
Hiding Needles in a Haystack: Towards Constructing Neural
Networks that Evade Verification

Árpád Berta
University of Szeged
Szeged, Hungary

berta@inf.u-szeged.hu

Gábor Danner
University of Szeged
Szeged, Hungary

danner@inf.u-szeged.hu

István Hegedűs
University of Szeged
Szeged, Hungary

ihegedus@inf.u-szeged.hu

Márk Jelasity
University of Szeged and ELKH SZTE Research Group on

Artificial Intelligence
Szeged, Hungary

jelasity@inf.u-szeged.hu

ABSTRACT
Machine learning models are vulnerable to adversarial attacks,
where a small, invisible, malicious perturbation of the input changes
the predicted label. A large area of research is concerned with veri-
fication techniques that attempt to decide whether a given model
has adversarial inputs close to a given benign input. Here, we show
that current approaches to verification have a key vulnerability:
we construct a model that is not robust but passes current verifiers.
The idea is to insert artificial adversarial perturbations by adding a
backdoor to a robust neural network model. In our construction,
the adversarial input subspace that triggers the backdoor has a
very small volume, and outside this subspace the gradient of the
model is identical to that of the clean model. In other words, we
seek to create a “needle in a haystack” search problem. For practical
purposes, we also require that the adversarial samples be robust
to JPEG compression. Large “needle in the haystack” problems are
practically impossible to solve with any search algorithm. Formal
verifiers can handle this in principle, but they do not scale up to real-
world networks at the moment, and achieving this is a challenge
because the verification problem is NP-complete. Our construction
is based on training a hiding and a revealing network using deep
steganography. Using the revealing network, we create a separate
backdoor network and integrate it into the target network. We train
our deep steganography networks over the CIFAR-10 dataset. We
then evaluate our construction using state-of-the-art adversarial
attacks and backdoor detectors over the CIFAR-10 and the Ima-
geNet datasets. We made the code and models publicly available at
https://github.com/szegedai/hiding-needles-in-a-haystack.

CCS CONCEPTS
• Security and privacy → Malware and its mitigation; • Com-
puting methodologies → Neural networks.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
IH&MMSec ’22, June 27–28, 2022, Santa Barbara, CA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9355-3/22/06. . . $15.00
https://doi.org/10.1145/3531536.3532966

KEYWORDS
neural networks, adversarial robustness, backdoor attack, Trojan
attack

ACM Reference Format:
Árpád Berta, Gábor Danner, István Hegedűs, andMárk Jelasity. 2022. Hiding
Needles in a Haystack: Towards Constructing Neural Networks that Evade
Verification. In Proceedings of the 2022 ACMWorkshop on Information Hiding
and Multimedia Security (IH&MMSec ’22), June 27–28, 2022, Santa Barbara,
CA, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3531536.3532966

1 INTRODUCTION
Since the seminal work of Szegedy et al. [22], the problem of po-
tentially existing adversarial input perturbations has received a lot
of attention. The key observation is that, given a machine learn-
ing model, typically a deep neural network (DNN), one can find
very small, invisible perturbations that change the prediction of
the DNN. This in turn can lead to security problems and in general,
demonstrates the lack of robustness of DNNs.

This has motivated numerous research directions. Among these,
an important one is the problem of verification, where we wish to
analyze whether a given DNN has adversarial examples around
a given input. A useful summary of the field can be found in [3].
Methods of mathematical strength have been proposed that are
complete in the sense that they can prove whether or not there is an
adversarial example present. At the moment these methods are not
applicable to large problems and they can only handle a restricted
subset of networks that often use ReLU connections. Even for such
networks, the problem has been shown to be NP-complete [11].

The only practically viable methods so far are the adversarial
attacks, which are also called unsound verifiers, in that they can
provide proofs only for the existence of an adversarial perturba-
tion (by finding one), but they cannot prove the absence of such
perturbations. However, in practice they work quite well [6].

Our goal in this paper is to argue that robustness verification can
be evaded, if a malicious DNN provider wishes to do so. This would
in turn imply that robustness verification has a serious vulnerabil-
ity that needs to be addressed. Here, we focus only on unsound
verification algorithms (or adversarial attacks) because complete
verifiers are not yet viable in practice.

