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1 Introduction: region modeling with active contours

The primary goal of any segmentation algorithm is to divide the input image into disjoint parts
such that they belong to distinct objects in the scene. The solution of this problem is usually
based on the low-level features (e.g. color, texture, motion, etc.) of the surface patches. Purely
data driven methods however cannot deal very well with high noise, cluttered background or
occlusions. Hence the idea of incorporating some prior knowledge about the shape of the
objects has been considered by many researchers. Early approaches for shape prior were quite
generic, enforcing some kind of homogeneity and contour smoothness [4, 7, 11, 16, 23, 24]. For
example, [16, 24] uses a Markovian smoothness prior (basically a Potts model [3]); [4, 16] uses
a line process to control the formation of region boundaries; and active contour models [23]
have been using elasticity, rigidity, contour length, balloon or area minimizing forces [7, 11] in
order to favor smooth closed curves. In spite of their simplicity, these methods proved to be
very efficient in dealing with noisy images.

There have been a great deal of work on statistical shape modeling [20]. These methods
are relying on a kind of template matching: The object under investigation is of known
shape (template) and its allowed deformations are learned a priori [30, 31]. This knowledge
is then summarized in a statistical model which is incorporated into a variational [9, 14, 38]
or probabilistic [21, 32] model. These models often borrow ideas from mathematical pattern
theory developed by Grenander [19]: The basic assumption is that the deformations are a
result of some kind of transformations (usually affine) applied to the reference shape. The
modeling step involves the estimation and representation of the underlying transformations
and the prior will penalize strong deviations. Such models are useful when we have a clear
idea how the objects look like and the segmentation is driven by recognizing the object in the
image data. A typical application is medical image processing where well known objects (e.g.
organs) has to be segmented. For example, in [9] a variational method with shape priors using
an atlas has been proposed. The priors were restricted to a parametric deformation between
the reference shape and the active contour.

For many applications, however, the assumption of a parametric deformation is too restric-
tive or impractical to use. An interesting approach is presented in [37] where basic geometrical
constraints are modeled by quadratic energy functionals in a level set framework. The method
is applied to road extraction from satellite images using a prior which favors network-like
objects.

In this report we further develop the method in [37] for modeling a ‘gas of circles’. For
that purpose, we used a new generation of active contours, called Higher Order Active
Contours (HOACs). HOACs are able to capture higher order interactions between the contour
points providing a great possibility to integrate prior shape information into the model with
translation and rotation invariance. Furthermore, they can handle more than one objects
during the segmentation.

There is a broad range of applications where such a segmentation model can be used e.g.
in remote sensing (craters, trees, missile silos, etc.), and in medical or biological imaging (cells,
organisms, etc. ). Herein, we apply the method to the extraction of tree crowns from aerial
images provided by the French National Forest Inventory (INF). We have concentrated our
efforts on making different statistics from the segmentation e.g. the density of trees in a given
area (trees/ha), the mean diameter of the crowns etc. From the extracted data the forestry
can control its efficiency and can plan its work. In Fig. 1, we show an example with different
planted forests, where one can use our method.
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Figure 1: Real image with planted forest c©IFN.

In the rest of this section, we present classical active contour models and extensions
allowing the incorporation of shape information, and then describe and define HOACs and
quadratic active contour energies. In section 2, we describe the proposed HOAC model for
tree extraction. The stability of the geometric term is then analyzed, which places constraints
on the parameter values we can use. We present experimental results with the geometric term.
A data term based on the image intensity and gradient is introduced. In section 3, we present
results on synthetic data as well as on aerial images.

1.1 Classical active contour energies

Active contours were introduced in 1988 by Kass et al. [23]. Snakes or active contours are
curves defined within an image domain that can move under the influence of internal forces
coming from within the curve itself and an external force computed from the image data. The
internal and external forces are defined so that the snake will conform to an object boundary
or other desired features within an image. In 1991 Cohen published the ‘Balloon model’ [11].
This model gives an extra term, the area term, which yields a constant pressure. With the aid
of this pressure we are able to remove the contour from the local minima caused by the small
gradients. ‘Geodesic’ active contours [6, 7, 25, 29] removed the parameterization dependency
of the early models. To accomplish this we use the length of the boundary as an energy term
in a non-Euclidean metric on Ω determined by the image. The above presented energies are
integrals of functions over the contour. Chan and Vese introduced an active contour method
without using edges. They try to divide the image plane into a foreground and a background
based on image intensity [8]. Paragios et al. [35] and Jehan-Besson et al. [22] introduced
methods based on the integrals of functions over the interior.

In the above active contour models, the prior and likelihood terms are algebraic combina-
tions of integrals over the region or the contour. With these models we can only represent
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local interactions between contour points, where local means constructed from the derivatives
of the curve at each point. The dependency on derivatives means that interactions take place
within fixed size neighbourhoods. In addition, because the degree of the derivatives involved
is typically small, the neighbourhoods are small.

This limitation makes the expressive power of the prior term weak. If we just observe the
first derivatives, then the two possible Euclidean invariant properties are the length and the
area.

1.2 Shape descriptors

To eliminate some limitations of the prior term, various approaches have been proposed to
integrate information into the model. Most of the models use shape matching to match
the segmented image to a given image or set of images. Shape matching is a complex and
well studied part of image processing. We can find an overview of the published approaches
in [41]. Leventon et al. represent the shape as a signed distance function. They use a
Gaussian distribution on the principal components of variation around the mean distance
function acquired from training data as a shape prior [28]. Cremers et al. [12] extended
the Mumford-Shah functional [33] with statistical shape prior information. They represent a
contour as a spline, and learn a Gaussian distribution from the control points of the spline.
The statistical prior restricts the contour deformations to the subspace of learnt deformations.
In 2002 Cremers et al. introduced statistical shape prior information with diffusion snakes [14].
In 2003 Cremers and Soatto introduced a method based on pseudo-distance between the
shapes [13]. Chen et al. defined an energy based on gradient and the mean shape of the
observed object [10]. The prior shape term evaluates the similarity of the shape of the contour
to that of the reference shape through the computation of the distance function using the Fast
Marching method of Sethian [39]. Foulonneau et al. introduced a method based on Legendre
moments for region-based active contours [15], using the Euclidean invariance property of the
shape moments. They combined their method with the Chan and Vese model [8].

The above presented methods have some common properties. Given one or more training
examples or a mean object, they try to locate a simple object on the image plane. The
evolution of the contour tries to find the given object or the best matching from the given set
of objects. These methods are useful in some cases but they have their limitations. They do
not work if not only one but many objects are present on the image plane, or if the regions
to be extracted cannot be defined as small variations around a mean shape.

1.3 Higher order energies

In this section we present a general higher order active contour model introduced by Rochery
et al. [37]. We also present quadratic energies, which are a special case of higher order active
contours, and we present an example of a possible interaction function. As we wrote above,
classical active contour energies are constructed from single integrals over the contour. In
contrast HOACs include multiple integrals over the contour. They are able to represent higher
order interactions between the contour points. Here we introduce some notations which we
will use later. Let Ω be a bounded subset of <2 and I : Ω → < be an image. The contour Γ
is defined as a 1-chains Γ : S1 → Ω and τ(p) = Γ′(p) is the tangent vector to Γ at p.

