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Motivation
* Machine Learning, Data Mining

— ldentifying representative patterns in data
— Make compact representation of the data

» Classification
— Separating different type of patterns to each other
— Based on (hand-) labeled data
— E.g. Spam detection, OCR, Speech recognition, NLP,
Document classification, ...
-+ We would like to use state of the art
. _classification algorithms in large scale P2P
environments on distributed data
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Classification

* Binary classification

— Given a set of training samples:(z1,y1), -, (20, yn)
where z; € R
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Classification

* Binary classification

— Given a set of training samples: (z1,y1). .., (Zn, Yn)
where z; € RY andyi € {—1,1}
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* Binary classification
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that correctly separates ™
the samples from different

classes (minimizes the nums

~__ ber of misclassifications)
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Classification

— Given (@1,v1),---5 (w0, y2) training samples,
where »; e R and ¥ €{-1.1;
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— Task: looking for a model f R — {-1,1}
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Classification
* Binary classification

where z; e RY and ¥i € {—1,1;
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Classification

* Binary classification

— Given (z1.y1),-...(zn,ya) training samples,
where »; e RY and y: € {—1.1}

— Task: looking for a model
fRT 5 {-1,1)

minimizes the error o
m}in Z@:(f(r,,) —y)?” i=1,...,n o © @
— In linear case the model is ® o
- a hyper-plane (w) o o
- — The label of a new mstan-v\ 0
‘ce can be predicted D
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Not Linearly Separable Set

 \What can we do?
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.:_.:*_ o — The linear model is
£ ol Ay s wrong
s BaET 4 Use ,boosted”
4 -, linear models
‘E‘ -* Improve the perfor-

CATRTERSYS mance of the linear
Tk R models through the
boosting technique
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Boosting linear models

Initializes equal
weights for every
sample

Classifies instances

Re-Weights instances
Jump to 2.
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System and Data Model

* Given a network of computers (peers or nodes)

 The database is distributed in the network

— Every node has exactly one training sample -
training set size = network size

* Every node can get the address of a randomly
selected node from the network

— using the NewsCast peer sampling service

.+ Every node can send messages to another node
~if its address is available

« Finally every node can predict labels locally
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GoLF (Gossip Learning Framework)

Algorithm 1 Skeleton of original GoLF learning protocol

1: currentModel + inicModel()

2: loop 6: procedure oNnRECEIVEMODEL(m)
3 wait(A) T m.updateModel(x, y)

4: p + selectPeer() 8: currentModel +— m

O: sendModel(p, current Model)
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 GOLF (Gossip Learning Framework)
» Updating the models of the peers through
£ gossiping that

° « The models have to be updatable (online)

-> can be optimized by stochastic gradient
descent method

* The models converge while make random
walks in the network

~» Every peer has local model for prediction
« The data never leaves the node



Online FilterBoost

* FilterBoost is a well known and efficient
type of boosting algorithms

* \We adopted a pure online version of this
algorithm

* We integrated this algorithm into our
learning framework

-+ Compared its performance to other state
- _of the art boosting methods
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The Online FilterBoost

Algorithm 2 FiLTERBoosT(INIT( ), UPDATE(-, -, -, -), T, )

£ (%) — 0
fort+— 1 —=T do
Oy = Clog(t 4+1)

h'® () — Inrr()

for ' — 1 = <, do + Online base learning
(X.¥. W) +— F'II_TEP.lzf“_i:'I:-:I:l i Draw a weighted random instance
h'*){.) + UPDATE(x,y.w,h'"(.))

w =0, W — 0
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for ¢' — 1 —= <, do i+ Estimate the edge on a filtered data
(X.v, W) + FILTERlzf[t_ 1*I'I:-:Ijl + Draw a weighted random instance
b v+ TR wehl (X)ye, W = W+ T F w,

v — W i Normalize the edge

ke DD SR W

alt! % log -11_—"'—;[-

14: @) =11 () F R
15: return f'7)(.) = T &t ()
16: procedure Firrer(fi.))

17: (%,¥) + RanpoMmInsTancE() t> Draw random instance
15: for { — 1 — K do

10 s o =P [ Foioed—Fopy 1)
. £

ER_ wxp (£ )= fo () )
20 return (x, ¥y, w)




Experimental Setup

* Peersim simulation environment
* NewsCast peer sampling service
» Baselines: AdaBoost, FilterBoost
“+ Data sets: CTG, PenDigits, Segmentation

* Modeling environment failures
— Msg drop, delay and node churn

-+ Measurement: misclassification ratio
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Diversity Preservation

* Since the nodes send only the last
received model

— Some model will be replicated
— Some model will be die out

* = the diversity of the models will be
decreased

* We updated our framework to preserve
- the diversity

- We can exploit the diversity to have better
performance
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Summary

* Improved our learning framework

— Introduced and integrated a state of the art, pure
online classification technique

— Modified the framework for preserving model diversity

» Tested our algorithm in simulated P2P
environment

* We achieved good convergence rate and
performance compared to the centralized
AdaBoost and FilterBoost algorithms

We showed that our method is tolerant for
 network failures
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