Peer-to-Peer Multi-Class Boosting

István Hegedűs, Róbert Busa-Fekete, Róbert Ormándi, Márk Jelasity, Balázs Kégl

Motivation

- Machine Learning, Data Mining
 - Identifying representative patterns in data
 - Make compact representation of the data
- Classification
 - Separating different type of patterns to each other
 - Based on (hand-) labeled data
 - E.g. Spam detection, OCR, Speech recognition, NLP, Document classification, …

 We would like to use state of the art classification algorithms in large scale P2P environments on distributed data

Binary classification

Research Group on Artificial Intelligence

SEDIENSIS

SCIENTIARUM SZE

VERSITAS

- Given a set of training samples: $(x_1, y_1), \ldots, (x_n, y_n)$ where $x_i \in \mathbb{R}^d$

- Binary classification
 - Given a set of training samples: $(x_1, y_1), \ldots, (x_n, y_n)$ where $x_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$

Research Group on Artificial Intelligence 1 CIENTIARUM SZE 'FRSITAS

- Binary classification
 - Given $(x_1, y_1), \dots, (x_n, y_n)$ training samples, where $x_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$
 - Task: looking for a **model** $f: \mathbb{R}^d \to \{-1, 1\}$ that correctly separates the samples from different classes (minimizes the number of misclassifications)

$$\min_{f} \sum_{i} (f(x_i) - y_i)^2 \quad i = 1, \dots, n$$

Binary classification

Research Group on Artificial Intelligence

<u>SEDIENSIS</u>

CIENTIARUM SZE(

'FRSITAS

- Given $(x_1, y_1), \dots, (x_n, y_n)$ training samples, where $x_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$
- Task: looking for a model $f: \mathbb{R}^d \to \{-1, 1\}$

minimizes the error $\min_{f} \sum (f(x_i) - y_i)^2 \quad i = 1, \dots, n$

In linear case the model is a hyper-plane
$$(w)$$

Binary classification

Research Group on Artificial Intelligence

SCIENTIARUM SZE(

ERSITAS

- Given $(x_1, y_1), \ldots, (x_n, y_n)$ training samples, where $x_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$
- Task: looking for a model $f: \mathbb{R}^d \to \{-1, 1\}$ minimizes the error
 - $\min_{f} \sum_{i} (f(x_i) y_i)^2 \quad i = 1, \dots, n$
- In linear case the model is a hyper-plane (w)
- The label of a new instan-

Artificial Intelligence Research Group on II. VERSITAS SCIENTIARUM SZE

Not Linearly Separable Set

- What can we do?

Not Linearly Separable Set

Artificial Intelligence

Group on

Research

CIENTIARUM SZE

VERSITAS

- What can we do?
 - The linear model is

wrong

Not Linearly Separable Set

Artificial Intelligence

tesearch

CIENTIARUM SZE

/ERSITAS

- What can we do?
 - The linear model is
 - wrong
 - Use "boosted" linear models

Not Linearly Separable Set

ntelligenc

INTIARI

- What can we do?
 - The linear model is
 wrong
 - Use "boosted" linear models

 Improve the performance of the linear models through the boosting technique

- 1. Initializes equal weights for every sample
- 2. Classifies instances
- 3. Re-Weights instances

4. Jump to 2.

- 1. Initializes equal weights for every sample
- 2. Classifies instances
- 3. Re-Weights instances
- 4. Jump to 2.

- **Artificial Intelligence Research Group on** TENTIARUM SZE FRSITA
- 1. Initializes equal weights for every sample
- 2. Classifies instances
- 3. Re-Weights instances
- 4. Jump to 2.

- Artificial Intelligence Research Group on Ě TENTIARUM FRSITA
- 1. Initializes equal weights for every sample
- 2. Classifies instances
- 3. Re-Weights instances
- 4. Jump to 2.

- Initialize equal weights 1. for every sample
- **Classifies instances** 2.
- **Re-Weights instances** 3.
- 4. Jump to 2.

- Initialize equal weights 1. for every sample
 - **Classifies instances**
 - **Re-Weights instances**
- 4. Jump to 2.

System and Data Model

- Given a network of computers (peers or nodes)
- The database is distributed in the network
 - Every node has exactly one training sample → training set size = network size
- Every node can get the address of a randomly selected node from the network
 - using the NewsCast peer sampling service
- Every node can send messages to another node if its address is available

Finally every node can predict labels locally

- 1: $currentModel \leftarrow initModel()$
- 2: loop 3: wait
- 3: wait(Δ)
- 4: $p \leftarrow \text{selectPeer}()$
- 5: sendModel(p, currentModel)

- 6: procedure on ReceiveModel(m)
- 7: m.updateModel(x, y)
- 8: $currentModel \leftarrow m$

- 1: $currentModel \leftarrow initModel()$
- 2: loop 3: wai
- 3: wait(Δ)
- 4: $p \leftarrow \text{selectPeer}()$
- 5: sendModel(p, currentModel)

- 6: procedure on ReceiveModel(m)
- 7: m.updateModel(x, y)
- 8: $currentModel \leftarrow m$

- 1: $currentModel \leftarrow initModel()$
- 2: 3: loop
- $wait(\Delta)$
- 4: $p \leftarrow \text{selectPeer}()$
- 5:sendModel(p, currentModel)