5



1.3.1 Higher-order functionals, quadratic energies

HOACs are constructed from multiple integrals over the contour. The general form of such
integrals is the following: given an n-form F on Ωn, we pull it back to the domain of Γ⊗n and
integrate it:

E(Γ) =

∫

(∂R)n

F =

∫

(domΓ)n

(Γ⊗n)∗F. (1)

From now we will focus on quadratic energies (n = 2). We can rewrite the energy function
as:

E(Γ) =

∫

(∂R)2
F

=

∫

(domΓ)2
(Γ⊗ Γ)∗F

=

∫ ∫
τ(p) · F (Γ(p), Γ(p′)) · τ(p′)dpdp′, (2)

where F (x, x′), for each (x, x′) ∈ Ω2, is a matrix. The operator F allows us to model
non-trivial interactions between different contour points.

Using this term, Rochery et al. defined the following higher order active contour model,
imposing the Euclidian invariance of the prior term:

EG(Γ) = λCL(Γ) + αCA(Γ)− βC

2

∫ ∫
τ(t′) · τ(t)Φ(R(t, t′))dtdt′, (3)

where L is the length of the boundary, A is the area of its interior and R(t, t′) = |Γ(t)−Γ(t′)|
is the distance between Γ(t) and Γ(t′). They introduced the following interaction function Φ:

Φ(x) =





1 if x < dmin − ε,
0 if x > dmin + ε,
1
2
(1− x−dmin

ε
− 1

π
sin(π x−dmin

ε
)) otherwise.

(4)

In our experiments we used this interaction function, but we note that we could use other
monotonic decreasing functions (e.g. exponential, Bessel).
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2 Model for tree extraction

In this section, we will define our model for tree extraction. It has two parts: a model of the
region occupied by trees in the image domain, for which we will use EG; and a model of the
appearance of the trees in the image. The latter will be described in subsection 2.3. In the
first two subsections, we concentrate on EG. We want to adjust the parameters in the model
so that configurations consisting of collections of circles of approximately a certain radius r0

are stable (or nearly stable). In order for this to work, the circles themselves should be stable.
Stability means that if the shape of a circle of radius r0 is changed slightly, it will relax back
into the circle. We thus need to choose parameters so that a circle of radius r0 is a minimum
of EG. To do so, we start from a circle of radius r0, and expand the energy in a Taylor series
to second order around this contour. We will then adjust the parameters so that the first
derivative is zero, which tells us that the circle is an energy extremum, and so that the second
derivative is positive definite, which tells us that the extremum is a minimum. This calculation
is described in subsection 2.1. In subsection 2.2, we present experiments with the energy EG

showing empirically that the calculation does indeed work.

2.1 Stability analysis

Since we are expanding EG around a circle, it is easiest to express the contour in terms of
polar coordinates r, θ on Ω. A circle of radius r0 centred on the origin is then given by
Γ0(t) = (r0(t), θ0(t)), where:

r0(t) = r0

θ0(t) = t

and t ∈ [0, 2π) is the curve parameter. We are interested in the behaviour of small variations
δΓ = (δr, δθ) around this contour, that is in calculating EG(Γ0 + δΓ) as a power series in δΓ.
The first thing to notice is that tangential changes in Γ do not affect the energy, since it is
parametrization invariant. We can therefore set δθ = 0, and concentrate on δr.

It turns out to be easiest to perform the calculation by expressing δr in terms of the Fourier
basis for the tangent space at Γ0. Thus Γ = Γ0 + δΓ can be written as:

r(t) = r0 + δr(t) = r0 +
∑

k

ake
ir0kt

θ(t) = θ0(t) (5)

For further computations we need the derivatives of r(t) and θ(t) with respect to t, which are
given by:

ṙ(t) = δṙ(t) =
∑

k

akir0keir0kt

θ̇(t) = 1.

To express the length and area terms we need the tangent vector τ over t which we can write
as follows:

τ(t) = ṙ(t)
∂

∂r
+ θ̇(t)

∂

∂θ
,
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and the absolute value of this tangent vector to second order (for more details see Ap-
pendix A.1.1):

|τ(t)| = r0

{
1 +

∑

k

ak

r0

eir0kt +
1

2

∑

kk′
aka

+
k′kk′eir0(k−k′)t

}
.

where + indicates complex conjugation. Now we are able to express the length and the area
of the contour for a given r0 to second order as follows:

L(Γ) =

∫ 2π

0

|τ(t)|dt = 2πr0

{
1 +

a0

r0

+
1

2

∑

k

|ak|2k2

}
(6)

A(Γ) =

∫ 2π

0

∫ r(θ)

0

rdrdθ = πr2
0 + 2πr0a0 + π

∑

k

|ak|2. (7)

To determine the expression of the quadratic term we need the dot product of the tangent
vectors at t and t′ as well as the distance between those two points. The dot product can be
written as:

τ(t) · τ(t′) = cos(θ′ − θ) · [r2
0 + r0δr

′ + r0δr + δrδr′ + δṙδṙ′] +

sin(θ′ − θ) · [r0δṙ
′ − r0δṙ − δṙδr′ + δrδṙ′],

where r = r(t) and θ = θ(t). For more details see Appendix A.2. We can express the distance
between two points on the contour to second order, ordered by δr and δr′, as:

|Γ(t′)− Γ(t)| = 2r0 sin

∣∣∣∣
∆θ

2

∣∣∣∣ + δr sin

∣∣∣∣
∆θ

2

∣∣∣∣ + δr′ sin

∣∣∣∣
∆θ

2

∣∣∣∣ +

δr2 1

4r0

A(∆θ) + δr′2
1

4r0

A(∆θ)− δrδr′
1

2r0

A(∆θ),

where ∆θ = θ′ − θ, ∆t = t′ − t and A(∆t) =

(
cos2(∆θ

2 )
sin|∆θ

2 |
)

. Now we approximate Φ(|Γ(t′) −
Γ(t)|) by the following rule: f(X) = f(X0) + f ′(X0)(X1 + X2) + 1

2
f ′′(X0)X

2
1 , where X0, X1

and X2 are the constant, first and second order terms in X. We use the notation X0 =
2r0 sin

∣∣∆θ
2

∣∣

Φ(|Γ(t′)− Γ(t)|) = Φ(X0) + δr sin

∣∣∣∣
∆θ

2

∣∣∣∣ Φ′(X0) + δr′ sin

∣∣∣∣
∆θ

2

∣∣∣∣ Φ′(X0)

+δr2

[
1

4r0

A(∆θ) · Φ′(X0) +
1

2
sin2 ∆θ

2
· Φ′′(X0)

]

+δr′2
[

1

4r0

A(∆θ) · Φ′(X0) +
1

2
sin2 ∆θ

2
· Φ′′(X0)

]

+δrδr′
[
− 1

2r0

A(∆θ) · Φ′(X0) + sin2 ∆θ

2
· Φ′′(X0)

]
.
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Now let G(t′, t) = τ(t′) · τ(t)Φ(|Γ(t′)− Γ(t)|). Then we have:

G(t′, t) =

r2
0 cos ∆θΦ(X0)︸ ︷︷ ︸

F00,even

+δr · r0 cos ∆θ

{
Φ(X0) + r0 sin

∣∣∣∣
∆θ

2

∣∣∣∣ Φ′(X0)

