Distributed Differentially Private Stochastic Gradient Descent: An Empirical Study

István Hegedűs and Márk Jelasity

University of Szeged MTA-SZTE Research Group on Al Hungary

Motivation

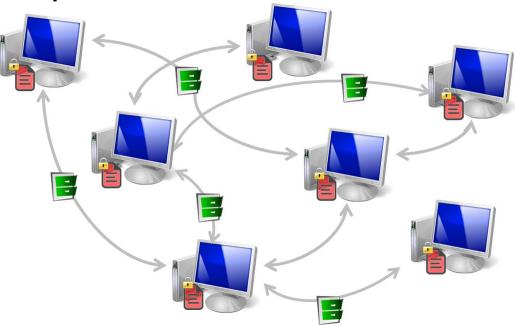
- Data is accumulated in data centers
- Costly storage and processing
 - Maintenence, Infrastructure, Privacy
- Limited access
 - For researchers as well
- But, data was produced by us

Motivation – ML Applications

- Personalized Queries
- Recommender Systems
- Document Clustering
- Spam Filtering

- ML is often an optimization problem
- Local data is not enough

- ML is often an optimization problem
- Local data is not enough
- Models are sent and updated on nodes



Research Group on Artificial Intelligence 'ERSITAS SCIENTIARUM SZEGEDIENSI

- ML is often an optimization problem
- Local data is not enough
- Models are sent and updated on nodes

-

- Taking random walks
- Updated instance-by instance
- Data is never sent

- ML is often an optimization problem
- Local data is not enough
- Models are sent and updated on nodes

-

- Taking random walks
- Updated instance-by instance
- Data is never sent
- Stochastic Gradient Descent (SGD)

VIVERSITAS SCIENTIARUM SZEGEDIENSIS Research Group on Artificial Intelligence

SGD

Objective function

 $w = \arg\min_{w} J(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(f_w(x_i), y_i) + \frac{\lambda}{2} ||w||^2$

- Objective function
- Gradient method

$$w = \arg\min_{w} J(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(f_w(x_i), y_i) + \frac{\lambda}{2} ||w||^2$$

$$w_{t+1} = w_t - \eta_t \left(\frac{\partial J}{\partial w}\right)$$
$$= w_t - \eta_t \left(\lambda w + \frac{1}{n} \sum_{i=1}^n \nabla \ell(f_w(x_i), y_i)\right)$$

Objective function

$$w = \arg\min_{w} J(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(f_w(x_i), y_i) + \frac{\lambda}{2} ||w||^2$$

• Gradient method

$$w_{t+1} = w_t - \eta_t \left(\frac{\partial J}{\partial w}\right)$$
$$= w_t - \eta_t \left(\lambda w + \frac{1}{n} \sum_{i=1}^n \nabla \ell(f_w(x_i), y_i)\right)$$

SGD, data can be processed online w_{t+1} = w_t − η_t(λw + ∇ℓ(f_w(x_i), y_i))
(instance by instance)

Objective function

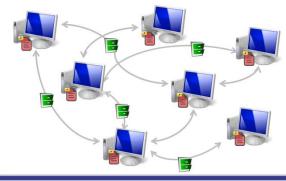
$$w = \arg\min_{w} J(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(f_w(x_i), y_i) + \frac{\lambda}{2} ||w||^2$$

• Gradient method

$$w_{t+1} = w_t - \eta_t \left(\frac{\partial J}{\partial w}\right)$$
$$= w_t - \eta_t \left(\lambda w + \frac{1}{n} \sum_{i=1}^n \nabla \ell(f_w(x_i), y_i)\right)$$

SGD, data can be processed online w_{t+1} = w
(instance by instance)

$$w_{t+1} = w_t - \eta_t(\lambda w + \nabla \ell(f_w(x_i), y_i))$$



Objective function

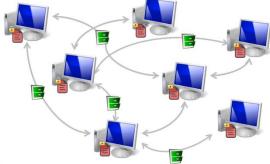
$$w = \arg\min_{w} J(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(f_w(x_i), y_i) + \frac{\lambda}{2} ||w||^2$$

• Gradient method

$$w_{t+1} = w_t - \eta_t \left(\frac{\partial J}{\partial w}\right)$$
$$= w_t - \eta_t \left(\lambda w + \frac{1}{n} \sum_{i=1}^n \nabla \ell(f_w(x_i), y_i)\right)$$

SGD, data can be processed online w_{t+1} = w_t - (instance by instance)
Data can be guessed by specifically crafted models

$$w_{t+1} = w_t - \eta_t (\lambda w + \nabla \ell(f_w(x_i), y_i))$$



Differential Privacy

• Privacy: $w_{t+1} = w_t - \eta_t (\lambda w_t + \nabla \ell(f_w(x_i), y_i) + N_t)$ adding appropriately generated noise

Differential Privacy

- Privacy: $w_{t+1} = w_t \eta_t (\lambda w_t + \nabla \ell(f_w(x_i), y_i) + N_t)$ adding appropriately generated noise
- Differential Privacy theoretically guarantees the indistinguishability

Based on the
global sensitivity

 $Z_F = \max_{D,D' \text{ differ in one record}} \|F(D) - F(D')\|_1$

 $\forall x : e^{-\epsilon} \le \frac{P(F(D) = x)}{P(F(D') = x)} \le e^{\epsilon}$

