Asynchronous Peer-to-peer Data Mining with Stochastic Gradient Descent

Róbert Ormándi, István Hegedűs and Márk Jelasity

EuroPar-2011

Motivation

- There are P2P algorithms that compute statistics on a distributed dataset
 - Min, max, avg ...
- Our goal: using sophisticated machine learning (ML) algorithms in a P2P way
 - For supporting
 - spam filtering
 - opinion mining
 - personalized rank, search and recommendation
 - That is simple, cheap and robust
 - We use gossip-based techniques

Our System and Data Model

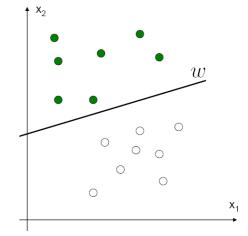
Given a network of computers (nodes)

The database is distributed in the network

- Every node has exactly one training sample → training set size = network size
- Every node can get the address of a randomly selected node from the network
 - using the NewsCast peer sampling service
- Every node can send messages to another node if its address is available

Every node should use locally the computed model

Classification



Binary classification

- Given $(x_1, y_1), \ldots, (x_n, y_n)$ training samples, where $x_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$
- Task: looking for a model $f : \mathbb{R}^d \to \{-1, 1\}$ that correctly separates the samples from different classes \rightarrow minimization problem of the formula

$$\min_{f} \sum_{i} (f(x_i) - y_i)^2 \quad i = 1, \dots, n$$

In the linear case^{*} the model is a *d* dimensional hyperplane (*w*)

Stochastic Gradient Descent is such a kind of method, that can find this model

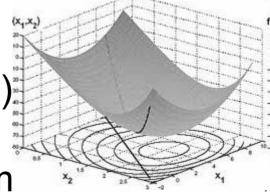
Stochastic Gradient Descent (SGD) centralized case

The SGD is an optimization algorithm for finding the minimum of an objective function $((f(x_i) - y_i)^2)$ using gradient steps

ZEGEDIENSIS Research Group on

CIENTIARUM SZEC

/ERSITAS



Iteratively chooses a single uniform random sample from the training set for updating the model based on the gradient step

Why SGD: Uses only one training sample at a time instead of the whole training set

Stochastic Gradient Descent (SGD) centralized case

Assume the error is defined as

Then the gradient is

So the gradient update is

$$Err(w) = \sum_{i=1}^{n} Err(w, x_i)$$

$$\frac{\partial Err(w)}{\partial w} = \sum_{i=1}^{n} \frac{\partial Err(w, x_i)}{\partial w}$$

$$w(t+1) = w(t) - \lambda(t) \sum_{i=1}^{n} \frac{\partial Err(w, x_i)}{\partial w}$$

But SGD makes update
based on only one sample
$$w(t + t)$$

$$w(t+1) = w(t) - \lambda(t) \frac{\partial Err(w, x_i)}{\partial w}$$

P2P SGD

- Basic idea: models jump from node to node and they update themselves based
 - - sampling then our SGD models will converge to the optimum

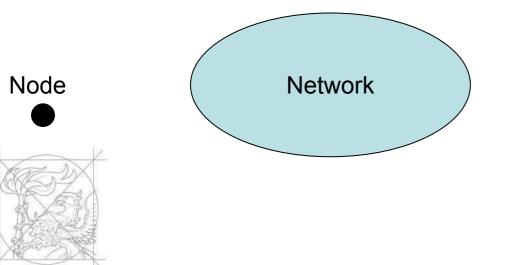
 Privacy aspect: the data never leaves the node, just the model

Algorithm 1 P2P Stochastic Gradient Descent Algorithm

1: initModel()

- 3: wait(Δ)
- 4: $p \leftarrow \text{selectPeer}()$
- 5: send currentModel to p

- 6: **procedure** onReceiveModel(m)
- 7: $m \leftarrow \text{updateModel}(m)$
- 8: currentModel $\leftarrow m$
- 9: modelQueue.add(m)

