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Abstract. Decentralized machine learning provides a unique opportu-
nity to create data-driven applications without the need for large invest-
ments in centralized infrastructure. In our previous works, we introduced
gossip learning for this purpose: models perform random walks in the net-
work, and the nodes train the received models on the locally available
data. We also proposed various improvements, like model sub-sampling,
merging, and token-based flow control. Gossip learning is robust to fail-
ures, and does not require synchronization. Efficiency in terms of network
bandwidth is also a major concern in the case of decentralized learning
algorithms, especially when they are deployed in a network of IoT devices
or smartphones. Here, we improve the model merging method to allow
gossip learning to benefit more from token-based flow control. We ex-
perimentally evaluate our solution over several classification problems in
simulations using an availability trace based on real-world smartphone
measurements. Our results indicate that the improved variant signifi-
cantly outperforms previously proposed solutions.

Keywords: Gossip learning · Decentralized machine learning · Model
aggregation.

1 Introduction

The widespread presence of smart devices provides the possibility for numerous
applications that use machine learning. The traditional approach to machine
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learning is to collect the data at a central location for processing, but this can
cause privacy concerns. This motivated a number of approaches to implement
distributed machine learning algorithms. Perhaps the most notable approach is
federated learning that is being used for mining data stored on smartphones
without collecting it at a central location [12, 15]. Although the nodes perform
the updates locally, there is still a need for a central server that aggregates and
distributes the global model. Furthermore, the cost of such infrastructure can
be prohibitive for startups or communities with limited resources.

To mitigate the problem of the requirement of a central infrastructure, a
number of proposals have been made. Some of these utilize the blockchain in-
frastructure. Li et al. [14] proposed a blockchain-based, decentralized federated
learning framework against malicious central servers or nodes. Ramanan and
Nakayama [21] also proposed a blockchain-based federated learning framework
that eliminates the role of a centralized aggregator. The selection of the device
that updates a given chunk of the global model is based on the norm differ-
ence caused by the update. However, although the blockchain offers a number
of benefits, blockchain-based distributed algorithms are not efficient.

Gossip learning [19] offers a more radical solution to the problem of central
servers. Gossip learning is a fully distributed approach, not using any infrastruc-
ture (including blockchains) that avoids the collection of sensitive data, which
remains on the devices instead. The devices communicate directly, sending their
model to each other, and they train the received models on the locally available
data. In addition to smartphones, this method has the potential to be employed
on other platforms, such as smart metering or the Internet of Things. We pre-
sented a systematic comparison of federated learning and gossip learning in [11].

Gossip learning has been applied in a number of areas. For example, Guo et
al. [10] proposed a gossip learning-aided user-centric online training framework
to improve channel state information feedback performance and Belal et al. [3]
proposed a decentralized recommender system based on gossip learning princi-
ples, which uses a personalized peer-sampling protocol and a model aggregation
function that weights models by performance.

Giaretta and Girdzijauskas [9] assessed the applicability of gossip learning to
real-world scenarios in general and introduced extensions that mitigate some of
its limitations related to networks in which the node degree or the communica-
tion speed is correlated with the data distribution. Other improvements include
the work of Onoszko et al. [18] that proposed a method for training personalized
models in a decentralized setting with non-iid client data. Peers focus on com-
municating with neighbors that share similar data distributions, found based on
training loss. Niwa et al. [17] extend Edge-Consensus Learning, an asynchronous
decentralized DNN optimization algorithm, with the gradient modification of
Stochastic Variance Reduction to improve performance on heterogeneous data.

There have also been a number of proposals to improve gossip learning specif-
ically. Among these are model merging, model sub-sampling, and token-based
flow control [11, 8]. However, these do not always work well together. In this
paper, we propose a novel method for merging that improves its synergy with
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token-based flow control, resulting in a significant speed-up even without sub-
sampling. We evaluated our algorithm experimentally over several datasets and
using a real-world smartphone availability trace (based on data collected by
STUNner [4]).

The rest of the paper is structured as follows. In Section 2, we explain the
concepts related to gossip learning. In Section 3, we describe our novel algorithm.
In Section 4, we describe the experimental setup and discuss the simulation
results. Finally, we conclude the paper in Section 5.