}

+δr′ · r0 cos ∆θ

{
Φ(X0) + r0 sin

∣∣∣∣
∆θ

2

∣∣∣∣ Φ′(X0)

}

︸ ︷︷ ︸
F10,even

−δṙ · r0 sin ∆θΦ(X0)

+δṙ′ · r0 sin ∆θΦ(X0)︸ ︷︷ ︸
F11,odd

+δr2 · r0 cos ∆θ

{
1

4
A(∆θ)Φ′(X0) +

1

2
r0 sin2 ∆θ

2
Φ′′(X0) + sin

∣∣∣∣
∆θ

2

∣∣∣∣ Φ′(X0)

}

+δr′2 · r0 cos ∆θ

{
1

4
A(∆θ)Φ′(X0) +

1

2
r0 sin2 ∆θ

2
Φ′′(X0) + sin

∣∣∣∣
∆θ

2

∣∣∣∣ Φ′(X0)

}

︸ ︷︷ ︸
F20,even

+δrδr′ · cos ∆θ

{
Φ(X0) + 2r0 sin

∣∣∣∣
∆θ

2

∣∣∣∣ Φ′(X0)− 1

2
r0A(∆θ)Φ′(X0) + r2

0 sin2 ∆θ

2
Φ′′(X0)

}

︸ ︷︷ ︸
F21,even

−δrδṙ · r0 sin

∣∣∣∣
∆θ

2

∣∣∣∣ sin ∆θΦ′(X0)

︸ ︷︷ ︸
F22,odd

+δrδṙ′ · sin ∆θ

{
Φ(X0) + r0 sin

∣∣∣∣
∆θ

2

∣∣∣∣ Φ′(X0)

}

−δr′δṙ · sin ∆θ

{
Φ(X0) + r0 sin

∣∣∣∣
∆θ

2

∣∣∣∣ Φ′(X0)

}

︸ ︷︷ ︸
F23,odd

+δr′δṙ′ · r0 sin

∣∣∣∣
∆θ

2

∣∣∣∣ sin ∆θΦ′(X0)

+δṙδṙ′ · cos ∆θΦ(X0)︸ ︷︷ ︸
F24,even

.

For simplicity we introduced the notation F00..F24 for the terms in G. Now we can express
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the quadratic term as:

∫ ∫ 2π

0

G(t′, t)dt′dt =

∫ ∫ 2π

0

F00dt′dt +

∫ ∫ 2π

0

(δr + δr′)F10dt′dt

+

∫ ∫ 2π

0

(δṙ′ − δṙ)F11dt′dt +

∫ ∫ 2π

0

(δr2 + δr′2)F20dt′dt

+

∫ ∫ 2π

0

δrδr′F21dt′dt +

∫ ∫ 2π

0

(δr′δṙ′ − δrδṙ)F22dt′dt

+

∫ ∫ 2π

0

(δrδṙ′ − δr′δṙ)F23dt′dt +

∫ ∫ 2π

0

δṙδṙ′F24dt′dt.

Substituting the decomposition of δr into its Fourier components from equation (5), we find
(for more details see Appendix A.2):

∫ ∫ 2π

0

G(t′, t)dt′dt = 2π

∫ 2π

0

F00dp + a04π

∫ 2π

0

F10dp

+
∑

k

|ak|22π
{[

2

∫ 2π

0

F20dp +

∫ 2π

0

F21e
ir0kpdp

]

+k

[
2ir0k

∫ 2π

0

F23e
ir0kpdp

]
+ k2

[
r2
0

∫ 2π

0

F24e
ir0kpdp

]}
. (8)

Using equations (6), (7) and (8), we can now express the energy function (3) up to the second
order, as:

EG(Γ) = E(Γ0 + δΓ) =

[
λC2πr0 + αCπr2

0 −
βC

2
2π

∫ 2π

0

F00dp

]

+a0

[
λC2π + αC2πr0 − βC

2
4π

∫ 2π

0

F10dp

]

+
∑

k

|ak|2
(
λCπr0k

2 + αCπ

−βC

2
2π

{[
2

∫ 2π

0

F20dp +

∫ 2π

0

F21e
ir0kpdp

]

+k

[
2ir0

∫ 2π

0

F23e
ir0kpdp

]
+ k2

[
r2
0

∫ 2π

0

F24e
ir0kpdp

]})
. (9)

Now we present a setting of the parameters where the curve is a stable circle by a given radius
r0. During our experiments we used the interaction function (4) introduced by Rochery et
al. [37]. Our goal is to set the parameter values so that the energy is minimized by a circle
of radius r0, stable for all the frequencies. Thus we set the parameters so that the second
term of the energy function becomes 0 when the radius r is equal to r0 and the third term
becomes positive for every value of k (the Fourier frequencies). In this case the instabilities
for all of k-s increase the contour’s energy. If we equate the second term to zero we can write
the parameter βC as a function of αC , λC and r0:

βc(λc, αc, r0) =
λc + αcr0∫ 2π

0
F10dp

. (10)
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Figure 2: The values of βC for a given λC , αC and r0 (λC = 1.0, αC = 0.0 − 5.0 and
r0 = 3.0− 7.0).
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It can be seen that the function has a local minima at r0 and has a local maxima between
0 and r0. Right: Energy plot of E2 versus k, it is apparent that the energy is positive
over all frequencies.

Fig. 2 shows the values of βC for various αC and r0 settings. With the aid of the 0th, 1st
and 2nd order terms of the energy function we can present the value of the energy for various
parameter settings. The zeroth order term (i.e. the energy of a circle of radius r0) is defined
as:

E0(r0, αc, βc) = λC2πr0 + αCπr2
0 −

βC

2
2π

∫ 2π

0

F00dp, (11)

since we try to stabilize the radius of the circle at r0, the energy must have a minimum at r0.
Fig. 3 (left handside) shows the energy plot of E0. As you can see the minimum of the energy
is located at r0. The first order energy term is:

E1(r0, αc, βc) = λC2π + αC2πr0 − βC

2
4π

∫ 2π

0

F10dp. (12)

This energy is 0 over the whole domain, because we computed βC from the equation E1 = 0.
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The second order energy term can be computed as:

E2(r0, αc, βc, k) = λCπr0k
2 + αCπ − βC

2
2π

{[
2

∫ 2π

0

F20dp +

∫ 2π

0

F21e
ir0kpdp

]
+

k

[
2ir0

∫ 2π

0

F23e
ir0kpdp

]
+ k2

[
r2
0

∫ 2π

0

F24e
ir0kpdp

]}
. (13)

With the aid of E2 we can choose parameters for which E2 is positive for all the values of the
k. In Fig. 3 (right handside) we can see one possible configuration for a given r0. The energy
over k is always non-negative, which means the contour is stable for every possible frequency.
In the example of Fig. 3 we choose a radius (r0 = 5.0), and we calculate the possible βC

values for a given set of αC . Afterwards we substitute the computed αC and βC values in the
function (13), and we check where E2 remains positive for every value of k. In our example
we can produce stable circles with the following parameters: r0 = 5.0; αC = 1.0; βC

∼= 1.036;
λC = 1.0; dmin = 5.0; ε = 1.0.

