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Péter Horv́ath1,2, Ian H. Jermyn2, Zoltan Kato1, and Josiane Zerubia2

1 University of Szeged, Institute of Informatics, P.O. Box 652,
H-6701 Szeged, Hungary, Fax:+36 62 546 397,

{hp, kato}@inf.u-szeged.hu,
2 Ariana (joint research group CNRS/INRIA/UNSA), INRIA,

B.P. 93, 06902 Sophia Antipolis, France, Fax:+33 4 92 38 76 43,
{Ian.Jermyn, Josiane.Zerubia}@sophia.inria.fr

Abstract. A central task in image processing is to find the region in the image
corresponding to an entity. In a number of problems, the region takes the form of
a collection of circles,e.g. tree crowns in remote sensing imagery; cells in bio-
logical and medical imagery. In [1], a model of such regions, the ‘gas of circles’
model, was developed based on higher-order active contours, a recently devel-
oped framework for the inclusion of prior knowledge in active contour energies.
However, the model suffers from a defect. In [1], the model parameters were ad-
justed so that the circles were local energy minima. Gradient descent can become
stuck in these minima, producing phantom circles even with no supporting data.
We solve this problem by calculating, via a Taylor expansion of the energy, pa-
rameter values that make circles into energy inflection points rather than minima.
As a bonus, the constraint halves the number of model parameters, and severely
constrains one of the two that remain, a major advantage for an energy-based
model. We use the model for tree crown extraction from aerial images. Experi-
ments show that despite the lack of parametric freedom, the new model performs
better than the old, and much better than a classical active contour.

1 Introduction

A central problem in image understanding is to find the regionR in the image domain
corresponding to a particular entity. The crucial quantity isP(R|I, K), the probability
that regionR corresponds to the entity given the image dataI and any prior knowledge
K we may choose to include. Typically, to solve such problems automatically, a signif-
icant amount of prior knowledge specific to the entity must be included, in particular
about region geometry. Generic assumptions,e.g.about boundary smoothness, do not
suffice.

The tree crown extraction problem provides an example. Submetre resolution re-
mote sensing images in principle permit the automatic extraction of the regionR cor-
responding to tree crowns, and the subsequent evaluation of various parameters of im-
portance in forestry and conservation. Particularly in plantations,R takes the form of
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a collection of approximately circular connected components of similar size. We thus
have a great deal of prior knowledge aboutR, without which trees that are close to-
gether or that do not differ much in intensity from the background cannot be extracted
correctly. The question is then how to incorporate such prior knowledge into a model
for R?

We focus on ‘active contour’ models [2]. In this context, a regionR is represented
by its boundary∂R. P(R|I, K) is constructed implicitly, via an energy functional
E(∂R) = Eg(∂R) + Ei(∂R, I), whereEg andEi correspond to prior and likelihood.
In classical active contours, prior energiesEg are constructed from single integrals over
the contour.Eg includes only local, differential interactions between boundary points,
and thus only very simple prior knowledge,e.g.boundary smoothness.

To include more complex prior knowledge, longer-range interactions are needed.
There is a large body of work that does this implicitly, via a template region or re-
gions to whichR is compared,e.g. [3–6]. However, such energies effectively limitR
to a bounded subset of region space close to the template(s), which excludes,inter
alia, cases like tree crown extraction in whichR has an unknown number of connected
components. ‘Higher-order active contours’ (HOACs) [7] provide a complementary ap-
proach. HOACs generalize classical active contours to include multiple integrals over
∂R. Thus HOAC energies explicitly model long-range interactions between boundary
points without using a template. This allows the inclusion of complex prior knowledge
while permitting the region to have an arbitrary number of connected components,
which furthermore may interact amongst themselves. The approach is very general:
classical energies are linear functionals on the space of regions; HOACs include all
polynomial functionals.