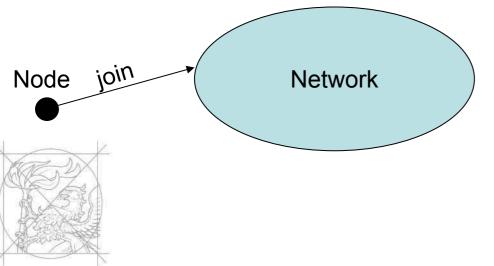


Algorithm 1 P2P Stochastic Gradient Descent Algorithm

1: initModel()

- 3: wait(Δ)
- $4: \quad p \leftarrow \text{selectPeer}()$
- 5: send currentModel to p

- 6: **procedure** onReceiveModel(m)
- 7: $m \leftarrow \text{updateModel}(m)$
- 8: currentModel $\leftarrow m$
- 9: modelQueue.add(m)

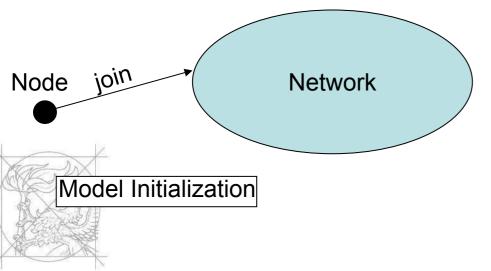


Algorithm 1 P2P Stochastic Gradient Descent Algorithm

1: initModel()

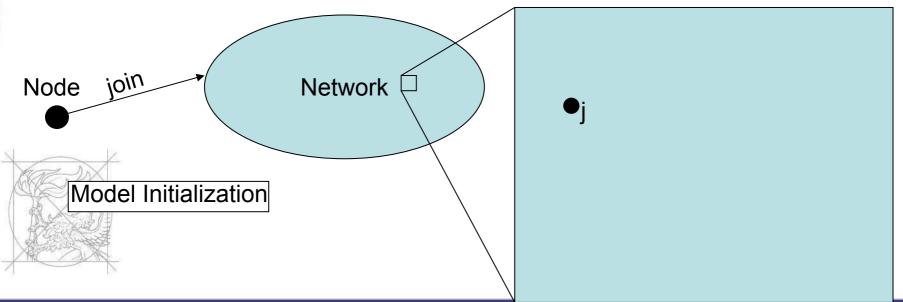
- 3: wait(Δ)
- $4: \qquad p \leftarrow \text{selectPeer}()$
- 5: send currentModel to p

- 6: **procedure** onReceiveModel(m)
- 7: $m \leftarrow \text{updateModel}(m)$
- 8: currentModel $\leftarrow m$
- 9: modelQueue.add(m)



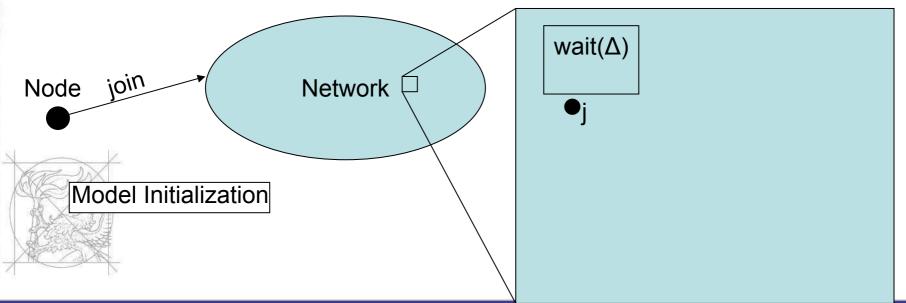
- 1: initModel()
- 2: **loop**
- 3: wait(Δ)
- $4: \qquad p \leftarrow \text{selectPeer}()$
- 5: send currentModel to p

- 6: **procedure** onReceiveModel(m)
- 7: $m \leftarrow \text{updateModel}(m)$
- 8: currentModel $\leftarrow m$
- 9: modelQueue.add(m)