2 Background

Here, we introduce the necessary notations and concepts of gossip learning.

2.1 Supervised Classification

In the supervised learning problem, we aim to build a model based on a dataset
X = {(x1, y1), . . . , (xn, yn)}. Here, n is the size of the dataset (the number of
samples). We assume that every sample xi is a real valued feature vector of d
elements (xi ∈ Rd). In addition, for every example xi, a class label yi is also
given that is an element of a discrete set K of possible class labels.

The learning task can be formulated as an optimization problem. The aim of
the learning procedure is to find the parameters w of a given hypothesis function
hw : Rd → K that minimizes the objective function

J(w) =
1

n

n
∑

i=1

ℓ(hw(xi), yi) +
λ

2
‖w‖2. (1)

This objective function is the average of the losses ℓ computed on the training
samples. To improve generalization, a regularization term is also often added,
where λ is the regularization coefficient. A common solution for this optimization
problem is the Gradient Descent (GD) method, where we iteratively update the
parameters of the model, based on the partial derivative of the objective function.

wt+1 = wt −
∂J(w)

∂w
(wt) (2)

Stochastic Gradient Descent (SGD) [6] approximates this update using the deriva-
tive of the loss of only one sample at a time. It iteratively selects a training
example, sampled uniform randomly, and performs the parameter update of the
model using the update rule

wt+1 = wt − ηt(
∂ℓ(hw(xi), yi)

∂w
(wt) + λwt), (3)

where ηt is called the learning rate.
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Algorithm 1 Basic version of gossip learning
1: (x, y)← local sample
2: (w, t)← initialize() ⊲ local model
3: loop
4: wait(∆)
5: p← selectPeer() ⊲ returns a random online neighbor
6: send (w, t) to p
7: end loop
8:
9: procedure onReceiveModel(wr, tr)
10: (w, t)← (wr, tr)
11: (w, t)← update((w, t), (x, y)) ⊲ the model is trained and t is incremented
12: end procedure

Logistic regression [5] is a linear model that specifies the hypothesis function
as

h(w,b)(xi) =
1

1 + e(wTxi+b)
, (4)

where b is an additional model parameter, called bias, and yi ∈ {0, 1}. The loss
function is

ℓ(h(w,b)(xi), yi) = −yi lnh(w,b)(xi)− (1 − yi) ln(1 − h(w,b)(xi)). (5)

2.2 Gossip Learning

In traditional machine learning, the model is trained on one machine or on a
cluster of servers that stores the model and the dataset and performs the model
updates. But in gossip learning [19], we have a network of computational units
that are typically connected via the Internet. The dataset is distributed on these
devices horizontally, that is, every node in this network holds only a few or
maybe just one sample from the dataset. Models perform random walks (series
of random steps) in this network, and when a node receives a model, it updates
it by applying the SGD method using the local samples. More precisely, each
node in the network first initializes a new model, and stores it locally. After that
it periodically sends its local model to one of its neighbors in the network. When
a node receives a model, it updates and stores this model locally.

The neighborhood management is provided by a peer sampling service. If
this service can provide a node picked uniformly at random from the network,
the model will be updated on training examples sampled uniformly at random.

An advantage of this decentralized approach is that, due to every node storing
a model locally, they can predict the label of unseen examples without any
communication cost.

The basic version of gossip learning can be seen in Algorithm 1. Every node
holds only one data sample (x, y) and has a model (w, t) locally, where the model
age t is the number of times the model has been updated. ∆ denotes the gossip
cycle length.
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We call this communication pattern proactive because messages are sent
based on a gossip cycle, independently of other events. In this proactive scheme,
the number of the randomly walking models in the network approximately equals
the number of online nodes. In the case of a linear model, the model size (the
number of parameters) is the same as the size of an example, plus an extra bias
term. In the case of more complex models, like neural networks, the model can
be much larger.

Various techniques can be employed to improve the above algorithm, as listed
below.

Token-based flow-control The communication pattern can be adjusted so
that models perform “hot potato”-like random walks, that is, models do not
wait for the clock at each node [8]. This technique is detailed in Section 2.3.

Model merging Instead of overriding the local model by the received one, the
average of the model parameters is stored. One way to do this is to weight
the models by their age [11].