2.2 Geometric experiments

The experimental results with the geometric term are shown in Fig. 4. In the first column
we find the initial curve(s). We used three different parameter settings for different radii
(r0 = 15.0, 10.0, 5.0), the results of the evolution can be seen in the second, third and fourth
columns. In the first experiment (first line) the initial shape was a circle of radius 32 pixels.
After the evolution, the stable state, which can be seen in the 2nd-4th columns, is a circle
with the desired radius in every case. In the second line we see an interesting phenomenon.
Some of the initial curves vanish. In the second column just two circles survive of the original
8 and in the third just 4. The explanation for this is interesting. The energy function over the
radius has a minimum at r0 and it is 0 if the radius is 0. Between r0 and 0 there is a point
where the energy has a local maximum. If the initial radius is less than this local maximum
then the shape vanishes. In the fourth column all the shapes survive the evolution.

In the third experiment, the initial shapes were four rectangles. For all the radii, all the
circles are in the expected places and have the correct size. In the last experiment, the initial
shapes were four different objects. With the first two radii, the final shapes of the evolution
are four circles of the appropriate size, but with the smallest radius the final shapes are more
than four circles. This is due to the area term, since the shape and size of the curve is far
from the desired circle. The area term is stronger and begins to extract the skeleton. Later,
the quadratic energy becomes stronger and creates the circles.

2.3 Data term

In real applications our model has two terms. The geometric part which provides the circular
shape of the segmented parts, and the data term that guarantees that the circles are in suitable
locations. The energy we use is:

E(Γ) = EG(Γ)+εC

∫
n̂(p)·∇I(p)dp+δin

C

∫

Ωin

(I(p)− µin)2

2σ2
in

dp+δout
C

∫

Ωout

(I(p)− µout)
2

2σ2
out

dp,

(14)
where EG(Γ) is the geometric energy. The second term ensures that the contour stops at large
image gradients. We could ask ourselves why is this term not enough; the answer is that we

12



(Initial) (r0 = 15) (r0 = 10) (r0 = 5)

Figure 4: Experimental results using the geometric term: the first column shows the
initial shapes; the other columns show the stable states for various choices of the radius.

can get incorrect circles when the gradient is 0 or close to 0. For this reason we introduced an
additional energy term which is based on the Mahalanobis distance between the intensity of
the image and the mean and the variance of the inside and outside regions (µin, µout, σin and
σout). The parameters εC , δin

C and δout
C control the segmentation. The energy is minimized by

a gradient descent and the descent equation is:

n̂ · ∂Γ

∂t
= −κ− αC − εC∇2I + δin

C

(I − µin)2

2σ2
in

− δout
C

(I − µout)
2

2σ2
out

+

2βC

∫
(R̂(p, p′) · n̂(p′))Ψ′(R(p, p′))dp′, (15)

where R̂(p, p′) = Γ(p)−Γ(p′)
|Γ(p)−Γ(p′)| , κ is the curvature over the contour and αC is the parameter of

the area term in equation (3). To evolve the contour we use a level-set framework introduced
by Osher and Sethian [34].
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3 Experimental results

In this section we present our results on synthetic and real data. For a brief overview of tree
extraction and remotely sensed images see Appendix B.

3.1 Experiments on synthetic data

gradient

color

color & gradient
(original) (50-th step) (100-th step) (150-th step) (final result)

Figure 5: Experiments on synthetic data

Our experimental results can be seen in Fig. 5. The original image (left upper corner)
has objects with variable shape and size along with sharp and smooth edges. We want to
eliminate the objects that are different from circles or that have a too small radius. We
also want to partially detect areas with larger dimensions. The 2nd-4th columns represent the
contour evolution after 50, 100 and 150 iterations. In the last column we present the final
segmentation.

The result obtained without the quadratic term can be seen in the first row where all the
objects were detected using suitable parameter settings. In the second row can be seen the
result with the quadratic term, in the formulation only the image gradient is used as the data
term. The circles with desired radius were detected and the smaller shapes were eliminated.
By the big smooth circle the circle was detected by the darkest part because the gradient
values are the biggest here. Similarly by the smoothed rectangles the detected circles are also
on the lightest part. In the case of the biggest circle we found two smaller circles inside the
object and one outside. This is because the gradient is big over the boundary of this circle, and
the circles inside push out the third circle. The results using the intensity term can be seen in
the third row. The too small object was also eliminated. By the smoothed object the detected
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circles are also by the lightest part because the color intensity is here the biggest. In the case
of a biggest circle the contour grew as an arm. In the last row we can see the results obtained
by combining the gradient and the intensity term. All the desired objects were successfully
detected, in the big circle we found two separated circles. The intensity term yields that the
circle has to be inside, the gradient determines that it has to be on the boundary and the prior
results in the circular shape.

3.2 Experiments on tree images

Here we present our first results on real images. We tested our model on an aerial image of
resolution 54 cm/pixel provided by the IFN. The image shows poplar stands located in Saône
et Loire (France).

(a) (b)

Figure 6: Real image with a planted forest (a) and the segmentation result (b) c©IFN.

In Fig. 6 one can see a regularly planted poplar forest. In the upper part of the image the
trees are older with bigger crowns (8-10 pixels ≈ 4-5 m), while in the lower part there are
younger trees; we set the desired r0 to detect the former but not the latter trees. In Fig. 6,
we are using the proposed algorithm only in the central part of the image. We do not deal
with the dashed areas.

In Fig. 7 can be seen a small piece of a slightly irregularly planted poplar forest. The
image is difficult, because the intensities of the crowns are very varied, some trees overlap,
and the gradients are very smooth. For that reason classical methods (such as classical AC;
thresholding; edge detectors) do not work on this image.

In the table can be seen some statistics computed from the results. In the second row is
the number of detected trees, in the third row the area of planted trees in the image, and in
the last row the density of trees in a hectare.

Figure# 6 7
Trees#: 152 53
Area (ha): 0.63 0.48
Average (trees/ha): 241.2 112.7
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(a) (b)

Figure 7: Planted forest (a) and the segmentation result (b) c©IFN.

4 Conclusion and future work

We have introduced new parameter settings for higher order active contours to produce circles
with desired radius. With active contour methods published earlier it is not possible to model
higher order interactions between the contour points. This technique enable us to model these
interactions.

Several models were presented for tree detection (see Appendix B). Some of the models
use line or edge detection, in this case shape prior cannot be introduced . Methods, using
template matching can introduce low-level shape information, but they use intensity-based
segmentation. Our method uses intensity as well as edge information, which results in a
better segmentation.

In Fig. 6 we concentrated on the part of the image located out of the dashed areas because
we were not able to eliminate continuous light areas (e.g. fields, houses, roads. . . ), and we
also could not handle textures. We will introduce a new data term to solve these problems.

(a) (b)

Figure 8: Internal vs. external interactions (a), joint circles (b).

In our future work we will concentrate on various problems that have arisen. In Fig. 8(a)
can be seen two circles with the same radii. If the distance between the circles is equal to the
given diameter then the interaction between the points p and p′ is exactly the same as the
interaction between the points q and q′. This creates undesirable interactions between circles.
We will develop a new energy function to eliminate this problem.