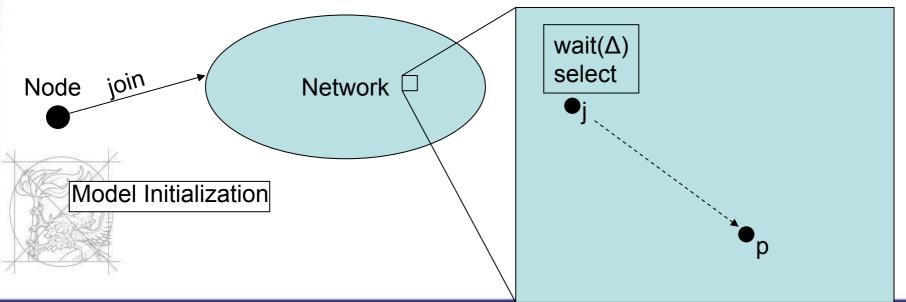
- 1: initModel()
- 2: **loop**
- 3: wait(Δ)
- $4: \qquad p \leftarrow \text{selectPeer}()$
- 5: send currentModel to p

- 6: **procedure** onReceiveModel(m)
- 7: $m \leftarrow \text{updateModel}(m)$
- 8: currentModel $\leftarrow m$
- 9: modelQueue.add(m)



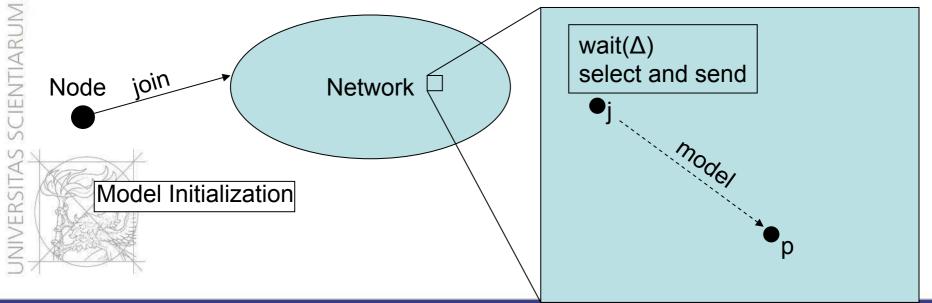
- 1: initModel()
- 2: **loop**
 - 3: wait(Δ)
- $4: \qquad p \leftarrow \text{selectPeer}()$
- 5: send currentModel to p

- 6: **procedure** onReceiveModel(m)
- 7: $m \leftarrow \text{updateModel}(m)$
- 8: currentModel $\leftarrow m$
- 9: modelQueue.add(m)



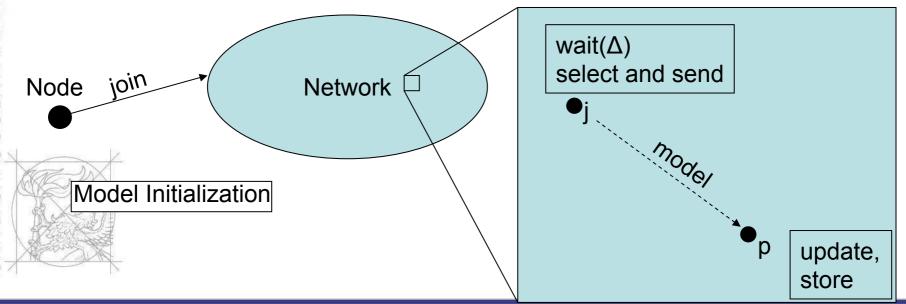
- 1: initModel()
- 2: **loop**
- 3: wait(Δ)
- $4: \qquad p \leftarrow \text{selectPeer}()$
- 5: send currentModel to p

- 6: **procedure** onReceiveModel(m)
- 7: $m \leftarrow \text{updateModel}(m)$
- 8: currentModel $\leftarrow m$
- 9: modelQueue.add(m)



- 1: initModel()
- 2: **loop**
- 3: wait(Δ)
- $4: \qquad p \leftarrow \text{selectPeer}()$
- 5: send currentModel to p

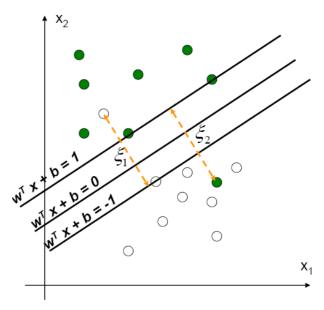
- 6: **procedure** onReceiveModel(m)
- 7: $m \leftarrow \text{updateModel}(m)$
- 8: currentModel $\leftarrow m$
- 9: modelQueue.add(m)