Model partitioning This is a sub-sampling technique where there is a pre-
defined partitioning of the model parameters; instead of sending the whole
model to a neighbor, only a uniformly random partition is sent [11]. This
reduces the communication cost of each message, meaning we can send mes-
sages more frequently. When such a partial model is received, it is merged
with the corresponding parameters, leaving the rest unchanged (but the
whole model is updated afterwards using the local samples). Each partition
has its own age, which is used during weighted model merging.

Transfer learning We can use a large, pre-trained model (that was trained on
a related, but different task) as a feature extractor [22]. This can result in
a more useful and/or smaller feature set, the latter reducing communication
costs. This can be the equivalent of training only the last layer of a deep
neural network.

2.3 Token Gossip Learning

The proactive approach, that is, periodically sending the local model is subop-
timal when the model transfer time is much shorter than the cycle length, that
is, when the allowed average bandwidth utilization is much smaller than the
maximum available bandwidth. This is because a lot of time is wasted between
receiving a model and forwarding it to another node. The purely reactive ap-
proach, that is, forwarding a model immediately after receiving (and updating)
it, is prone to extinction due to message loss. (Even reliable protocols like TCP
can’t guard against churn, the prolonged unavailability of a node.) The solu-
tion is the token account algorithm [8], a hybrid approach that enables a small
number of models to travel (and learn) quickly in the network, and manages the
number of such models implicitly, in an emergent way.

Similarly to the token bucket algorithm [20], a token is granted periodically
at each node which can be later spent on outgoing network communication,
and there is a cap on the number of tokens that can be accumulated. However,
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Algorithm 2 Token gossip learning
1: (x, y)← local sample
2: (w, t)← initialize() ⊲ can include initial update
3: a← 0 ⊲ number of tokens
4: loop
5: wait(∆)
6: do with probability proactive(a) ⊲ randomized branching
7: p← selectPeer()
8: send (w, t) to p
9: else
10: a← a+ 1 ⊲ we did not spend the token so it accumulates
11: end do
12: end loop
13:
14: procedure onReceiveModel(wr, tr)
15: (w, t)← merge((w, t), (wr, tr))
16: (w, t)← update((w, t), (x, y))
17: x← randRound(reactive(a)) ⊲ randRound(x) rounds up with probability {x}
18: a← a− x ⊲ we spend x tokens
19: for i← 1 to x do
20: p← selectPeer()
21: send (w, t) to p ⊲ queued for sequential sending
22: end for
23: end procedure

here, message sending is not completely reactive. Messages can also be sent
proactively (spending a newly granted token immediately), to avoid starvation.
Moreover, to preemptively mitigate the impact of message loss, multiple copies
of a received model may be transmitted to various neighbors. If the number
of tokens is approaching the capacity, it is an indication that there might be
too few random walks in the network, therefore the algorithm becomes more
inclined to send a proactive message (starting a new random walk) or multiple
reactive messages (duplicating a random walk). The exact behavior is defined
by functions proactive(a) and reactive(a), where a is the number of tokens
in the node’s account. proactive(a) returns the probability of sending a proac-
tive message, and reactive(a) returns the number of reactive messages to be
sent. reactive(a) is allowed to return a non-integer; we round it up with the
probability equaling the fractional part, and round it down otherwise.

Here, we shall use the (slightly simplified) randomized strategy [8] that de-
fines these functions as

proactive(a) =







0 if a < A− 1
a−A+ 1

C −A+ 1
if a ∈ [A− 1, C]

and reactive(a)= a/A. C is the capacity of the token account, and A influences
the size of the token reserve the algorithm tries to maintain. The algorithm
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guarantees that a node will not send more than ⌈t/∆⌉ + C messages within a
period of time t. The pseudocode for the token account algorithm as applied
to gossip learning is shown in Algorithm 2, also including model merging. This
technique can result in a much faster growth of model age, since the (on average)
∆/2 waiting period between the steps of the random walk is eliminated, leaving
only the transfer time.

There is also a variant of this algorithm for use with partitioned model sam-
pling [11]. It uses a separate token account for each partition, and reactive mes-
sages contain the same partition as the received one.