In [1], a HOAC energyEg was used for tree crown extraction. In this ‘gas of circles’
model, collections of mutually repelling circles of given radiusr0 are local minima of
Eg. The model has many potential applications in varied domains, but it suffers from a
drawback: such local minima can trap the gradient descent algorithm used to minimize
the energy, thus producing phantom circles even with no supporting data. The model
as such is not at fault: an algorithm capable of finding the global minimum would not
produce phantom circles. This suggests two approaches to tackling the difficulty. One
is to find a better algorithm. The other is to compromise with the existing algorithm
by changing the model to avoid the creation of local minima, while keeping intact the
prior knowledge contained in the model. In this paper, we take this second approach.
We solve the problem of phantom circles in [1]’s model by calculating, via a Taylor
expansion of the energy, parameter values that make the circles into inflection points
rather than minima. In addition, we find that this constraint halves the number of model
parameters, and severely constrains one of the two that remain, while improving the
empirical success of the model.

In section 2 we present the ‘gas of circles’ modelEg. In section 3, we introduce the
inflection point constraint and show how it fixes some of the parameters. In section 4, we
apply the model to tree crown extraction. We briefly review previous work, describe our
likelihood energyEi and the gradient descent algorithm used to minimizeE = Ei +Eg,
and present experimental results. In section 5, we sum up.



2 The ‘gas of circles’ HOAC model

A region boundary3, ∂R, is a mapγ : S1 → R2 modulo orientation-preserving diffeo-
morphisms ofS1. The HOAC energyEg used by [1] is then given by4

Eg(∂R) = λL(∂R) + αA(R)− β

2

∫∫
dp dp′ t(p) · t(p′) Ψ(r(p, p′)) , (2.1)

wherep is a coordinate onS1; L is the boundary length functional;A is the region area
functional;r(p, p′) = |γ(p) − γ(p′)|; t = ∂pγ; andΨ is an interaction function that
determines the geometric content of the model. In [1],

Ψ(z) =

{
1
2

(
2− z

d + 1
π sin πz

d

)
z < 2d ,

0 z ≥ 2d .
(2.2)

With this Ψ , the last term in (2.1) creates a repulsion between antiparallel tangent vec-
tors. This has two effects. First, for particular ranges ofα, β, andd (λ = 1 wlog),
circular structures, with a radiusr0 dependent on the parameter values, are stable to
perturbations of their boundary. Second, such circles repel one another if they approach
closer than2d. Regions consisting of collections of circles of radiusr0 separated by
distances greater than2d are thus local energy minima. In [1], this was called the ‘gas
of circles’ model.

In order to determine parameter values so that a circle of radiusr0 be an energy
minimum, [1] conducted a stability analysis. The energy was Taylor expanded around
a circle, and the result was expressed in the Fourier basis. This is the natural basis to
use because it diagonalizes (2.1): Fourier components do not interact. The parameters
were chosen so that, for a circle of radiusr0, the first derivative of the functional (2.1)
was zero (energy extremum) and the second derivative of (2.1) was positive definite
(energy minimum). The first constraint determinesβ in terms ofα andd, while the
second places constraints on the ranges of the latter two parameters. The values ofα
andd can further be adjusted so that the energy of the circle is positive (to avoid circle
creation everywhere), but not too high. In more detail: ifγr is a circle of radiusr, and
δγ is a small variation of the circle with Fourier componentsak, the energy to second
order is

Eg(γr + δγ) = E0(r) + a0E1(r) +
1
2

∑

k

|ak|2E2(k, r) ,

where

E0(r) = 2πλr + παr2 − πβG00(r) , (2.3a)

E1(r) = 2πλ + 2παr − 2πβG10(r) , (2.3b)

E2(k, r) = 2πλrk2 + 2πα

− 2πβ

[
2G20(r) + G21(k, r) + 2irkG23(k, r) + k2r2G24(k, r)

]
. (2.3c)

3 We describe the case of one simply-connected connected component. The generalization to
multiple multiply-connected connected components is trivial.

4 The same HOAC energy was first used, but with different parameter values, by Rocheryet
al. [7], to model network shapes.



TheGij are also functions ofd. Note thatE1 = ∂rE0 andE2(0, r) = ∂rE1.
Equations (2.3) have the following consequences. First, since the larger behaviour

of E0 is dominated by theα term, we must haveα ≥ 0 for the energy to be bounded
below. Second, the conditionE1(r0) = 0 determinesβ in terms of the other parameters:

β(r0) =
λ + αr0

G10(r0)
. (2.4)

Third, becauseG10 > 0, β > 0 is necessary for an extremum. Fourth, although
E2(k, r0) > 0 can only be checked numerically, whenk = 0, it implies

α(r0) > β(r0)(2G20(r0) + G21(0, r0)) = β(r0)G̃(r0) .