Support Vector Machines (SVM) through SGD

Pegasos SVM

- SGD based ML algorithm
- It is looking for a separating hyperplane (w) that separates examples of the two classes and maximizes the margin



$$\min_{w,b,\xi_i} \quad \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i$$

s.t. $y_i(w^T x_i + b) \ge 1 - \xi_i \text{ and } \xi_i \ge 0 \quad (\forall i: 1 \le i \le n)$

Algorithm 1 P2P Stochastic Gradient Descent Algorithm

1: initModel()

- 3: wait(Δ)
- 4: $p \leftarrow \text{selectPeer}()$
- 5: send currentModel to p

- 6: **procedure** onReceiveModel(m)
- 7: $m \leftarrow \text{updateModel}(m)$
- 8: currentModel $\leftarrow m$
- 9: modelQueue.add(m)
- Define updateModel and initModel methods for different machine learning algorithms
- For Pegasos: Algorithm 2 P2Pegasos 1: procedure UPDATEMODEL(m) $\eta \leftarrow 1/(\lambda \cdot m.t)$ 2: 9: procedure INITMODEL 3: if $y \langle m.w, x \rangle < 1$ then $m.w \leftarrow (1 - \eta\lambda)m.w + \eta yx$ $m.t \leftarrow 0$ 4: 10: $m.w \leftarrow (0,\ldots,0)^T$ 11: else 5: $m.w \leftarrow (1 - \eta \lambda)m.w$ 12:send model(m) to self 6: 7: $m.t \leftarrow m.t + 1$ return m8:

7:

8:

g٠

Algorithm 1 P2P Stochastic Gradient Descent Algorithm

1: initModel()

2: **loop**

- 3: wait(Δ)
- 4: $p \leftarrow \text{selectPeer}()$
- 5: send currentModel to p

 $m \leftarrow updateModel(m)$ currentModel $\leftarrow m$ modelQueue.add(m)

6: procedure ONRECEIVEMODEL(m)

- Define updateModel and initModel methods for different machine learning algorithms
- For Pegasos: Algorithm 2 P2Pegasos 1: procedure UPDATEMODEL(m) $\eta \leftarrow 1/(\lambda \cdot m.t)$ 2: 9: procedure INITMODEL 3: if $y \langle m.w, x \rangle < 1$ then $m.w \leftarrow (1 - \eta\lambda)m.w + \eta yx$ $m.t \leftarrow 0$ 4: 10: $m.w \leftarrow (0,\ldots,0)^T$ 11: else 5: $m.w \leftarrow (1 - \eta \lambda)m.w$ 12:send model(m) to self 6: $m.t \leftarrow m.t + 1$ 7: return m8:

Algorithm 1 P2P Stochastic Gradient Descent Algorithm

1: initModel()

2: **loop**

- 3: wait(Δ)
- 4: $p \leftarrow \text{selectPeer}()$
- 5: send currentModel to p

7: $m \leftarrow updateModel(m)$ 8: currentModel $\leftarrow m$ 9: modelQueue.add(m)

6: procedure onReceiveModel(m)

- Define updateModel and initModel methods for different machine learning algorithms
- For Pegasos: Algorithm 2 PsPegasos

3

5:

6:

1: procedure UPDATEMODEL(m) 2: $n \leftarrow 1/(\lambda \cdot m.t)$

$$\eta \leftarrow 1/(\lambda \cdot m.t)$$

if $u/m w x < 1$

: if
$$y \langle m.w, x \rangle < 1$$
 then

$$m.w \leftarrow (1 - \eta\lambda)m.w + \eta yx$$

$$\mathbf{else}$$

$$m.w \leftarrow (1 - \eta \lambda)m.w$$

7: $m.t \leftarrow m.t + 1$

8: return m

- 9: procedure initModel
- 10: $m.t \leftarrow 0$
- 11: $m.w \leftarrow (0, \dots, 0)^T$
- 12: send model(m) to self

- 1 initModel() 2: loop
- 3: wait(Δ)
- 4: $p \leftarrow \text{selectPeer}()$
- 5: send currentModel to p

