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~ » But, data was produced by us
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« Data Is accumulated in data centers

* Costly storage and processi
— Maintenence, Infrastructure

 Limited access _Qf V2

— For researchers as well* @ . U
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Motivation — ML Applications

* Personalized Queries
 Recommender Systems
* Document Clustering
« Spam Filtering
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Gossip Learning

« ML is often an optimization problem
* Local data is not enough
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. Gossip Learning

2« ML is often an optimization problem
: « Local data is not enough
: * Models are sent and updated on nodes
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Gossip Learning

« ML is often an optimization problem
* Local data is not enough

 Models are sent and updated on nodes
— Taking random wal E

Rl
— Updated instance-b ance |5 g Q%E/
— Data is never sent E/ -
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Gossip Learning

« ML is often an optimization problem
* Local data is not enough
 Models are sent and updated on nodes

— Taking random Wall% A E/
— Updated instance-b ance @ | = Q%E

— Data is never sent
gtnésca D) U%E/

~» Stochastic Gradient Des
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SGD
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SGD

* Objective function

e Gradient method
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w = argmin J(w) = - Zf(fw(af@-), yi) + §||UJH2
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SGD
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 Gradient method

 SGD, data can be
processed online  Wi+1 = we = n:(Aw + VI(fu (i), yi)

(Instance by instance)
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 Gradient method

 SGD, data can be
processed online  Wi+1 = we = n:(Aw + VI(fu (i), yi)

(instance by instance) A . 1;&/@ A
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SGD

« Objective function w= sngmin /() = = 3 (ol p0) + Gl
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« Gradient method v ==l
==+ 3 VU ), p0)

 SGD, data can be
processed online  Wi+1 = we = n:(Aw + VI(fu (i), yi)

(Instance by instance) g .
-~ — Data can be guessed by o T
. = ' [ JU\/
specifically crafted models = :&”




Differential Privacy

* Privacy:. wit1 = we — Ne(Awe + VE(fuw (i), yi) + Ni)
adding appropriately generated noise
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Differential Privacy

* Privacy: w1 = wr —ne(Awe + VE(fu(2:), yi) + Ne)
adding appropriately generated noise

 Differential Privacy theoretically
guarantees the indistinguishability
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Differential Privacy

* Privacy: w1 = wr —ne(Awe + VE(fu(2:), yi) + Ne)
adding appropriately generated noise

 Differential Privacy theoretically
guarantees the indistinguishability
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P(F(D) =
\V/ZC . 8_6 g P((F((D/)) :C)) g 66
= T
— Based on the |
glOba| SenS|t|V|ty ar = D.,D’ diffe{rni?lxone record HF(D) B F(D )Hl

» Every data instance has a privacy budget



Experimental Setup

MNIST | Segmentation | Spambase

Training set size 60 000 2310 4140
° Da'ta Sets Test st size 10 000 210 461
Number of features 784 19 57

Number of classes 10 7

* Budget management i mn T T
— One shot: DP-SGD-1
— Equipartition: DP-SGD-5
— Exponential: DP-SGD-~

e Various normalizations
e ,I\/Ieasurement

Accuracy = — 0(y; =
curacy ??Z Yi = fw
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Experimental Results

Budget management and Privacy level
SVM on Segmentation database
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Experimental Results

Norms and Data sampling

SVM on Segmentaion database
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Conclusion

Privacy preserving SGD for fully distributed
data mining

Close to optimal accuracy without additional
communication cost

Influence of the

— Normalization
— Budget management
— Data sampling

Better performance can be achieved with more
local data
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