Overlay Management for Fully Distributed User-based Collaborative Filtering

Róbert Ormándi, István Hegedűs, Márk Jelasity

University of Szeged 2010

Recommender system - background

- Recommends items (music, movie, book) for users based on their preferences (ratings)
- There are many web shops (e.g. Amazon) that use these type of algorithms
- You rate some things, that you like/dislike and the system recommends "other good things" for you
- Common approaches is the user based Collaborative Filtering methods

Collaborative Filtering (CF) - background

- Needs a correlation or similarity measurement between the users
- The recommendation based on the weighted summarized ratings, using this function: $\sum_{v \in N} s_{u,v} (r_{v,i} \bar{r}_v)$

$$\hat{r}_{u,i} = \frac{\sum_{v \in N_u} s_{u,v} (r_{v,i} - r_v)}{\sum_{v \in N_u} |s_{u,v}|} + \bar{r}_u$$

- r: rating
- s: similarity

Evaluation of recommender systems - background

- There are some manually labeled benchmark datasets (e.g. BookCrossing, MovieLens, ...)
 - One part of these databases (train) are for fine tune the parameters (learning). E.g. building the overlay
 - The remaining part for test or evaluation (computing the differences between the expected and the predicted votes)
- The commonly used evaluation metric is the MAE (Mean Absolute Error)

Decentralization

$$\hat{r}_{u,i} = \frac{\sum_{v \in N_u} s_{u,v} \left(r_{v,i} - \bar{r}_v \right)}{\sum_{v \in N_u} |s_{u,v}|} + \bar{r}_u$$

- Centralized case
 - Available the full dataset
 - precise, need power servers, storage devices
 - $-N_u$: is the set of all users
- Decentralized and Distributed (P2P) case
 - $-N_u$: the neighbor set of the user u (with size k)
 - Find the most relevant users → manage an overlay network
 - Too many neighbors can make pretty much load

Our task

- Make an overlay management service which
 - Supports CF method
 - Close to the optimal recommendation in term of the performance and the load of the network (trade-off)
- There is no this type of comparison of distributed recommender systems

Dataset properties

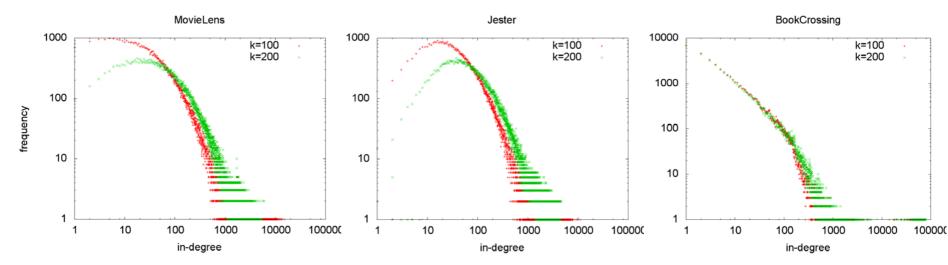
 Base statistics and properties of the three used recommender datasets:

	MovieLens	Jester	BookCrossing
# users	71,567	73,421	77,806
# items	10,681	100	185,974
size of train	9,301,274	3,695,834	397,011
sparsity	1.2168%	50.3376%	0.0027%
size of eval	698,780	440,526	36,660
eval/train	7.5127%	11.9195%	9.2340%
# items \geq	20	15	1
rate set	$1,\ldots,5$	$-10,\ldots,10$	$1,\ldots,10$
MAE(med)	0.93948	4.52645	2.43277

The train/test cutting based on rating occurrences by users

Dataset properties (2)

 Power-law in-degree distribution by the perfect kNN overlay network



It makes too much load

P2P overlay management algorithms

- The algorithms build and manage the user-similarity based overlay
- On the top of this overlay works a userbased CF algorithm
- \rightarrow we focus on overlay management
- We use the earlier mentioned aggregation method, and the Cosine similarity measure
- We would like to keep the load low