3 Limited Merging

Previous approaches to model merging used unweighted [19] or weighted [11]
averaging, where the weights are the model ages. More precisely, for two models
(wa, ta) and (wb, tb) the merged model is given by

ta · wa + tb · wb

ta + tb
.

The age of the resulting model is max(ta, tb).
There are a number of situations, however, when one of the models has

significantly more fresh updates. For example, one of the models might have
collected many updates during a “hot potato” run due to the token account
algorithm. Another possibility is that one of the models was not updated for
some time due to its node having been offline. In such situations, it is a problem
if unweighted merging is used, because this essentially halves the contribution
of the freshly updated model. Weighted averaging does not solve this problem,
because after a certain amount of time the age of both of the models will be so
large that weighted averaging will effectively work as unweighted averaging due
to the relative age difference becoming too small.

To deal with this problem, we propose limited merging. Here, when the age
difference of the models to be merged is above a threshold L, we simply take the
model with the higher number of updates and throw away the other one, instead
of performing weighted averaging. The pseudocode is shown in Algorithm 3. In
the case of partitioned models, this rule can be applied to the received partition
and its counterpart based on their age.

4 Experiments

We performed the experimental evaluation using simulations3 building upon
PeerSim [16] to measure the gain in convergence speed resulting from our novel
algorithm. In this section, we describe the datasets, system model, availability
trace, and hyperparameters we used, then present our results.

3 https://github.com/ormandi/Gossip-Learning-Framework/tree/privacy
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Algorithm 3 Limited merging
1: procedure merge((wa, ta), (wb, tb))
2: if ta > tb + L then
3: w← wa

4: else if tb > ta + L then
5: w← wb

6: else
7: w← (ta · wa + tb · wb)/(ta + tb)
8: end if
9: t← max(ta, tb)
10: return (w, t)
11: end procedure

4.1 Datasets

We used three different classification datasets in our experiments: the Pendig-
its and HAR datasets, and a transformed version of the MNIST dataset. The
Pendigits [2] and the MNIST [13] samples represent hand-written numbers from
[0-9], forming 10 classes. The Pendigits dataset represents the numbers using
16 attributes, while MNIST contains images of 28 × 28 pixels. In a previous
study [7], we performed transfer learning to extract new, high-quality features
from the MNIST database using a CNN model that was trained over another
dataset: Fashion-MNIST. The Fashion-MNIST [24] dataset has the same prop-
erties as MNIST, but it contains images of clothes and shoes instead of digits.
We assume that the nodes have downloaded this pre-trained model and use it
to transform the local samples. The feature set was compressed to 78 attributes
using Gaussian Random Projection, to reduce the bandwidth consumption of
gossip learning through the smaller models. In the HAR (Human Activity Recog-
nition Using Smartphones) [1] dataset, the labels are walking, walking upstairs,
walking downstairs, sitting, standing and lying, and the attributes are high level
features extracted from smartphone sensor measurement series (acceleration, gy-
roscope and angular velocity). The features of all the datasets were standardized,
that is, scaled and shifted to have a mean of 0 and a standard deviation of 1.
Some important statistics of the datasets can be seen in Table 1.

Table 1. Data set properties. Note that the transformed version of MNIST, that we
used in the experiments, has only 78 features.

Pendigits HAR MNIST F-MNIST
Training set size 7494 7352 60000 60000
Test set size 3498 2947 10000 10000
Number of features 16 561 784* 784
Number of classes 10 6 10 10
Class-label distribution ≈ uniform ≈ uniform ≈ uniform ≈ uniform
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4.2 System model

We consider a network of unsynchronized nodes. The size of the network is
assumed to be identical to the training set size of the given database. Thus, each
node has a unique training sample. Each node also has a random list of 20 nodes
it can connect to, as this provides a favorable mixing time. (In practice, such
a list can be obtained and maintained by a decentralized peer sampling service
like Newscast [23].) In the churn scenario, we assume that the nodes may go
offline at any time, and later may come back online (with their state intact).
For a message to be successfully delivered we require that both the sender and
the receiver remain online for the duration of the transfer. The allowed average
bandwidth utilization was set so that a continuously online node can send 1000
full models in 24 hours. We assumed that nodes communicate during 1% of
their online time, that is, the allowed average bandwidth utilization is much
lower than the allowed maximum bandwidth utilization, enabling bursts. To
model a platform where different learning tasks are solved one after the other,
we simulated 48 hours, but performed learning only during the second 24 hours;
this is to ensure a realistic distribution of token counts in the network at the
beginning of the learning task.