Session 2: Security of Machine Learning IH-MMSec ’22, June 27–28, 2022, Santa Barbara, CA, USA

51

https://orcid.org/0000-0002-4005-2273
https://orcid.org/0000-0002-9983-1060
https://orcid.org/0000-0002-5356-2192
https://orcid.org/0000-0001-9363-1482
https://github.com/szegedai/hiding-needles-in-a-haystack
https://doi.org/10.1145/3531536.3532966
https://doi.org/10.1145/3531536.3532966
https://doi.org/10.1145/3531536.3532966

Before sketching the main ideas behind our proposal, we should
mention that the areas of backdoor attacks and adversarial attacks
have converged recently. Originally, backdoor attacks on DNNs
aimed to modify the DNN so that some specific input pattern would
trigger malicious behavior [9]. Very recently, some proposals in-
volved backdoor patterns that are invisible [14, 15], rendering the
backdoor detection problem very similar to adversarial verifica-
tion. In fact, a special breed of adversarial perturbations, namely
universal (input independent) perturbations were also proposed as
an information hiding method, e.g. to hide backdoor triggers [26].
Miller et al. [16] provides a good survey of the area.

With this in mind, our problem can be framed as a backdoor at-
tack with special constraints: (1) the trigger pattern should be an in-
visible perturbation from an ℓ𝑝 norm ball to meet the requirements
of an adversarial perturbation, (2) the infected network should resist
search-based detectors, especially adversarial attacks, and (3) the
clean target network should not have natural adversarial examples
(in other words, it should be robust) because the attacker wants to
pose as offering a robust network. Such solutions are not readily
available in the backdoor attack literature, but some ideas can be
borrowed.

In a nutshell, our backdoor attack involves deep steganogra-
phy (inspired by [2]) to create invisible adversarial patterns via
embedding a fixed “backdoor key” image into the input image.
We also apply an explicit enforcement of the maximal size of the
perturbation during training, and we also apply a differentiable
JPEG compression component to make sure that the secret pattern
is robust to compression [21]. To create a “needle in a haystack”
search problem, the backdoor network is attached to the target net-
work [23] as opposed to learning it through poisoning the dataset.
This means that the target network remains intact as part of the in-
fected network. For example, it can be a robust network, as required
by our problem setting. This also allows us to make the gradient
of the backdoor subspace completely independent of that of the
normal input space.

Our contributions are the following:

(1) We propose a backdoor attack specifically designed to mis-
lead adversarial attacks, also known as unsound robustness
verifiers,

(2) Our artificial adversarial inputs are “needles in a haystack”,
which make them practically impossible to find for search-
based methods, and

(3) We evaluate our solution with state-of-the-art attacks over
the CIFAR-10 and ImageNet datasets.

The paper is organized as follows. First, we describe the problem
specification and our basic assumptions in Section 2. Then we
discuss related work in Section 3. In Section 4, we describe our
proposed attack, including the steganographic components and
the embedding of the backdoor network into target networks. In
Section 5, we outline the training process that was used to create the
backdoor network over the CIFAR-10 database. Next, we present
our main results using state-of-the-art adversarial attacks, and show
that our construction behaves according to the specification stated
in Section 6. In Section 6.4, we discuss how the results transfer to
ImageNet. Finally, Section 7 concludes the paper.

2 PROBLEM STATEMENT
We wish to construct a DNN that is not adversarially robust by
construction but this fact cannot be proven by currently existing
neural network verifiers. In other words, we wish to create a net-
work that appears to be robust while it is in fact not. This would
in turn prove that verification methods alone are not reliable for
filtering out networks that are not robust or even malicious.

Our motivation is based on a common scenario, where an ap-
plication depends on a DNN to classify images, where the DNN is
provided by a third party as a cloud service, or a local licensed copy.
The application might run on diverse platforms from smartphones
to self-driving vehicles. A malicious provider might want to exploit
the adversarial examples of the model, or even insert a backdoor
into the DNN it provides in order to be able to take control of the
application that depends on it. We will refer to the provider of the
DNN as the attacker. The attacker wants to pose as a provider of a
robust network, and thus wants to bypass robustness verification
algorithms.

