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Motivation 

• Data is accumulated in data centers 

• Costly storage and processing 

– Maintenence, Infrastructure, Privacy 

• Limited access 

– For researchers as well 

• But, data was produced by us 



Motivation – ML Applications 

• Personalized Queries 

• Recommender Systems 

• Document Clustering 

• Spam Filtering 
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• Stochastic Gradient Descent (SGD) 
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• SGD, data can be 

processed online  

(instance by instance) 

– Data can be guessed by 

specifically crafted models 
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• Every data instance has a privacy budget 



Experimental Setup 

• Data sets 

• Budget management 
– One shot: DP-SGD-1 

– Equipartition: DP-SGD-5 

– Exponential: DP-SGD-∞ 

• Various normalizations 

• Measurement 



Experimental Results 
Budget management and Privacy level 
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Conclusion 

• Privacy preserving SGD for fully distributed  

data mining 

• Close to optimal accuracy without additional 

communication cost 

• Influence of the 
– Normalization 

– Budget management 

– Data sampling 

• Better performance can be achieved with more 

local data 