- 6: **procedure** onReceiveModel(m)
- 7: $m \leftarrow \text{updateModel}(m)$
- 8: currentModel $\leftarrow m$
- 9: modelQueue.add(m)
- Define updateModel and initModel methods for different machine learning algorithms
- For Pegasos: Algorithm 2 P2Pegasos 1: procedure UPDATEMODEL(m) $\eta \leftarrow 1/(\lambda \cdot m.t)$ 2: 9: procedure INITMODEL 3: if $y \langle m.w, x \rangle < 1$ then $m.w \leftarrow (1 - \eta\lambda)m.w + \eta yx$ $m.t \leftarrow 0$ 4: 10: $m.w \leftarrow (0,\ldots,0)^T$ 11: else 5: $m.w \leftarrow (1 - \eta \lambda)m.w$ 12:send model(m) to self 6: 7: $m.t \leftarrow m.t + 1$ return m8:

Algorithm 1 P2P Stochastic Gradient Descent Algorithm

- 1 initModel() 2: loop
- 3: wait(Δ)
- 4: $p \leftarrow \text{selectPeer}()$
- 5: send currentModel to p

- 6: **procedure** onReceiveModel(m)
- 7: $m \leftarrow \text{updateModel}(m)$
- 8: currentModel $\leftarrow m$
- 9: modelQueue.add(m)
- Define updateModel and initModel methods for different machine learning algorithms
- For Pegasos: Algorithm 2 P2Pegasos 1: procedure UPDATEMODEL(m)

5:

6:

2: $\eta \leftarrow 1/(\lambda \cdot m.t)$

- 3: **if** $y \langle m.w, x \rangle < 1$ **then** 4: $m.w \leftarrow (1 - n\lambda)m.w$
 - $m.w \leftarrow (1 \eta\lambda)m.w + \eta yx$
 - else

 $m.w \leftarrow (1 - \eta \lambda)m.w$

- 7: $m.t \leftarrow m.t + 1$
- 8: return m

- 9: procedure INITMODEL
- 10: $m.t \leftarrow 0$
- 11: $m.w \leftarrow (0, \dots, 0)^T$
- 12: send model(m) to self

- **Research Group on Artificial Intelligence** 1 (initModel() 6: procedure ONRECEIVEMODEL(m)loop 2: $m \leftarrow updateModel(m)$ 7: 3: $wait(\Delta)$ currentModel $\leftarrow m$ 8: 4: $p \leftarrow \text{selectPeer}()$ modelQueue.add(m)g٠ send current Model to p5:Define updateModel and initModel methods for different machine learning algorithms
- For Pegasos: Algorithm 2 PaPegasos 1: procedure UPDATEMODEL(m) $\eta \leftarrow 1/(\lambda \cdot m.t)$ 2: 9: procedure initModel 3: if $y \langle m.w, x \rangle < 1$ then $m.w \leftarrow (1 - \eta\lambda)m.w + \eta\gamma x$ $m.t \leftarrow 0$ 4: 10:11: $m.w \leftarrow (0,\ldots,0)^T$ else 5: 12:send model(m) to self 6: $m.w \leftarrow (1 - \eta \lambda)m.w$ $m.t \leftarrow m.t + 1$ 7: return m8:

Local Prediction

Every node has a bounded queue of the last few received models for making prediction

- Using a single model

- 1: procedure PREDICT(x)
- 2: $w \leftarrow currentModel$
- 3: **return** sign $(\langle w, x \rangle)$

- Using multiple models (majority voting)

- 4: **procedure** VOTEDPREDICT(x)
- 5: $pRatio \leftarrow 0$

7:

8:

9:

- 6: **for** $m \in \text{modelQueue } \mathbf{do}$
 - if $\operatorname{sign}(\langle m.w, x \rangle) \ge 0$ then
 - $\mathrm{pRatio} \leftarrow \mathrm{pRatio} + 1$
 - return sign(pRatio/modelQueue.size()-0.5)

Communication Cost

- The cost of communication is exactly the same as the cost of other gossip based algorithms
 - Every node sends a message (model) to a uniform randomly selected node in each Δ time period
 - -O(n) in the network
 - -O(1) for a node
 - It includes the cost of peer sampling service as well