The attacker has full control over the provided DNN, including
the training data, the network architecture, and the network pa-
rameters as well. However, crucially, we also assume that the DNN
has to pass a verification procedure by independent authorities.

We note that this scenario explicitly prevents the application
of some very strong backdoor removal techniques such as those
presented by Shafieinejad at al [20] that propose the training of
entirely new models based on an existing one through model distil-
lation [10] and related techniques. Independently of this, achieving
sufficient quality via distillation is becoming increasingly expen-
sive as the commercially available models and the datasets they are
based on are constantly increasing in size, so the training algorithms
are becoming more resource-hungry.

Also, we assume that the attacker is not able to provide direct
input to its own network. Instead, the attacker must act as a user
of the application, for example, by uploading images to a cloud
service, or even showing images to a camera. The images therefore
undergo some preprocessing such as compression.

Based on the scenario above, we define the list of requirements
for the model we wish to construct as follows:

(1) Adversarial examples must be present in such a way that
the verification attempts by the independent authority fail
to identify them,

(2) The artificial adversarial examples (i.e., backdoor triggers)
inserted by the attacker are indistinguishable from normal
images by the human eye, and

(3) The malicious images must survive transformations such as
JPEG compression.

3 RELATEDWORK
Our goal is similar to that of creating a backdoor for a DNN, but we
have special requirements, since we focus on evading robustness
verification, in order to make the point that these verifiers can
be circumvented, should the attacker wish to do so. The study by
Zombori et al. [29] has a similar goal, only they focus on formal
verification and very specific numerical errors.We are not interested
in formal verification, because we will just focus on large networks,
where these methods are not applicable.

Session 2: Security of Machine Learning IH-MMSec ’22, June 27–28, 2022, Santa Barbara, CA, USA

52

Although we cannot rely on known backdoor attacks directly,
there are many related ideas we build on. Like us, Tang et al. [23] use
a separate backdoor network inserted in a target network. However,
their backdoor trigger is visible and fixed (similar to a QR code),
and the gradient is continuous (although trained to be close to zero
for normal images) making the method potentially vulnerable to a
sophisticated gradient-based search.

In our separate backdoor network, we apply the idea of deep
steganography [2]. Zhang et al. [28] provide a nice survey of this
area. The proposal of Li et al. [15] has a number of similarities to
our work, most importantly, it uses deep steganography as well to
insert image-specific backdoor patterns. However, the attack uses
the container images to poison the training data, and this way, the
gradient is once again continuous for search methods to potentially
exploit. Also, although the perturbations are perceptually small,
their norm is not guaranteed to have an upper bound; a requirement
that our problem has.

Another important difference is that Li et al. [15] fine-tune a net-
work that itself is not adversarially robust. In our problem setting,
it is important for the clean network to be robust to adversarial
attacks, since the attacker’s goal is to make everyone believe that
the network is robust while in fact it is not. This might not be a
trivial problem to solve. For example, Weng et al. [25], make inter-
esting observations about the interplay between robust learning
and backdoor attacks.

To achieve a tolerance to JPEG transformation of our backdoor
triggers, we used the differentiable model of Shin et al. [21]. Zhang
et al. [27], for example, describe an improved approach where,
during training, the gradient flows forward, but not backward (the
JPEG component is skipped). However, this works only with high
quality settings; here, we applied a low quality setting to maximize
robustness.

The adversarial perturbations we add to the network need to
be invisible, to be precise, their norm has to be upper bounded. Li
et al. [14] also propose invisible patterns by creating a poisoned
dataset using either traditional steganography, or an adversarial
attack-like approach for finding universal perturbations. Again, this
approach is not suitable here because of the continuous gradients
and the lack of the upper bound on the perturbations. Zhang et
al. [26] also consider universal adversarial perturbations for hiding
images.