Our main goal is to count the trees and create statistics from the segmentation (e.g.
trees/km2, mean diameter of the crowns. . . ). We will try two different methods for counting.
It is well known that the integral of the curvature over a closed curve is 2π, so that we can
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express the number of the circles N as:

N =

∫
Γ
dsκ

2π

The other approach is to determine the shock graph of the segmentation [40]. The number
of 4th order shocks gives the number of trees, in this way we will able to handle the case
where the trees are overlapping, as illustrated in Fig. 8(b). We can also compute the distance
transformation while we compute the shock graph, and thus compute radii: the radius of the
circle is just the distance value at the 4th order shocks.

Finally, we will investigate the possibility of automatic parameter estimation.
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A Stability computations

A.1 Length and area terms

In this section we present the polar coordinate forms of the length and area terms, and their
expression in terms of the Fourier coefficients of the deviation from Γ0.

A.1.1 Tangent vector

We defined r(t) , θ(t) and τ(t) in section 2.1, now we compute the length of the tangent
vector using the fact that the squared distance with polar coordinates is ds2 = dr2 + r2dθ.
We can express |τ(t)|2 as:

|τ(t)|2 = [ṙ(t)]2 + [r(t)]2

=
∑

k,k′
[akir0keir0kt][a+

k′ − ir0k
′eir0k′t] +

r2
0 + 2r0

∑

k

ake
ir0kt +

∑

k,k′
aka

+
k′e

ir0(k−k′)t(1 + r2
0kk′).

From this expression we can denote the length of the tangent vector |τ(t)|, using the approx-
imation form

√
1 + x ≈ 1 + 1

2
x− 1

8
x2 :

|τ(t)| =
√
|τ(t)|2 = r0

{
1 + 2

∑

k

ak

r0

eir0kt +
∑

k,k′
aka

+
k′e

ir0(k−k′)t
(

1

r2
0

kk′
)}

= r0

{
1 +

∑

k

ak

r0

eir0kt +
1

2

∑

k,k′
aka

+
k′e

ir0(k−k′)t
(

1

r2
0

kk′
)
−

1

8
4
∑

k,k′

ak

r0

a+
k′

r0

eir0(k−k′)t + . . .

}

= r0

{
1 +

∑

k

ak

r0

eir0kt +
1

2

∑

kk′
aka

+
k′kk′eir0(k−k′)t

}
.

(16)

A.1.2 Length of the contour

Since we can express the length term as the integral of the tangent vector over the curve, we
can express the length in terms of the Fourier coefficients as:

L(Γ) =

∫ 2π

0

|τ(t)|dt = r0

{
2π + 2π

a0

r0

+ π
∑

k

|ak|2k2

}

= 2πr0

{
1 +

a0

r0

+
1

2

∑

k

|ak|2k2

}
. (17)
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A.1.3 Area of the contour

We can write the area of the contour as the integral of the radius, and in terms of the Fourier
coefficients as:

A(Γ) =

∫ 2π

0

∫ r(θ)

0

rdrdθ =

∫ 2π

0

1

2
r2(θ)dθ

=
1

2

∫ 2π

0

(
r2
0 + 2r0

∑

k

ake
ir0kθ +

∑

k,k′
aka

+
k′e

ir0(k−k′)θ

)
dθ

=
1

2

(
2πr2

0 + 4πr0a0 + 2π
∑

k

|ak|2
)

= πr2
0 + 2πr0a0 + π

∑

k

|ak|2.

A.2 Quadratic energy

In this section, we introduce the expression of the quadratic term in terms of the Fourier
coefficients of the deviation from Γ0. First we recall the quadratic energy term:

EQ(Γ) = −βC

2

∫ ∫
τ(t′)τ(t)Φ(|Γ(t′)− Γ(t)|)dtdt′, (18)

To compute the tangential dot product we express the tangent vectors with polar coordinates.
Using the well known definition: τ(t) = [ẋ(t), ẏ(t)] and τ(t′) = [ẋ(t′), ẏ(t′)], we can write the
dot product as τ(t) · τ(t′) = ẋ(t) · ẋ(t′) + ẏ(t) · ẏ(t′). We can express x(t) and y(t) with the
polar coordinates as:

x(t) = [r0 + δr(t)] cos(θ(t)) = r0 cos(θ(t)) + δr(t) cos(θ(t)),

y(t) = [r0 + δr(t)] sin(θ(t)) = r0 sin(θ(t)) + δr(t) sin(θ(t)),

and the derivatives of the coordinates with the polar coordinates:

ẋ(t) = −r0 sin(θ(t))θ̇(t) + δṙ cos(θ(t))− δr sin(θ(t))θ̇(t),

ẏ(t) = r0 cos(θ(t))θ̇(t) + δṙ sin(θ(t)) + δr cos(θ(t))θ̇(t).

Now we introduce for simplicity the following notations: x = x(t), y = y(t), ẋ = ẋ(t),
ẏ = ẏ(t), s(x) = sin(x), c(x) = cos(x), r = r(t), θ = θ(t) and ∆θ = θ′ − θ. Now we write
the dot product as:

ẋ · ẋ′ = r2
0s(θ)s(θ

′)− r0δṙ
′s(θ)c(θ′) + r0δr

′s(θ)s(θ′)

−r0δṙs(θ
′)c(θ) + δṙδṙ′c(θ)c(θ′)− δṙδr′s(θ′)c(θ)

+r0δrs(θ)s(θ
′)− δrδṙ′s(θ)c(θ′) + δrδr′s(θ)s(θ′),

ẏ · ẏ′ = r2
0c(θ)c(θ

′) + r0δṙ
′s(θ′)c(θ) + r0δr

′c(θ)c(θ′)

+r0δṙs(θ)c(θ
′) + δṙδṙ′s(θ)s(θ′) + δṙδr′s(θ)c(θ′)

+r0δrc(θ)c(θ
′) + δrδṙ′s(θ′)c(θ) + δrδr′c(θ)c(θ′).
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ẋ · ẋ′ + ẏ · ẏ′ = [s(θ)s(θ′) + c(θ)c(θ′)] · [r2
0 + r0δr

′ + r0δr + δrδr′ + δṙδṙ′] +

[s(θ′)c(θ)− s(θ)c(θ′)] · [r0δṙ
′ − r0δṙ − δṙδr′ + δrδṙ′]

= c(θ′ − θ) · [r2
0 + r0δr

′ + r0δr + δrδr′ + δṙδṙ′] +

s(θ′ − θ) · [r0δṙ
′ − r0δṙ − δṙδr′ + δrδṙ′]. (19)

We can express the square distance between Γ(t′) and Γ(t) as:

|Γ(t′)− Γ(t)|2 = [(x(t′)− x(t))2 + (y(t′)− y(t))2]

= [(r0 + δr′) · c(θ′)− (r0 + δr) · c(θ)]2
+[(r0 + δr′) · s(θ′)− (r0 + δr) · s(θ)]2

= r2
0c

2(θ′) + δr′2c2(θ′) + r2
0c

2(θ) + δr2c2(θ)

+2r0δr
′c2(θ′)− 2r2

0c(θ)c(θ
′)− 2r0δrc(θ)c(θ

′)

−2r0δr
′c(θ)c(θ′)− 2δr′δrc(θ)c(θ′) + 2r0δrc

2(θ)

+r2
0s

2(θ′) + δr′2s2(θ′) + r2
0s

2(θ) + δr2s2(θ)

+2r0δr
′s2(θ′)− 2r2

0s(θ)s(θ
′)− 2r0δrs(θ)s(θ

′)

−2r0δr
′s(θ)s(θ′)− 2δr′δrs(θ)s(θ′) + 2r0δrs

2(θ)

= 2r2
0(1− c(∆θ)) + δr(2r0 − 2r0c(∆θ)) + δr′(2r0 − 2r0c(∆θ))

+δr2 + δr′2 − 2c(∆θ)δrδr′

= 2r2
0(1− c(∆θ)) + 2r0(1− c(∆θ))(δr + δr′)

+δr2 + δr′2 − 2c(∆θ)δrδr′

= 2r2
0(1− c(∆θ))

{
1 +

1

r0

(δr + δr′) +
δr2 + δr′2 − 2c(∆θ)δrδr′

2r2
0(1− c(∆θ))

}
.

