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Recommender system -
background

 Recommends items (music, movie, book)
for users based on their preferences
(ratings)

* There are many web shops (e.g. Amazon)
that use these type of algorithms

* You rate some things, that you like/dislike
and the system recommends ,other good
things” for you

« Common approaches is the user based
Collaborative Filtering methods



Collaborative Filtering (CF) -
background

* Needs a correlation or similarity
measurement between the users

« The recommendation based on the
weighted summarized ratings, using this
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—r: rating
— s: similarity



Evaluation of recommender
systems - background

* There are some manually labeled
benchmark datasets (e.g. BookCrossing,
Movielens, ...)

— One part of these databases (train) are for

fine tune the parameters (learning). E.g.
building the overlay

— The remaining part for test or evaluation
(computing the differences between the
expected and the predicted votes)

 The commonly used evaluation metric is
the MAE (Mean Absolute Error)



Decentralization
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* Centralized case
— Available the full dataset
— precise, need power servers, storage devices

— N, Is the set of all users

* Decentralized and Distributed (P2P) case
— N,: the neighbor set of the user u (with size k)

— Find the most relevant users = manage an
overlay network

— Too many neighbors can make pretty much
load
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Our task

 Make an overlay management service
which

— Supports CF method

— Close to the optimal recommendation in term
of the performance and the load of the
network (trade-off)

* There is no this type of comparison of
distributed recommender systems



Dataset properties

» Base statistics and properties of the
three used recommender datasets:

Movielens Jester  |BookCrossing
# users 71,567 73,421 77.806
# items 10,681 100 185,974
size of train| 9,301,274 3,695,834 397,011
sparsity 1.2168% | 50.3376% 0.0027%
size of eval 698,780 440,526 36,660
eval/train 7.5127%|( 11.9195% 9.2340%
# 1items > 20 15 |
rate set 1,...,5|—10,...,10 1,...,10
MAE(med) 0.93948 4.52645 2.43277

— The train/test cutting based on rating occurrences by users




Dataset properties (2)

* Power-law in-degree distribution by
the perfect KNN overlay network

_______________________
k=100

* It makes too much load



P2P overlay management
algorithms
The algorithms build and manage the
user-similarity based overlay

On the top of this overlay works a user-
based CF algorithm

- we focus on overlay management

We use the earlier mentioned aggregation
method, and the Cosine similarity measure

We would like to keep the load low



P2P overlay management
algorithms (2)

* Qur basic algorithm

Algorithm 1 Random Nodes based Overlay Management
Parameters: F£: the size of view; r: the number of randomly generated nodes
I. while true do
samples +— getRandomPeers(r)
for . = 1 tor do
peer «— get(samples, i)
peer Descriptor «— descriptor(peer)
insert(view, peer Descriptor)
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— view: a bounded priority queue for the neighbors and
contains descriptors

— random peer selection from the network by the
NewsCast



P2P overlay management
algorithms (3)

* BuddyCast (baseline)
— Buddy, candidate, stop, random lists

 KNN graph from random samples
— Random node insertion into view list
 KNN graph by T-Man (merge view lists)
— Global
— View
— Proportional
— Best



T-Man based algorithms

Global: randomly selected peer for the
communication by the NewsCast from the whole
network

View: uniformly selected peer from the view of
the current node

Proportion: like the View, but we defined the
probability distribution as:

Selj —|— 1

Pij = 1
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Best: we selected the most similar node from the

view for the communication




Results (algorithm settings)

* BuddyCast:
— Buddly list size: 100
— Candidate list size: 100
— Random list size: 10
— Block list size: 100
— Exploration factor: 0.5

* Qur algorithms:
— View list size: 100
— Random peer selection size: 100



Overall results

The performance of the

algorithms measured in MAE

MAE

(mean absolute error), and

the cost of the load

The x-axis represents the

convergence speed
measured in cycles
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Results (the r parameter)

« Given some random samples from the network
to

— Avoid the local optima
— Increase the convergence speed

MovieLens, random view update (k=1007 MovigLens, T-Man (k=100
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 The effect of ron the other databasegﬁand
settings is similar



Keep the minimum

* If we know the cycle number (c) of the
minimum, we can keep the algorithm at
this point. Just choose the top k similar

peer from the c*r
random samples
(it does not make
extra load). ©
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