4 PROPOSED BACKDOOR ATTACK
To insert artificial adversarial examples into a given model, we
propose a backdoor approach. Before going into the details, let us
summarize it in a nutshell. Since the attacker is assumed to have
control over the DNN, the attack will apply a separate backdoor
network that is integrated into the target DNN [23]. To meet the
requirements described in Section 2, we apply deep steganogra-
phy [2] to create a hiding network that is able to embed an image
into a target image, along with a revealing network that is able to
extract the embedded image. This ensures that the modification is
invisible. The idea is that the backdoor will be opened by a specific
embedded image. We also apply a JPEG model [21] during the train-
ing process to make sure the decoder is robust to JPEG compression.
Finally, the integration of the backdoor into the target DNN will be

carried out in such a way that the backdoor is safe from the known
backdoor detector solutions. We now discuss each component in
detail.

4.1 Steganographic Component
Weadopt the approach of deep steganography proposed by Baluja [2]
with some modifications that include the application of JPEG com-
pression and our own regularization terms in the loss function, as
described below.

Figure 1 illustrates the architecture of the model, which is based
on three subnetworks: the preparation network, the hiding network
and the revealing network. The input of the preparation network
is a secret pattern 𝑆 that we wish to hide in the cover image 𝐶 . The
hiding network then takes the output of the preparation network
and the cover image as input. The container image𝐶 ′ is created via
clipping the output of the hiding network by an ℓ𝑝 ball centered
around 𝐶 (where 𝑝 = 2 or 𝑝 = ∞, and the radius of the ball is a
hyperparameter 𝜖) and then applying JPEG compression. During
training, JPEG compression is modeled through a differentiable
model1 proposed by Shin et al. [21]. This way, the model as a whole
remains differentiable. From a container image, the revealing net-
work produces the revealed secret 𝑆 ′. Note that 𝑆 ′ is not necessarily
a valid image as its pixels are real valued.

The secret image is a grayscale image of size𝑀 ×𝑀 , scaled up
to the size of the cover image, 𝑁 ×𝑁 (𝑁 ≥ 𝑀). During training, we
generate secret images at random, sampling each pixel from the
standard uniform distribution, independently. This way, the model
is forced to learn to differentiate between any two patterns in the
entire domain of the possible secret images. The cover image is
sampled from a training dataset.

Our loss function is

L(𝑆, 𝑆 ′, 𝑆 ′𝛼 , 𝑆 ′𝛽) = ∥𝑆 − 𝑆 ′∥2 + 𝛼 ∥𝑆 − 𝑆 ′𝛼 ∥2 + 𝛽 ∥−1 − 𝑆 ′𝛽 ∥2, (1)

where, in addition to the error term ∥𝑆 − 𝑆 ′∥2, we also use two
regularizer terms. Here, 𝑆 ′𝛼 is the output of the revealing network
when JPEG compression is not included in the processing chain.
This regularization is used to prevent the network from overfitting
the JPEG compression model. The second regularization term is
based on 𝑆 ′

𝛽
, which is the output of the revealing network over

the unmodified cover image 𝐶 . This term forces the network to
recognize images that do not contain any secret image by forcing
the revealed image 𝑆 ′

𝛽
to be similar to an invalid image −1, in which

all the pixels are equal to −1.
Compared to [2], our two regularization terms are novel. Also,

instead of adding a noise term to the container image, we apply
a relatively low quality setting of 50% in the differentiable JPEG
model. Another difference is that instead of minimizing the distance
between the cover image and the container image, we explicitly
clip the container image and thereby bound the distance from the
cover image. The network then learns how to encode the secret
image, with this important hard constraint.

We employed almost the same architectures for our three net-
works (preparation, hiding, and revealing) as proposed in [2], only
we worked with grayscale secret images. This means that each net-
work had 5 convolutional layers with 3 × 50 filters in each, where
1https://github.com/mlomnitz/DiffJPEG

Session 2: Security of Machine Learning IH-MMSec ’22, June 27–28, 2022, Santa Barbara, CA, USA

53

https://github.com/mlomnitz/DiffJPEG

Figure 1: Hiding and revealing the secret backdoor activation pattern via deep steganography.

the three types of filters had sizes 3× 3, 4× 4, and 5× 5. The hiding
network and the revealing network produce an 𝑁 × 𝑁 RGB and
grayscale image, respectively, using 1 × 1 filters in the last layer.2

4.2 Inserting the Backdoor
Here, we present our method for inserting a backdoor to any given
target model. As shown in Figure 2, we do not modify the target
model, but just extend it with a backdoor, as proposed in [23].