With the
√

1 + x ≈ 1 + 1
2
x − 1

8
x2 approximation we can determine |Γ(t′) − Γ(t)| up to the

second order:

|Γ(t′)− Γ(t)| = 2r0 sin

∣∣∣∣
∆θ

2

∣∣∣∣
{

1 +
1

2r0

(δr + δr′)+

δr2 + δr′2 − 2 cos(∆θ)δrδr′

4r2
0(1− cos(∆θ))

− (δr + δr′)2

8r2
0

}

︸ ︷︷ ︸
∗

,

where the ∗ term can be written as:

∗ =
2δr2 + 2δr′2 − 4 cos(∆θ)δrδr′

8r2
0(1− cos(∆θ))

− (δr2 + 2δrδr′ + δr′2)(1− cos(∆θ))

8r2
0(1− cos(∆θ))

=
(δr2 − 2δrδr′ + δr′2)

8r2
0

(
1 + cos(∆θ)

1− cos(∆θ)

)

=
(δr2 − 2δrδr′ + δr′2)

8r2
0

(
cos2

(
∆θ
2

)

sin
∣∣∆θ

2

∣∣

)
.

Let A(∆t) =

(
cos2(∆θ

2 )
sin|∆θ

2 |
)

. Then the distance between Γ(t′) and Γ(t) to second order:

|Γ(t′)− Γ(t)| = 2r0 sin

∣∣∣∣
∆θ

2

∣∣∣∣ + δr sin

∣∣∣∣
∆θ

2

∣∣∣∣ + δr′ sin

∣∣∣∣
∆θ

2

∣∣∣∣ +

δr2 1

4r0

A(∆θ) + δr′2
1

4r0

A(∆θ)− δrδr′
1

2r0

A(∆θ). (20)
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Here we present the approximation of Φ(|Γ(t′) − Γ(t)|) as Φ(X) = Φ(X0) + Φ′(X0)(X1 +
X2) + 1

2
Φ′′(X0)X

2
1 , where X0, X1 and X2 are the constant, first and second order terms

respectively. Using the notation X0 = 2r0 sin
∣∣∆θ

2

∣∣, we have:

Φ(|Γ(t′)− Γ(t)|) = Φ(X0) + δr sin

∣∣∣∣
∆θ

2

∣∣∣∣ Φ′(X0) + δr′ sin

∣∣∣∣
∆θ

2

∣∣∣∣ Φ′(X0)

+δr2

[
1

4r0

A(∆θ) · Φ′(X0) +
1

2
sin2 ∆θ

2
· Φ′′(X0)

]

+δr′2
[

1

4r0

A(∆θ) · Φ′(X0) +
1

2
sin2 ∆θ

2
· Φ′′(X0)

]

+δrδr′
[
− 1

2r0

A(∆θ) · Φ′(X0) + sin2 ∆θ

2
· Φ′′(X0)

]
. (21)

We write G(t′, t) = τ(t′) · τ(t)Φ(|Γ(t′)− Γ(t)|), we have:

G(t′, t) =

r2
0 cos ∆θΦ(X0)︸ ︷︷ ︸

F00,even

+δr · r0 cos ∆θ

{
Φ(X0) + r0 sin

∣∣∣∣
∆θ

2

∣∣∣∣ Φ′(X0)

}

+δr′ · r0 cos ∆θ

{
Φ(X0) + r0 sin

∣∣∣∣
∆θ

2

∣∣∣∣ Φ′(X0)

}

︸ ︷︷ ︸
F10,even

−δṙ · r0 sin ∆θΦ(X0)

+δṙ′ · r0 sin ∆θΦ(X0)︸ ︷︷ ︸
F11,odd

+δr2 · r0 cos ∆θ

{
1

4
A(∆θ)Φ′(X0) +

1

2
r0 sin2 ∆θ

2
Φ′′(X0) + sin

∣∣∣∣
∆θ

2

∣∣∣∣ Φ′(X0)

}

+δr′2 · r0 cos ∆θ

{
1

4
A(∆θ)Φ′(X0) +

1

2
r0 sin2 ∆θ

2
Φ′′(X0) + sin

∣∣∣∣
∆θ

2

∣∣∣∣ Φ′(X0)

}

︸ ︷︷ ︸
F20,even

+δrδr′ · cos ∆θ

{
Φ(X0) + 2r0 sin

∣∣∣∣
∆θ

2

∣∣∣∣ Φ′(X0)− 1

2
r0A(∆θ)Φ′(X0) + r2

0 sin2 ∆θ

2
Φ′′(X0)

}

︸ ︷︷ ︸
F21,even

−δrδṙ · r0 sin

∣∣∣∣
∆θ

2

∣∣∣∣ sin ∆θΦ′(X0)

︸ ︷︷ ︸
F22,odd

+δrδṙ′ · sin ∆θ

{
Φ(X0) + r0 sin

∣∣∣∣
∆θ

2

∣∣∣∣ Φ′(X0)

}

−δr′δṙ · sin ∆θ

{
Φ(X0) + r0 sin

∣∣∣∣
∆θ

2

∣∣∣∣ Φ′(X0)

}

︸ ︷︷ ︸
F23,odd

+
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+δr′δṙ′ · r0 sin

∣∣∣∣
∆θ

2

∣∣∣∣ sin ∆θΦ′(X0)

+δṙδṙ′ · cos ∆θΦ(X0)︸ ︷︷ ︸
F24,even

. (22)

For simplicity we use the notations F00..F24. We can express the quadratic energy
∫ ∫ 2π

0
G(t′, t)dt′dt

as:
∫ ∫ 2π

0

G(t′, t)dt′dt =

∫ ∫ 2π

0

F00dt′dt +

∫ ∫ 2π

0

(δr + δr′)F10dt′dt +

∫ ∫ 2π

0

(δṙ′ − δṙ)F11dt′dt +

∫ ∫ 2π

0

(δr2 + δr′2)F20dt′dt +

∫ ∫ 2π

0

δrδr′F21dt′dt +

∫ ∫ 2π

0

(δr′δṙ′ − δrδṙ)F22dt′dt +

∫ ∫ 2π

0

(δrδṙ′ − δr′δṙ)F23dt′dt +

∫ ∫ 2π

0

δṙδṙ′F24dt′dt. (23)