P2P overlay management algorithms (2)

• Our basic algorithm

Algorithm 1 Random Nodes based Overlay Management

Parameters: k: the size of view; r: the number of randomly generated nodes

- 1. while true do
- 2. $samples \leftarrow getRandomPeers(r)$
- 3. for i = 1 to r do
- 4. $peer \leftarrow get(samples, i)$
- 5. $peerDescriptor \leftarrow descriptor(peer)$
- 6. insert(*view*, *peerDescriptor*)
- view: a bounded priority queue for the neighbors and contains descriptors
- random peer selection from the network by the NewsCast

P2P overlay management algorithms (3)

- BuddyCast (baseline)
 Buddy candidate stop rand
 - Buddy, candidate, stop, random lists
- kNN graph from random samples
 Random node insertion into view list
- kNN graph by T-Man (merge view lists)
 - Global
 - View
 - Proportional
 - Best

T-Man based algorithms

- <u>Global:</u> randomly selected peer for the communication by the NewsCast from the whole network
- <u>View</u>: uniformly selected peer from the view of the current node
- Proportion: like the View, but we defined the probability distribution as:

$$p_{i,j} = \frac{\frac{1}{sel_j + 1}}{\sum_{k \in View_i} \frac{1}{sel_k + 1}}$$

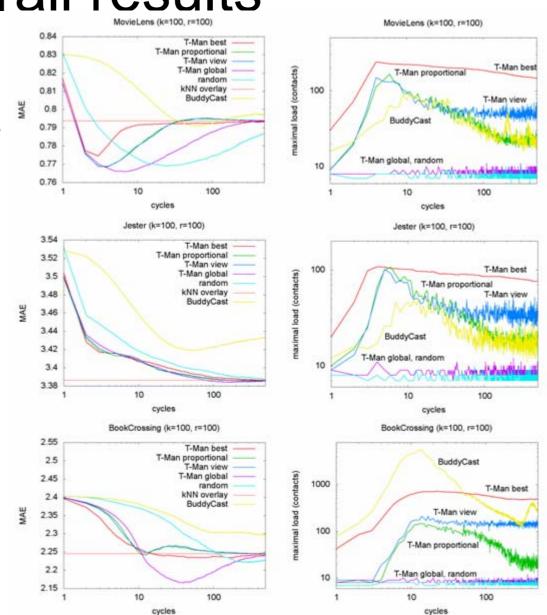
<u>Best:</u> we selected the most similar node from the view for the communication

Results (algorithm settings)

- BuddyCast:
 - Buddy list size: 100
 - Candidate list size: 100
 - Random list size: 10
 - Block list size: 100
 - Exploration factor: 0.5
- Our algorithms:
 - View list size: 100
 - Random peer selection size: 100

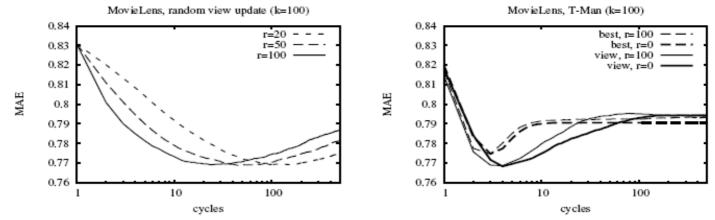
Overall results

- The performance of the algorithms measured in MAE (mean absolute error), and the cost of the load
- The x-axis represents the convergence speed measured in cycles



Results (the r parameter)

- Given some random samples from the network to
 - Avoid the local optima
 - Increase the convergence speed



The effect of r on the other databases and settings is similar

Keep the minimum

 If we know the cycle number (c) of the minimum, we can keep the algorithm at this point. Just choose the top k similar peer from the c*r MovieLens (k=100, r=100) 0.84 T-Man best random samples T-Man proportional 0.83 T-Man view T-Man global (it does not make 0.82 random kNN overlay 0.81 BuddyCast extra load). 😳 ИAE