The input 𝑥 might be a clean image or it might contain a backdoor
trigger 𝑆 hidden by our steganographic method. The backdoor
trigger is fixed by the attacker and the backdoor network looks
for this specific trigger. The input is fed into the target model
and the backdoor network. The first component of the backdoor
network is the revealing network that was trained as part of our
steganographic component. The output of the revealing network
𝑆 ′ is then compared to a fixed backdoor key 𝑆 by computing the
sum of squared error ∥𝑆 − 𝑆 ′∥22.

The goal of the remaining part of the backdoor network is to
compute 𝑃 , where 𝑃 = 0 if ∥𝑆 − 𝑆 ′∥22 ≥ 𝜏 and 𝑃 = 1 if ∥𝑆 − 𝑆 ′∥22 ≤
𝜏 − 1. In Figure 2, the circles denote ReLU neurons, the value inside
the circle is the bias term, and the value along the connection is
the weight. In words, if the error ∥𝑆 − 𝑆 ′∥22 is less than a fixed
threshold 𝜏 then the revealed pattern is close to the secret backdoor
trigger, and the backdoor is activated. The computed 𝑃 is then
used to compute the output of the entire model in such a way
that if the backdoor is not active, then the output of the target
model is produced. Otherwise the labels are shifted: we predict
class (𝑖 + 1 mod 𝐾) instead of class 𝑖 in a 𝐾-class classification
problem. The choice of shifting the labels is completely arbitrary.
We could implement any malicious behavior, such as returning a
specific label.

We note that a similar backdoor network could be implemented
using only ReLU neurons fully integrated into the architecture of
the target network [29]. Since here we do not consider detection
methods that are based on the inspection of the network architec-
ture, for simplicity we used the solution described above. Our only
concern here is that the network should be differentiable.

4.3 Revisiting our Motivation
Having described our construction, let us revisit the motivation for
our design choices.

2For more details please go to https://github.com/fpingham/DeepSteg.

Shifted logits×P

x
Target model with backdoor

shifted copy

Copied logits×(1-P)

copy

+

y

Copied logits×(1-P)+Shifted logits×P

× ×

Target model

Logits

Backdoor network
Pretrained revealing network

||S'-S||2
2

-1

τ
-1

1

Threshold

-1

1

1-P

P

Figure 2: Infecting a target model with a backdoor network,
using secret backdoor trigger 𝑆 and threshold 𝜏 .

An invisible trigger. Our implementation of deep steganog-
raphy explicitly enforces the constraint that the container image
has to be within a certain distance 𝜖 according to an ℓ𝑝 norm. This
provides us with explicit control on how much perturbation is al-
lowed. This constraint makes our perturbations compatible with
the definition of adversarial robustness [22], in other words, our
backdoor trigger perturbations are adversarial perturbations within
the given ℓ𝑝 ball.

Preventing detection. Heuristic verifiers of adversarial robust-
ness are invariably based on defining a search problem in the input
space. Our approach for preventing the detection of the backdoor
trigger examples is based on creating a “needle in the haystack”

Session 2: Security of Machine Learning IH-MMSec ’22, June 27–28, 2022, Santa Barbara, CA, USA

54

https://github.com/fpingham/DeepSteg

problem for detectors that is arguably the hardest problem for
any search-based approach. The only viable algorithms here are
exhaustive search and formal verification, both of which are pro-
hibitive in our case. We achieve this goal by defining a very small
input subspace that triggers the backdoor (“needle”) and using a
threshold-based triggering mechanism, which effectively makes
this small subspace completely independent of the rest of the input
space (the “haystack”).