Substituting δr(t) =
∑

k ake
ir0kt and δṙ(t) =

∑
k akir0keir0kt, and denoting p = t − t′, we

have the following expressions for the various terms:
• ∫ ∫

F00dtdt′

∫ ∫ 2π

0

f(r0, t− t′)dtdt′ = 2π

∫
f(r0, p)dp

• ∫ ∫
δrF10dtdt′ =

∫ ∫
δr′F10dtdt′:

∫ ∫ 2π

0

δrf(r0, t− t′)dtdt′ =

∫ ∫ ∑

k

ake
ir0ktf(r0, t− t′)dtdt′

=
∑

k

ak

∫ ∫
eir0k(p+t′)f(r0, p)dpdt′

=
∑

k

ak

∫
eir0kt′dt′

∫
eir0kpf(r0, p)dp

=
∑

k

ak2πδ(k)

∫
eir0kpf(r0, p)dp

= 2πa0

∫
f(r0, p)dp
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• ∫ ∫
δṙF11dtdt′ = − ∫ ∫

δṙ′F11dtdt′:

∫ ∫ 2π

0

δṙf(r0, t− t′)dtdt′ =

∫ ∫ ∑

k

akkir0e
ir0ktf(r0, t− t′)dtdt′

=
∑

k

akkir0

∫ ∫
eir0k(p+t′)f(r0, p)dpdt′

=
∑

k

akkir0

∫
eir0kt′dt′

∫
eir0kpf(r0, p)dp

=
∑

k

akkir02πδ(k)

∫
eir0kpf(r0, p)dp

= 0

• ∫ ∫
δr2F20dtdt′ =

∫ ∫
δr′2F20dtdt′ :

∫ ∫ 2π

0

δr2f(r0, t− t′)dtdt′ =

∫ ∫ ∑

k

∑

k′
akak′e

ir0(k+k′)tf(r0, t− t′)dtdt′

=
∑

k

∑

k′
akak′

∫ ∫
eir0(k+k′)(p+t′)f(r0, p)dpdt′

=
∑

k

∑

k′
akak′

∫
eir0(k+k′)t′dt′

∫
eir0(k+k′)pf(r0, p)dp

=
∑

k

∑

k′
akak′2πδ(k + k′)

∫
eir0(k+k′)pf(r0, p)dp

=
∑

k

a+ka−k2π

∫
f(r0, p)dp

= 2π
∑

k

|ak|2
∫

f(r0, p)dp.

• ∫ ∫
F21dtdt′ :

∫ ∫ 2π

0

δrδr′f(r0, t− t′)dtdt′ =

∫ ∫ ∑

k

∑

k′
akak′e

ir0(kt+t′k′)f(r0, t− t′)dtdt′

=
∑

k

∑

k′
akak′

∫ ∫
eir0k(p+t′)eir0k′t′f(r0, p)dpdt′

=
∑

k

∑

k′
akak′

∫
eir0(k+k′)t′dt′

∫
eir0kpf(r0, p)dp

=
∑

k

∑

k′
akak′2πδ(k + k′)

∫
eir0kpf(r0, p)dp

=
∑

k

a+ka−k2π

∫
eir0kpf(r0, p)dp

= 2π
∑

k

|ak|2
∫

eir0kpf(r0, p)dp.
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• ∫ ∫
δr′δṙ′F22dtdt′ = − ∫ ∫

δrδṙF22dtdt′ :

∫ ∫ 2π

0

δrδṙf(r0, t− t′)dtdt′ =

∫ ∫ ∑

k

∑

k′
akak′ir0keir0(k+k′)tf(r0, t− t′)dtdt′

=
∑

k

∑

k′
akak′ir0k

∫ ∫
eir0(k+k′)(p+t′)f(r0, t− t′)dtdt′

=
∑

k

∑

k′
akak′ir0k

∫
eir0(k+k′)t′dt′

∫
eir0(k+k′)pf(r0, p)dp

=
∑

k

∑

k′
akak′ir0k2πδ(k + k′)

∫
eir0(k+k′)pf(r0, p)dp

= 0.

• ∫ ∫
δrδṙ′F23dtdt′ = − ∫ ∫

δr′δṙF23dtdt′ :

∫ ∫ 2π

0

δr′δṙf(r0, t− t′)dtdt′ =

∫ ∫ ∑

k

∑

k′
akak′ir0k

′eir0(kt′+k′t)f(r0, t− t′)dtdt′

=
∑

k

∑

k′
akak′ir0k

′
∫ ∫

eir0(k′p+k′t′+kt′)f(r0, t− t′)dpdt′

=
∑

k

∑

k′
akak′ir0k

∫
eir0(k+k′)t′dt′

∫
eir0k′pf(r0, p)dp

=
∑

k

∑

k′
akak′ir0k2πδ(k + k′)

∫
eir0(k+k′)pf(r0, p)dp

=
∑

k

2π|ak|2ir0k

∫
eir0kpf(r0, p)dp

• ∫ ∫
F24dtdt′ :

∫ ∫ 2π

0

δṙδṙ′f(r0, t− t′)dtdt′ =

∫ ∫ ∑

k

∑

k′
akak′i

2r2
0kk′eir0(kt+kt′)f(r0, t− t′)dtdt′

=
∑

k

∑

k′
akak′(−1)r2

0kk′
∫ ∫

eir0(k(p+t′)+k′t′)f(r0, p)dpdt′

=
∑

k

∑

k′
akak′(−1)r2

0kk′
∫

eir0t′(k+k′)dt′
∫

eir0kpf(r0, p)dp

=
∑

k

∑

k′
akak′(−1)r2

0kk′2πδ(k + k′)
∫

eir0kpf(r0, p)dp

=
∑

k

2π|ak|2r2
0k

2

∫
eir0kpf(r0, p)dp.
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We can express
∫ ∫ 2π

0
G(t′, t)dt′dt in terms of the Fourier coefficients as:

∫ ∫ 2π

0

G(t′, t)dt′dt = 2π

∫ 2π

0

F00dp + 4πa0

∫ 2π

0

F10dp + 4π
∑

k

|ak|2
∫ 2π

0

F20dp +

2π
∑

k

|ak|2
∫ 2π

0

F21e
ir0kpdp + 4π

∑

k

|ak|2ir0k

∫ 2π

0

F23e
ir0kpdp +

2π
∑

k

|ak|2k2r2
0

∫ 2π

0

F24e
ir0kpdp

= 2π

∫ 2π

0

F00dp + a04π

∫ 2π

0

F10dp +

∑

k

|ak|22π
{[

2

∫ 2π

0

F20dp +

∫ 2π

0

F21e
ir0kpdp

]
+

k

[
2ir0k

∫ 2π

0

F23e
ir0kpdp

]
+ k2

[
2π

∫ 2π

0

F24e
ir0kpdp

]}
. (24)

Combining the length term (17), the area term (18), and the quadratic term (24), the active
contour energy can be written as:

E(Γ) =

[
λC2πr0 + αCπr2

0 −
βC

2
2π

∫ 2π

0

F00dp

]

+a0

[
λC2π + αC2πr0 − βC

2
4π

∫ 2π

0

F10dp

]

+
∑

k

|ak|2
(
λCπr0k

2 + αCπ

−βC

2
2π

{[
2

∫ 2π

0

F20dp +

∫ 2π

0

F21e
ir0kpdp

]

+k

[
2ir0

∫ 2π

0

F23e
ir0kpdp

]
+ k2

[
r2
0

∫ 2π

0

F24e
ir0kpdp

]})
. (25)

B Other approaches for tree extraction

Here we review earlier publications on the subject. The first aerial image was acquired in
Paris in 1856 by F. Tournachon. The image was taken from an air-balloon and the altitude
was rather low. After 150 years, the fields have benefitted from space technology making use
of modern satellite navigation technology (such as GPS) and high performance computers to
improve their capabilities in many respects.