3 Monotonic energy function

The left of figure 2 shows a plot of the energy of a circle versus radius for parameter
values selected according to the above criteria. Viewed as a Gibbs energy, this curve has
just the form we require: circles of radiusr0 are metastable (i.e. local minima), with an
energy that is low but nevertheless higher than that of the empty region. In the absence
of supporting data, the global minimum will thus be the empty region, the correct be-
haviour. A gradient descent algorithm, however, cannot escape from these local minima,
meaning that circles of radiusr0, once formed during gradient descent, cannot disap-
pear, even if the data does not support their existence. In practice such circles sometimes
do form, which is clearly undesirable. The best solution to this problem would be an
algorithm capable of finding the global minimum of the energy. A slightly less ambi-
tious approach, which we take here, involves making a compromise with the algorithm,
changing the model to avoid the creation of these local minima, while preserving as
much of the prior knowledge as possible.

The idea we will pursue is to adjust the parameters so that the minimum of the
curve on the left in figure 2 is replaced by a broad, approximately flat area, as shown
in the three rightmost plots in figure 2. Such an energy means that in the absence of
image data, a circle will shrink and disappear, whereas small amounts of image data
will be sufficient to create a minimum in the flat area, thus producing a stable circle. The
natural method to achieve such a broad flat region is to create an energy function that
has a single inflection point. If necessary the parameters can then be tweaked to ensure
that the gradient of energy wrt radius is positive rather than simply non-negative. It is,
however, a nontrivial exercise to find parameter values that result in inflection points.
We address this problem via further analysis of the energy (2.1).

We still require that a circle of radiusr0 be stable to sinusoidal perturbations with
k > 0, but now we also require that such a circle be an inflection point with respect
to perturbations withk = 0, that is, changes of radius. We will see that these demands
are sufficient to fix the prior energyEg up to an overall multiplicative constant and
a small range of values ford. More precisely, we still require thatE1(r0) = 0 and
E2(k, r0) > 0 for k > 0, but we now require thatE2(0, r0) = 0 too. The first condition
gives equation (2.4). The second condition, which follows from equation (2.3c), also
relatesα andβ:

α(r0) = β(r0)G̃(r0) . (3.1)
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Fig. 1.From left to right (r0 = 5.0 throughout):α plotted againstd; β plotted againstd; enlarged
plot of α near the critical domain.

We can solve equations (2.4) and (3.1) forα andβ, giving

α(r0) =
λG̃(r0)

G10(r0)− r0G̃(r0)
and β(r0) =

λ

G10(r0)− r0G̃(r0)
. (3.2)

These equations fixα andβ as functions ofr0 andd. Sincer0 is fixed by the application,
the only remaining parametric degrees of freedom are the value ofd, and the overall
strength of the prior term, represented byλ. Recall, however, that we also requireα
andβ to be positive. The question is then how to find values ofd for a givenr0 so that
α(r0) > 0 andβ(r0) > 0.

3.1 Determination ofd

To illustrate the behaviour we want to understand, figure 1 shows plots ofα and β
againstd for fixed r0, in this caser0 = 5. There are two critical points,dmin anddmax.
Only for the rangedmin < d < dmax are bothα andβ positive. Our goal is therefore to
find dmin anddmax as functions ofr0.

From equations (3.2), it can be seen thatdmax arises from a zero in the denominator,
while dmin arises from a zero in the numerator. It is therefore sufficient to find these
zeros in order to finddmin anddmax. To proceed, we first note a scaling property ofG00.
The functionG00 is given by the following integral [1]:

G00(r) =
∫ π

−π

dp cos(p) r2 Ψ

(
2r

∣∣∣sin p

2

∣∣∣
)

. (3.3)

SinceΨ(z) is a function ofz/d only, by pullingd2 out of the integral we can writeG00

asG00(r) = d2Ĝ00(r/d). Now recall thatG10 = 1
2∂rG00 andG̃ = ∂rG10. We then

find that

G̃(r0) = ˆ̃G(r0/d) and G10(r0)− r0G̃(r0) = d
(
Ĝ10(r0/d)− r0

d
ˆ̃G(r0/d)

)
,

(3.4)

whereĜ10(z) = 1
2∂zĜ00(z) and ˆ̃G(z) = ∂zĜ10(z). Thus both numerator and denom-

inator of equations (3.2) can be written, up to multiplication by positive coefficients, as



functions ofr0/d. Now, f(r, d) = f̂(r/d) andf(r, d0) = 0 imply f(ar, ad0) = 0 for
all a ∈ R; thus if we determinedmin anddmax for one value ofr0, we know their values
for anyr0.