5 PREPARING THE BACKDOOR
The model we proposed above has to be trained over a specific
dataset, and before deployment, a secret image 𝑆 has to be fixed
that will be used as the backdoor trigger. A decision threshold 𝜏 also
has to be chosen. Furthermore, the training process itself depends
on a set of hyperparameters, most importantly, the size of the secret
image (𝑀) and the coefficients for the regularization terms in the
loss function (𝛼, 𝛽) in Equation (1) .

Here, we present an empirical analysis of these decisions using
the CIFAR-10 [13] dataset. We separated 5000 training samples, cho-
sen uniformly at random, to form the validation set. The remaining
55000 samples formed the training set. We used the validation set
to explore the hyperparameter settings. (The test set is used in
Section 6 for evaluation.)

Fixed settings for training. We used the ADAM optimizer,
with a learning rate of 10−4 and a batch size of 100. The patience
parameter of early stopping was set to 2 for the ℓ∞ norm and to
5 for the ℓ2 norm. The clipping radius 𝜖 was 𝜖∞ = 8/255 for ℓ∞
and 𝜖2 = 0.5 for ℓ2. These choices of 𝜖 result in practically invisible
changes in the cover images. Note that all the color channels have
the range [0, 1]. We used real JPEG compression3 with a quality
of 80 throughout the whole parameter validation phase. As men-
tioned earlier, during training the differentiable JPEG compression
model was applied [21], but we set a lower quality (50 instead of
80) because the differentiable model is inaccurate compared to ac-
tual JPEG compression. Later we will show that the models trained
using JPEG conversion are also good for scenarios without JPEG
conversion.

Regularization coefficients. Figure 3 shows the effect of var-
ious values for 𝛼 and 𝛽 with the ℓ∞ norm and the ℓ2 norm. We
generated 1000 random backdoor activation patterns, hid each of
them in the images of the validation set, and compared them to
the patterns revealed from the JPEG-compressed container images.
Here, the size of the secret patterns was 4 × 4. The plots show the
mean false negative rate as a function of the relative threshold 𝜏/𝑅𝑆
for 1000 random choices of secret image 𝑆 . The threshold reference
point 𝑅𝑆 of the chosen backdoor activation pattern 𝑆 is defined as

𝑅𝑆 = min
𝑆′∈𝐹

𝑆 − 𝑆 ′22 , (2)

where 𝐹 is the set of the images revealed from the original clean
images of the validation set by the given revealing network.

Intuitively, if 𝜏 ≤ 𝑅𝑆 then no clean images will activate the
backdoor; that is, the false positive rate will be zero. At the same
time, if 𝜏 is too small then wewill get more andmore false negatives;
that is, cases where the input image contains the backdoor trigger
but the backdoor is not activated. The plots tell us how the FNR
3Pillow 8.3.1. https://pillow.readthedocs.io/en/stable/releasenotes/8.3.1.html

depends on the threshold. Based on this, we fix 𝛼 = 0.1 and 𝛽 =

0.001 for the ℓ∞ norm, and 𝛼 = 1 and 𝛽 = 0 for the ℓ2 norm from
now on. These settings are preferable independently of the chosen
threshold.

Size of the secret pattern. As mentioned before, we apply
randomly generated 𝑀 × 𝑀 grayscale images as secret patterns
that are scaled up to the size of the cover image. Figure 4 shows the
effect of various pattern sizes with the ℓ∞ norm and the ℓ2 norm.
Based on the results, we select𝑀 = 4 (that is, patterns of size 4 × 4)
for both norms from now on, because a larger size has the extra
advantage that the backdoor trigger subspace corresponding to a
fixed pattern is much smaller. We should add that for 𝑀 > 4 the
learning algorithm did not converge at all. We think that this is
probably because JPEG conversion uses 8 × 8 pixel blocks, and for
𝑀 > 4, the scaled version of the pattern is misaligned with the
JPEG blocks.

Decision threshold. As for the threshold 𝜏 , we propose 𝜏 =

𝑅𝑆/2. The reason is that our highest priority is to avoid false positive
backdoor detections, but we would also like a low false negative
rate (FNR), and based on the plots 𝜏 = 𝑅𝑆/2 is a good tradeoff.

