properties of the tree
plantation: number of trees, total area, density, and so on.

The consequences of settingβ = 0, thereby reducing
the model to a standard active contour with length and area
terms, are shown in figure 3(e), which shows the best result
obtained in this case. Note that several trees that are in real-
ity separate are merged into single regions, and the shapes
of trees are often rather distorted, whereas the prior geomet-
ric knowledge included whenβ 6= 0 allows the separation
of the trees and the regularization of their shapes.

4. Conclusion

The incorporation of prior geometric knowledge in mod-
els of regions is critical for many applications, particularly
when quasi-automatic operation is required. In this paper,
we have described a higher-order active contour model of a
‘gas of circles’, which favours regions consisting of a num-
ber of disjoint components, each of which is roughly circu-
lar and of a certain radius. We have shown the importance
of this prior knowledge by applying the model to the extrac-
tion of tree crowns from high resolution remote sensing im-

ages. Many other applications in remote sensing and other
domains can be envisaged.
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