To determinedmin anddmax while avoiding iterative numerical procedures to find
these points, we use a polynomial approximation toG00:

G00(r) =
∞∑

n=0

bnrn .

It is easy to show that

bm =

{
0 m < 2 ,

1
(m−2)!

∫ π

−π
dp cos(p) Y (m−2)(0) m ≥ 2 ,

(3.5)

whereY (r) = Ψ(2r| sin(p/2)|). The derivatives ofY evaluated at zero are

Y (m)(0)
(2| sin(p/2)|)m

= Ψ (m)(0) =





1 m = 0 ,

0 m = 1 or m even,

(−1)
m−1

2 1
2d

(
π
d

)m−1
m ≥ 3 andm odd .

Substituting into equation (3.5) givesbm:

bm =

{
0 m < 5 or m even,

(−1)
m−1

2
4(2π)m−3

m!!(m−4)!!
1

dm−2 m ≥ 5 andm odd .

We can then derive expressions forG̃ andG10 − rG̃:

G̃(r) = 2
∑

m≥3
m odd

(−1)
m+1

2 (2π)m−1(m + 1)
m!!(m− 2)!!

( r

d

)m

G10(r)− rG̃(r) = 2d
∑

m≥4
m even

(−1)
m−2

2 (2π)m−2

[(m− 3)!!]2
( r

d

)m

.

We computed the roots of these polynomials including terms up tom = 49. The
smallest positive roots furnish the values ofdmin anddmax. The result is thatdmin '
1.2776r0 anddmax ' 1.4499r0. The rightmost three graphs in figure 2 show plots of
E0 againstr for r0 = 5, with d values chosen from the domaindmin < d < dmax.

4 Tree crown extraction

The tree crown extraction problem is important in forestry, and has been much stud-
ied. Gougeon [8] uses an automatic valley following method to delineate tree crowns.
Larsen [9] uses a template matching method based on a 3D model to find spruce trees.
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Fig. 2.Plot ofE0 againstr for r0 = 5.0. Left: model in [1], with a local energy minimum. Right
three: new model, withα andβ determined by equations (3.2). Second from left,d = 6.4; second
from right,d = 6.8; far right,d = 7.2. For this value ofr0, dmin = 6.3880, dmax = 7.2495.

This works well, but requires knowledge of image acquisition and illumination parame-
ters to construct the template. Neither of these methods model the spatial distribution of
trees. Perrinet al. [10] model a forest as a marked point process with ellipses as marks,
thereby including inter-tree interactions. The method in this paper is similar in spirit,
although expressed in a very different language. It has the advantage that the tree shape
is not hard-constrained, but the disadvantage that it is difficult to apply to dense forest.

4.1 Likelihood energy and energy minimization

We useEg, with parameters fixed as described above, as a prior model for the regionR
of the image domain corresponding to trees. We also need a likelihood energyEi(I, R).
We will model the image inR, and in the background̄R, using Gaussian distributions.5

We add a term that predicts high gradients along the boundary∂R:

Ei(I, R) = λi

∫
dpn(p)·∂I(γ(p))+αi

[∫

R

d2x
(I(x)− µ)2

2σ2
+

∫

R̄

d2x
(I(x)− µ̄)2

2σ̄2

]
,

wheren is the (unnormalized) outward facing normal. Note that to facilitate comparison
of parameters in the prior energy, we setλ = 1 in Eg and introduce a weightαi in Ei .
The parametersµ, σ, µ̄, andσ̄ are learned from examples using maximum likelihood,
and then fixed.