- 6: procedure onReceiveModel(m)
- 7: m.updateModel(x, y)
- 8: $currentModel \leftarrow m$

- 1: $currentModel \leftarrow initModel()$
- 2: loop 3: wai
- 3: wait (Δ)
- 4: $p \leftarrow \text{selectPeer}()$
- 5: sendModel(p, currentModel)

- 6: procedure on ReceiveModel(m)
- 7: m.updateModel(x, y)
- 8: $currentModel \leftarrow m$

- 1: $currentModel \leftarrow initModel()$
- $\frac{2}{3}$: loop
- $wait(\Delta)$
- 4: $p \leftarrow \text{selectPeer}()$
- 5:sendModel(p, currentModel)

- 6: procedure onReceiveModel(m)
- 7: m.updateModel(x, y)
- 8: $currentModel \leftarrow m$

- 1: $currentModel \leftarrow initModel()$
- $\frac{2}{3}$: loop
- $wait(\Delta)$
- 4: $p \leftarrow \text{selectPeer}()$
- 5:sendModel(p, currentModel)

- 6: procedure onReceiveModel(m)
- 7: m.updateModel(x, y)
- 8: $currentModel \leftarrow m$

- Updating the models of the peers through gossiping that
- The models have to be updatable (online)
 → can be optimized by stochastic gradient descent method
- The models converge while make random walks in the network

Every peer has local model for prediction The data never leaves the node

Online FilterBoost

- FilterBoost is a well known and efficient type of boosting algorithms
- We **adopted** a pure **online** version of this algorithm
- We integrated this algorithm into our learning framework
- Compared its performance to other state of the art boosting methods

The Online FilterBoost

Algorithm 2 FILTERBOOST(INIT(), UPDATE($\cdot, \cdot, \cdot, \cdot$), T, C)

1: f⁽⁰⁾(x) ← 0 2: for $t \leftarrow 1 \rightarrow T$ do 3: $C_t \leftarrow C \log(t+1)$ 4: $h^{(t)}(\cdot) \leftarrow Init()$ 5: for $t' \leftarrow 1 \rightarrow C_t$ do Doline base learning $(\mathbf{x}, \mathbf{y}, \mathbf{w}) \leftarrow \operatorname{Filter}(\mathbf{f}^{(t-1)}(\cdot))$ 6: Draw a weighted random instance 7: $\mathbf{h}^{(t)}(\cdot) \leftarrow \text{UPDATE}(\mathbf{x}, \mathbf{y}, \mathbf{w}, \mathbf{h}^{(t)}(\cdot))$ $\gamma \leftarrow 0, W \leftarrow 0$ for $t' \leftarrow 1 \rightarrow C_t$ do 8: 9: Estimate the edge on a filtered data $(\mathbf{x}, \mathbf{y}, \mathbf{w}) \leftarrow Filter(\mathbf{f}^{(t-1)}(\cdot))$ 10: Draw a weighted random instance $\gamma \leftarrow \gamma + \sum_{\ell}^{K} w_{\ell} h_{\ell}^{(t)}(\mathbf{x}) y_{\ell}, W \leftarrow W + \sum_{\ell}^{K} w_{\ell}$ 11: $\gamma \leftarrow \gamma/W$ 12:> Normalize the edge $\alpha^{(t)} \leftarrow \frac{1}{2} \log \frac{1+\gamma}{1-\gamma}$ 13: $\mathbf{f}^{(t)}(\cdot) = \mathbf{f}^{(t-1)}(\cdot) + \alpha^{(t)}\mathbf{h}^{(t)}(\cdot)$ 14: 15: return $f^{(T)}(\cdot) = \sum_{t=1}^{T} \alpha^{(t)} \mathbf{h}^{(t)}(\cdot)$ 16: procedure $FILTER(f(\cdot))$ 17: $(\mathbf{x}, \mathbf{y}) \leftarrow \text{RandomInstance}()$ Draw random instance 18: for $\ell \leftarrow 1 \rightarrow K$ do $w_{\ell} \leftarrow \frac{\exp \left(f_{\ell}(\mathbf{x}) - f_{\ell}(\mathbf{x})(\mathbf{x})\right)}{\sum_{\ell'=1}^{K} \exp \left(f_{\ell'}(\mathbf{x}) - f_{\ell}(\mathbf{x})(\mathbf{x})\right)}$ 19:20:return (x, y, w)

Experimental Setup

- Peersim simulation environment
- NewsCast peer sampling service
- Baselines: AdaBoost, FilterBoost
- Data sets: CTG, PenDigits, Segmentation
- Modeling environment failures
 - Msg drop, delay and node churn

Measurement: misclassification ratio

Diversity Preservation

- Since the nodes send only the last received model
 - Some model will be replicated
 - Some model will be die out
- → the diversity of the models will be decreased
- We updated our framework to preserve the diversity

 We can exploit the diversity to have better performance

Diversity Preservation

Summary

- Improved our learning framework
 - Introduced and integrated a state of the art, pure online classification technique
 - Modified the framework for preserving model diversity
- Tested our algorithm in simulated P2P
 environment
- We achieved good convergence rate and performance compared to the centralized AdaBoost and FilterBoost algorithms

We showed that our method is tolerant for network failures