The problem of locating, counting or delineating individual trees in high resolution aerial
images has been studied in several paper. Gougeon introduced a specialized knowledge about
the object during segmentation (rule-based segmentation) [17] and presented a contour based
feature extraction to utilize for delineation of single tree crowns, the contour is defined as
a delimiter in the image, between the objects (tree crowns) and the background, a valley
is a delimiter between two different image objects (valley following algorithm) [18]. Larsen
introduced an algorithm based on template matching for Spruce top detection. He computed
the model from the tree and its shadow, and reached good results with this method [26, 27].
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Several contour based methods were defined for the problem of counting and locating trees.
Brandtberg et al. presented a new approach. They extracted the contour and calculated the
curvature over the contour. Then they matched circles to the contour with the aid of the
curvature [5]. Bacher et al. introduced another contour-based method on very-high resolution
aerial images, they extracted the skeleton of the trees during the spring [2]. Andersen et
al. presented a morphological-based approach combined with a top-hat transformation for
segmentation of individual trees [1]. Perrin et al. introduced a stochastic method with marked
point process [36]. They define a disk model with variable radius and orientation. They use
Reversible Jump Markov Chain Monte Carlo dynamics and a simulated annealing to get the
maximum a posteriori estimator.
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Statistical Shape Knowledge into the Mumford-Shah Functional. International Journal
of Computer Vision, 50(3):295–313, 2002.

[15] A. Foulonneau, P. Charbonnier, and F. Heitz. Geometric Shape Priors for Region-Based
Active Contours. In IEEE Conf. ICIP 2003, Barcelona, Spain, Sept 2003.

[16] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions and the Bayesian
restoration of images. IEEE Trans. Patt. Anal. Mach. Intell., 6:721–741, 1984.

[17] F.A. Gougeon. A Crown-following Approach to the Automatic Delineation of Individual
Tree Crowns in High Spatial Resolution Aerial Images. Canadian Journal of Remote
Sensing, 21(3), pages 274–284, 1995.

[18] F.A. Gougeon. Automatic Individual Tree Crown Delineation using a Valley-following
Algorithm and Rule-based System. In D.A. Hill and D.G. Leckie, editors, Proc. of the
International Forum on Automated Interpretation of High Spatial Resolution Digital Im-
agery for Forestry, pages 11–23, Victoria, British Columbia, Canada, Febr 1998.

[19] U. Grenander. General Pattern Theory. Oxford University Press, Oxford, UK, 1993.

[20] U. Grenander and M. Miller. Representations of knowledge in complex systems. Journal
of the Royal Statistical Society, series B, 56:549–603, 1994.

[21] R. Huang, V. Pavlovic, and D. N. Metaxas. A graphical model framework for coupling
MRFs and deformable models. In Proc. IEEE CVPR, Washington, DC, USA, 2004.

[22] S. Jehan-Besson, M. Barlaud, and G. Aubert. DREAM2S: Deformable regions driven by an
Eulerian accurate minimization method for image and video segmentation. International
Journal of Computer Vision, 53:45–70, 2003.

[23] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active Contour Models. International
Journal of Computer Vision, 1(4):321–331, 1988.

[24] Z. Kato, M. Berthod, and J. Zerubia. A hierarchical Markov random field model and
multi-temperature annealing for parallel image classification. Computer Vision, Graphics
and Image Processing: Graphical Models and Image Processing, 58(1):18–37, January
1996.

[25] S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, and A.Yezzi. Gradient flows and
geometric active contour models. In Proc. ICCV, Boston, MA, USA, 1995.

[26] M. Larsen. Finding an optimal match window for Spruce top detection based on an optical
tree model. In D.A. Hill and D.G. Leckie, editors, Proc. of the International Forum on
Automated Interpretation of High Spatial Resolution Digital Imagery for Forestry, pages
55–66, Victoria, British Columbia, Canada, Feb. 1998.

27



[27] M. Larsen. Individual Tree Top Position Estimation by Template Voting. In Proc. of the
Fourth International Airborne Remote Sensing Conference and Exhibition / 21st Canadian
Symposium on Remote Sensing, volume 2, pages 83–90, Ottawa, Ontario, June 1999.

[28] M. E. Leventon, W. E. L. Grimson, and O. Faugeras. Statistical shape influence in
geodesic active contours. In Proc. IEEE CVPR, volume 1, pages 316–322, Hilton Head,
SC, USA, 2000.

[29] R. Malladi, J. A. Sethian, and B. C. Vemuri. Shape modeling with front propagation: A
level set approach. IEEE Trans. Patt. Anal. Mach. Intell., 17:158–175, 1995.

[30] D.N. Metaxas. Physics-based Deformable Models: Applications to Computer Vision,
Graphics and Medical Imaging. Kluwer, 1997.

[31] M. Miller and L. Younes. Group actions, homeomorphisms, and matching: A general
framework. International Journal of Computer Vision, 41:61–84, 2002.

[32] M. I. Miller, U. Grenander, J. A. O’Sullivan, and D. L. Snyder. Automatic target recog-
nition organized via jump-diffusion algorithms. IEEE Transactions on Image Processing,
6(1):157–174, January 1997.

[33] D. Mumford and J. Shah. Optimal Approximation by Piecewise Smooth Functions and
Associated Variational Problems. Comm. Pure Appl. Math., 1989.

[34] S. Osher and J. A. Sethian. Fronts propagating with curvature dependent speed: Algo-
rithms based on Hamilton-Jacobi formulations. J. Comp. Phys., 79:12–49, 1988.

[35] N. Paragios and R. Deriche. Geodesic active regions: A new framework to deal with
frame partition problems in computer vision. Journal of Visual Communication and Image
Representation, 13:249–268, 2002.

[36] G. Perrin, X. Descombes, and J. Zerubia. Tree crown extraction using marked point
processes. In EUSIPCO, Vienna, Austria, Sep. 2004.

[37] M. Rochery, I. Jermyn, and J. Zerubia. Higher Order Active Contours and their Applica-
tion to the Detection of Line Networks in Satellite Imagery. In 2nd IEEE Intl. Workshop
on VLSM, Nice, France, Oct 2003.

[38] M. Rousson and N. Paragios. Shape priors for level set representations. In Proc. ECCV,
Lecture Notes in Computer Science, pages 78–92, Copenhagen, Denmark, 2002. Springer.

[39] J. A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge Monograph on
Applied and Computational Mathematics. Cambridge University Press, Cambridge, U.K.,
2nd edition, 1999.

[40] K. Siddiqi and B. B. Kimia. A shock grammar for recognition. In CVPR ’96, San
Francisco, CA, USA, pages 507–513, 1996.

[41] R. Veltkamp and M. Hagedoorn. State-of-the-art in shape matching. Technical Report
UU-CS-1999-27, Utrecht University, the Netherlands, 1999.

28