The energyE = Eg+Ei is minimized using gradient descent. The descent equation
is

n̂ · ∂tγ(p) = −λi∂
2I(γ(p)) + αi

[
(I(γ(p))− µ̄)2

2σ̄2
− (I(γ(p))− µ)2

2σ2

]

− κ(p)− α + β

∫
dp′ r̂(p, p′) · n(p′) Ψ (1)(r(p, p′)) ,

whereκ is the curvature of the contour,r(p, p′) = γ(p) − γ(p′), andr̂ = r/r. In the
algorithm, it is convenient to represent the boundary by the zero level set of its signed
distance function [11]. We use the extended level set framework described in [7] to cope
with the nonlocal forces arising from HOAC energies.

5 We ignore the normalization constantZ(R) =
∫

DI e−Ei(I,R) since in our case it merely
changesλ andα, and we are interested in stability of the posterior in the absence of image-
dependent terms.



4.2 Experimental results

We tested the model on colour infrared aerial images of poplar stands located in the
‘Saône et Loire’ region in France, provided by the French National Forest Inventory
(IFN). We compare our new model to a classical active contour (β = 0), and the model
in [1] containing an energy minimum. Note that the new model has three free param-
eters,λi, αi andd, since the other likelihood parameters are fixed by training, while
the other prior parameters are fixed oncer0 is known. The classical active contour also
has three free parameters (λi, αi, andα), while the model used in [1] has four (λi, αi,
α, andd). The initial contour in all experiments, except that in figure 4, was a rounded
rectangle slightly bigger than the image domain. The image values in the region exterior
to the image domain were set tōµ to ensure that the contour would shrink inwards.

Figure 3 shows four images.6 On the left is the data. Next comes the best result we
could obtain using the same likelihood but settingβ = 0, i.e. using a classical active
contour. Note how the absence of the quadratic term, which includes the prior shape
knowledge, prevents trees from being separated. Next is the result we obtain with the
model in [1], while on the right is the result obtained with the new model. Note that the
parameter values for the new model, although fixed, nevertheless produce a comparable
result. One tree on the border is missing, but on the other hand, two trees are separated
that were merged by the old model.

Figure 4 shows two images. On the left is the data, while on the right is the result
obtained using the new model. The initial contour in this experiment was the red line.
With a couple of exceptions, the trees are separated and the extraction is accurate.

Figure 5 shows three images. On the left is the data; in the middle is the result
obtained with the model in [1]; on the right is the result obtained with the new model.
Despite its fixed parameters, the new model produces a better result, finding a tree
missed by the old model, and again separating trees that were merged by the old model.

For the experiment in figure 6, we used anα value slightly larger than that given
by equations (3.2), in order makeE1 slightly positive for allr. This ensures that in the
absence of image data, circles will disappear. The resultingE0 is shown on the left in
the figure. Next comes the data. The aim of the experiment is to detect the older, larger
radius trees in the upper part of the plantation area. Third from left is the best result
using the model in [1]. Note the phantom regions generated as the contour becomes
trapped in local energy minima (the phantom regions in the bright exterior area are also
reinforced by the image term). On the right is the result using the new model. With
one exception, the phantom regions are eliminated, while the level of error elsewhere is
comparable to the old model.

5 Conclusion

The ‘gas of circles’ model developed by [1] has numerous potential applications in
image processing,e.g.tree crown extraction from remote sensing images and cell ex-
traction from biological and medical images. The model in [1] suffers, however, from

6 Parameter values in image captions are written in the form(λi, αi, α, β, d, r0), truncated if
the parameters are not present.



Fig. 3. From left to right: image of poplarsc©IFN; the best result with a classical active contour
(70, 0.08, 5.8); result with model in [1](150, 0.15, 5.8, 4.67, 4.16, 4.16); result with new model
(90, 0.08, 5.47, 2.61, 6, 4.16).

Fig. 4. Left: bigger slice of planted forest c©IFN; right: result using new model
(90, 0.04, 5.49, 2.65, 5, 3.47). The contour was initialized to the red line.

phantom circles created by the fact that circles of a given radius are local energy min-
ima. The requirement that regions consisting of collections of circles of a given radius
be inflection points rather than local minima solves this problem. In addition, the re-
quirement halves the number of model parameters, and severely constrains one of the
two that remain, a major advantage for an energy-based model. Despite the small re-
maining freedom to adjust the parameters, experiments on the tree crown detection
problem show that the new model performs comparably or better than the old local
minimum model, and much better than a classical active contour.
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