Differential Privacy

- Privacy: $w_{t+1} = w_t \eta_t (\lambda w_t + \nabla \ell(f_w(x_i), y_i) + N_t)$ adding appropriately generated noise
- Differential Privacy theoretically guarantees the indistinguishability

$$\forall x : e^{-\epsilon} \le \frac{P(F(D) = x)}{P(F(D') = x)} \le e^{\epsilon}$$

Based on the global sensitivity

 $Z_F = \max_{D,D' \text{ differ in one record}} \|F(D) - F(D')\|_1$

Every data instance has a privacy budget

Experimental Setup

- Data sets
- Budget management
 - One shot: DP-SGD-1
 - Equipartition: DP-SGD-5
 - Exponential: DP-SGD-∞
- Various normalizations

Measurement

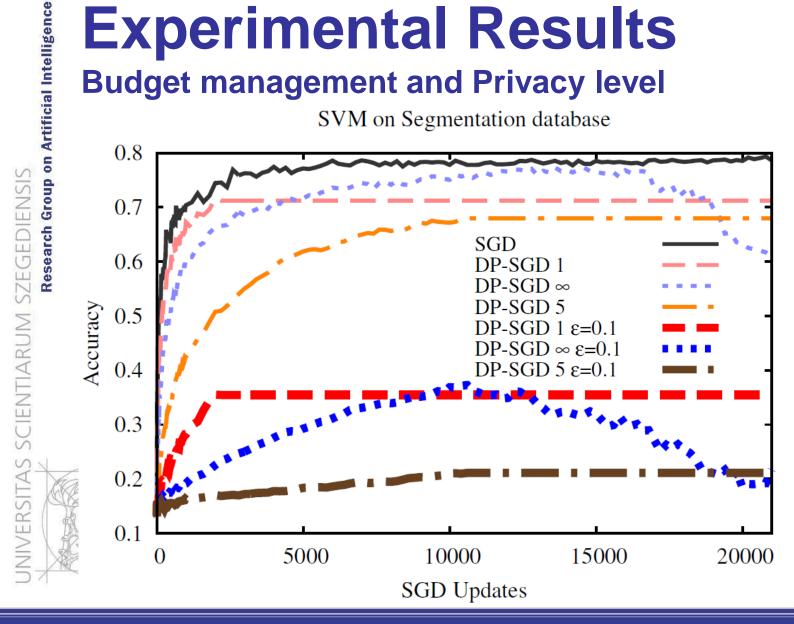
Accuracy =
$$\frac{1}{n} \sum_{i=1}^{n} \delta(y_i = f_w(x_i))$$

	MNIST	Segmentation	Spambase
Training set size	60 000	2310	4140
Test set size	10 000	210	461
Number of features	784	19	57
Number of classes	10	7	2
Class-label distribution	uniform	uniform	6:4

Experimental Results

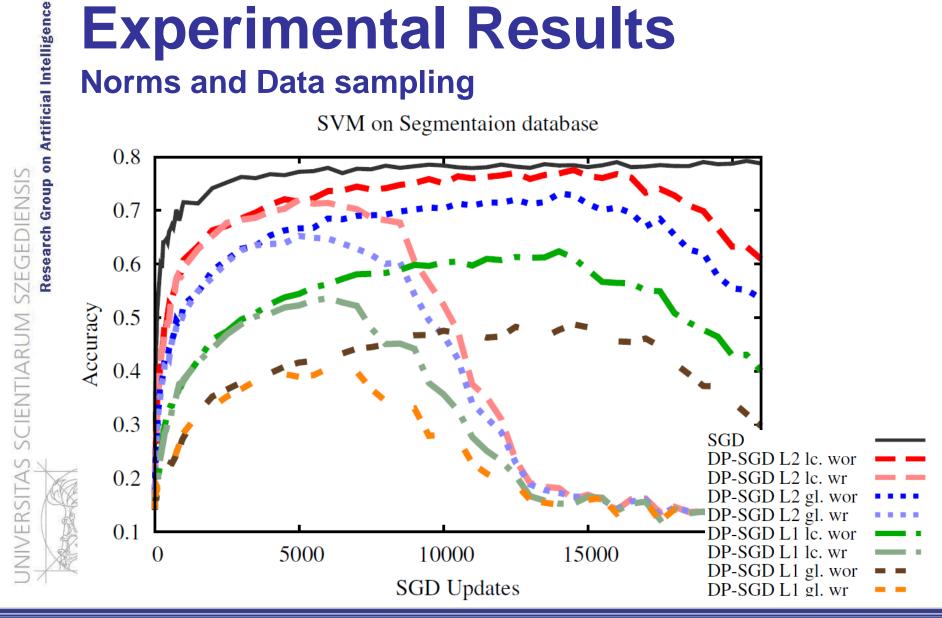
Budget management and Privacy level

SVM on Segmentation database



Experimental Results Norms and Data sampling

SVM on Segmentaion database



Conclusion

- Privacy preserving SGD for fully distributed data mining
- Close to optimal accuracy without additional communication cost
- Influence of the
 - Normalization
 - Budget management
 - Data sampling

Better performance can be achieved with more local data