Selecting the secret pattern. Finally, out of the 1000 random
patterns we experimented with, we selected those with the low-
est FNR over the validation set (assuming the fixed parameters
described above) for different settings of the norm and the maximal
perturbation size 𝜖 . The selected patterns are shown in Figure 5.
These secret images were embedded in the corresponding back-
door networks. The case 𝜖∞ = 4/255 is included for our ImageNet
experiments and it will be discussed in Section 6.4. We note that
the optimal pattern 𝑆 might be different for a backdoor network
trained on a different dataset, but these patterns are not very criti-
cal and might work on different datasets without retraining, as we
demonstrate in Section 6.4. We also show the FNR of these specific
patterns in both Figure 3 and 4.

6 EVALUATION OF BACKDOOR DETECTORS
Here, we evaluate our backdoor using a number of different detec-
tion methods. The backdoor networks we examine were created
as described in Section 5. The evaluation was performed on the
CIFAR-10 test set that contains 10000 examples.

We assume that the detectors have access to the gradient of
the infected DNN as a whole (that is, the target network with the
embedded backdoor network), but they do not have access to our
steganography networks (preparation, hiding, and revealing). We
also assume that the detectors are aware of the size of the maximal
perturbation 𝜖 and the applied norm ℓ𝑝 as well. Note that in practice
this last assumption is not likely to hold, so in practice the detectors
will be weaker.

The detection methods we consider are adversarial attacks on the
infected network, and a widely used method for backdoor detection
called Neural Cleanse [24]. But first, we present an empirical exper-
iment to approximate the probability of accidentally triggering the
backdoor.

6.1 Random Sampling
As described before, the perturbation of the cover image 𝐶 is con-
strained by an ℓ𝑝 ball of radius 𝜖 . In this experiment, we wanted

Session 2: Security of Machine Learning IH-MMSec ’22, June 27–28, 2022, Santa Barbara, CA, USA

55

https://pillow.readthedocs.io/en/stable/releasenotes/8.3.1.html

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
N

R

τ/RS

α=1,β=0
α=0.1,β=0

α=0.1,β=0.001
proposed pattern

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
N

R

τ/RS

α=0,β=0
α=0.1,β=0.001

α=0.1,β=0
α=1,β=0

proposed pattern

Figure 3: The mean false negative rate (FNR) of revealing 1000 random secret patterns hidden in CIFAR-10 validation JPEG
images as a function of the relative threshold with the ℓ∞ norm (left) and the ℓ2 norm (right) with various 𝛼 and 𝛽 values. The
hatched area shows the standard deviation.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
N

R

τ/RS

1x1
2x2
4x4

proposed pattern

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
N

R

τ/RS

2x2
1x1
4x4

proposed pattern

Figure 4: The mean false negative rate (FNR) of revealing 1000 random secret patterns hidden in CIFAR-10 validation JPEG
images as a function of the relative threshold with the ℓ∞ norm (left) and the ℓ2 norm (right) with various secret image sizes
(𝑀). The hatched area shows the standard deviation.

Figure 5: Proposed secret pattern 𝑆 for ℓ∞ with 𝜖∞ = 8/255, ℓ∞
with 𝜖∞ = 4/255 and ℓ2 with 𝜖2 = 0.5.

to empirically approximate the probability of those perturbations
that result in the activation of a backdoor; that is, the probability
of revealing a fixed pattern, as a function of the threshold. This
empirical investigation is necessary because a theoretical estimate
is difficult to provide due to the lack of a formal description of the
probability distribution of the revealed secret images. This distri-
bution is rather specific to our model that was trained on𝑀 ×𝑀
patterns. Assuming a uniform distribution over the possible 𝑁 × 𝑁
images would result in a gross underestimation of the probability
in question. At the same time, assuming noise-free patterns (that

is,𝑀 ×𝑀 grayscale patterns scaled up to 𝑁 × 𝑁) as output would
result in a gross overestimation.

As mentioned before, we selected an activation threshold refer-
ence point 𝑅𝑆 (see Equation (2)) such that the false positive rate
is zero over the validation set, but the false negative rate is larger
than zero. However, since 𝑅𝑆 is set over the validation set, it is still
necessary to examine the statistics over the test set and see whether
we can find false positives below our reference point 𝑅𝑆 .