Algorithm Summary

- Random walk based P2P SGD method
 - Sending model instead of selecting sample
- Nodes collect model(s)
 - Simple and voted prediction
- Local prediction
 - No extra communication cost
 - Each node runs the same algorithm
- Asynchronous

Experimental Setup

PeerSim as a simulation environment NewsCast for peer sampling service The 10 latest models for Voting prediction Baselines: Pegasos, SVMLight

- Datasets: Iris, Reuters, SpamBase, Malicious
- Scenarios:
 - No failure
 - Drop only: 0.5 probability

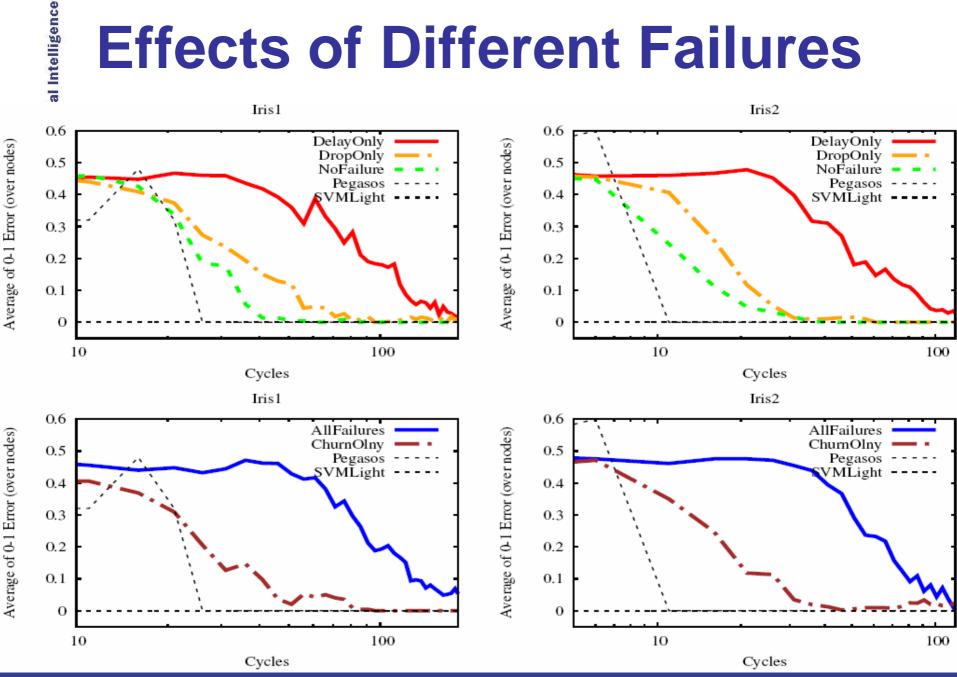
Delay only: uniform random from [Δ, 10Δ]
Churn only: from approx. Log-normal dist.
All failures

Database Properties

	Iris1	Iris2	Irirs3	Reuters	SpamBase	Malicious10
Training set size	90	90	90	2000	4140	2155622
Test set size	10	10	10	600	461	240508
Number of features	4	4	4	9947	57	10
Classlabel ratio	50/50	50/50	50/50	1300/1300	1813/2788	792145/1603985
Pegasos 20000 iter.	0	0	0	0.025	0.111	$0.080 \ (0.081)$
Pegasos 1000 iter.	0	0	0.4	0.057	0.137	$0.095\ (0.060)$
$\operatorname{SVMLight}$	0	0	0.1	0.027	0.074	0.056~(-)

- Different types of datasets:
 - Small large num. of samples
 - Small large num. of features
- Split Iris and reduced Malicious features
- Performance of baseline algorithms