4.3 Smartphone Trace

In our experiments involving churn, we used a smartphone availability trace col-
lected from 1191 users by an application called STUNner [4], which monitors the
NAT (network address translation) type, bandwidth, battery level, and charging
status. The time series was split into 40,658 2-day segments (with a one-day over-
lap) based on the UTC time of day. By assigning one of these segments to each
simulated node, it becomes possible to simulate a virtual 48-hour period. The
segments are randomly sampled without replacement, but whenever the pool of
segments runs out, the pool is reset. We define a device to be available after it
has been on a charger as well as connected to the Internet (with a bandwidth of
at least 1 Mbit/s) for at least one minute. This means we consider a user-friendly
scenario in which battery power is not used at all.

Some important properties of this trace are shown in Figure 1. On the right,
the blue and red bars represent the ratio of the nodes that joined or left the
network (at least once), respectively, in a given hour. Observe that usually only
about 20% of the nodes are online. The average online session length is 81.37
minutes.

4.4 Hyperparameters

Over a given dataset, we trained logistic regression models for each class sep-
arately, embedded in a one-vs-all meta-classifier. We set the cycle length ∆ to
one thousandth day (86.4 seconds). The algorithm variants using partitioned
subsampling sent a random partition containing 10% of the model parameters
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Fig. 1. Histogram of online session lengths (left) and device churn (right).

at a time, and the gossip cycle time was proportionally shorter so that the over-
all bandwidth utilization is the same. For token gossip learning, we used the
randomized strategy with parameters A = 10 and C = 20. We used a dynamic
learning rate ηt = η/t, where t is the model age (not the elapsed wall-clock time).
The regularization coefficient was set to λ = 1/η. In the case of the baseline al-
gorithms, we chose η from the set of values {100, ..., 105} so as to minimize the
classification error at the end of the churn-based simulation.

The hyperparameters of the novel variants (η and L) were also optimized
using a simple grid search. For the error-free scenario, we used the same hyper-
parameters that were used in the churn scenario. We note here that if there is
more than one sample in a node then the parameter L should be scaled propor-
tionally because the age of the models will be scaled as well.

4.5 Results

Our results are shown in Figure 2. The plots show the average ratio of misclassi-
fied test samples over the models of the online nodes. The horizontal axis is time
(measured in cycles), which is also an upper bound on the total communication
cost.

We can see that the token gossip learning method benefits greatly from the
novel merging method, as the models performing hot potato walks are no longer
held back by the frequent merging with inferior models. The combination of
using the token account technique and limited merging outperformed the other
variations by a large margin across all the datasets. (Note the logarithmic hor-
izontal scale.) By comparing the two columns in Figure 2, we can see that the
performance is fairly robust to node failures.

When using limited merging, the algorithm variants that use partitioned
models are mostly inferior to the variants communicating the entire model. This
can be seen in Figure 3. Note that this is not due to the partitioned variants com-
municating less: we specifically decreased the gossip cycle to equalize expected
communication.
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Fig. 2. Classification error of the various algorithm variants as a function of time, with
trace-based churn (left) and without failures (right). “part.” denotes partitioned.

Figure 3 also shows the sensitivity of token gossip learning to the hyperpa-
rameter settings. We can see that the sensitivity depends on the complexity of
the dataset, but in general, it is advisable to pay attention to hyperparameter
optimization.

5 Conclusions

Gossip learning enables the training of machine learning models over a network
of unreliable devices without the need for a costly central server. When training
large models, it becomes important to make the algorithm efficient in terms of
network communication. When the nodes are allowed to communicate in bursts,
token gossip learning can be used to speed up learning while keeping the total
bandwidth consumption of each node unchanged. In this paper, we proposed a
novel method for model aggregation that vastly improved the performance of
token gossip learning, as we demonstrated on several learning tasks.
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Fig. 3. Merge-limited gossip learning with and without partitioned subsampling (left)
and the effect of different hyperparameter settings (right).
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