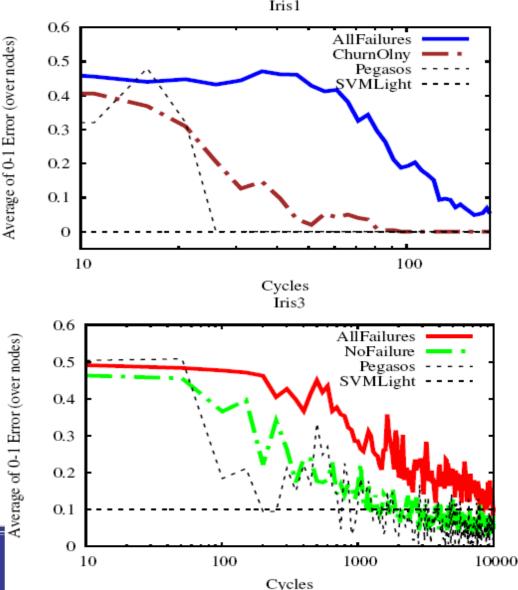
Effects of Different Failures



Size vs. Learnability

No relation between DB size and learnability

Learnability
depends on DB
patterns rather
than the size



Research Group on Artificial Intelligence *JEDIENSI* CIENTIARUM SZEC ERSITAS

Convergence

Clearly shows the correlation between model performance and similarity

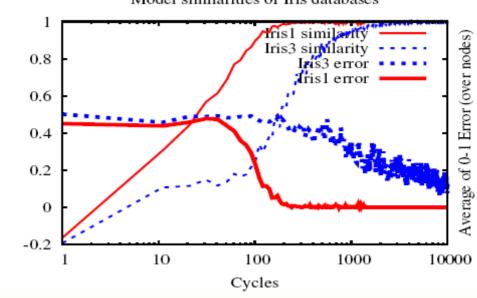
- The model similarity grows along with the performance Model similarities of Iris databases
 - the models converge to the same optimum rather than get only more similar

Artificial Intelligence

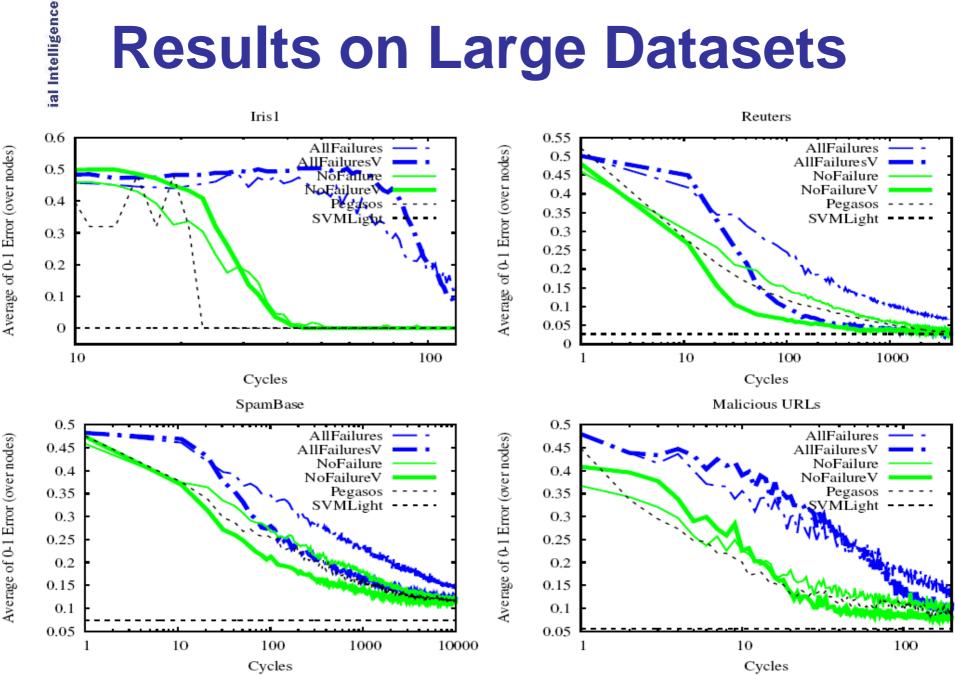
Research Group on

CIENTIARUM SZEGEDIENSIS

ERSITAS



Results on Large Datasets



Summary

- P2P SGD framework was presented P2P Pegasos SVM algorithm was implemented and tested on different datasets
- Almost the same performance in a P2P environment as in a centralized one

• The algorithm works well with extreme communication failures as well