In our experiment, we generated 108 “fake” container image sam-
ples. In the case of the ℓ∞ norm, we added a uniformly distributed
random number from the range [−𝜖∞, 𝜖∞] to each pixel and chan-
nel in the cover image. For the ℓ2 norm, the additive noise was a
normally distributed random vector normalized to the length of
𝜖2. For each sample, we calculated the distances between the pre-
viously proposed fixed secrets and the patterns revealed from the
sample. The distributions of distances (normalized by 𝑅𝑆 as mea-
sured on the validation set) are shown in Figure 6. Apart from the
patterns with the lowest FNR (given in Figure 5) the patterns with
the highest FNR are also shown, labeled as the least recommended
pattern. From the plots, we see that we have lots of hits below the
reference point 𝑅𝑆 on the test set. However, the proposed 𝑅𝑆/2

Session 2: Security of Machine Learning IH-MMSec ’22, June 27–28, 2022, Santa Barbara, CA, USA

56

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 0.5 1 1.5 2

C
D

F

SSE/RS

Our most recommended pattern
Our least recommended pattern

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 0.5 1 1.5 2

C
D

F

SSE/RS

Our most recommended pattern
Our least recommended pattern

Figure 6: The cumulative distribution function of the distances between the proposed secret and the patterns revealed from
CIFAR-10 test images with the ℓ∞ norm (left) and the ℓ2 norm (right).

is confirmed to be a safe choice because the empirical probability
of triggering the backdoor is less than 10−8 (there are no positive
examples in the 108 samples) and based on the approximate shape
of the CDF, the theoretical probability could be orders of magnitude
less (note the log scale).

The least recommended pattern appears to perform better, but
this is misleading, because the price for this is the very high FNR,
which means that the backdoor will often stay inactive even when
the backdoor trigger secret is embedded in the container image.

6.2 Adversarial Attacks
Our setup is identical to that of the adversarial perturbation prob-
lem. Our backdoor patterns are encoded as perturbations within
a very limited radius of the original cover image. Also, instead of
fixed perturbations, we have diverse, image specific, invisible pat-
terns. Our infected DNNs are essentially DNNs where adversarial
robustness is artificially reduced and our container images are the
artificial adversarial examples.

As a consequence, state-of-the-art adversarial attacks on the
infected network are suitable tools for trying to reveal the backdoor,
especially if the target network is robust; that is, if it has no natural
adversarial input perturbations.

We experimented with a number of diverse and state-of-the-
art attacks, both gradient-based and gradient-free. The Square At-
tack [1] is gradient-free, for which the number of queries was set
to 5000. As for gradient-based attacks, we examined the untargeted
Auto Projected Gradient Descent (APGD) [6] with cross-entropy
(CE) and Difference of Logits Ratio (DLR) loss. Also, we included
the untargeted Fast Adaptive Boundary Attack (FAB) [5] in our
experiments. Here, we used the Auto Attack [6] library to set the
parameters of the attacks and to evaluate all the attacks. We ran 5
trials with the gradient-based attacks.

We used robust models as target models, in which we inserted
the backdoor. The models we chose are a set of top performer
models on RobustBench [4]. These models represent a diverse set
of architectures. We selected the best robust models because, this
way, most input images only have our hidden backdoor pattern
as possible adversarial perturbations (that is, perturbations that
mislead the model). We evaluated both the clean models and their
backdoor-infected versions. It might be the case that the adversarial

attack is successful but the adversarial example belongs to the
clean model. For this reason, we also checked to see whether the
adversarial image resulting from the attack activates the backdoor.
The results are shown in tables 1 and 2.

The results from these tables clearly show that the clean and
infected versions of the models behave in exactly the same way
when using adversarial attacks in every scenario, and the backdoor
is never found. At the same time, when the input image contains
the hidden backdoor trigger pattern, the clean model has almost
the same accuracy as with the clean images (that is, the backdoor
pattern is not adversarial for the clean model) while the backdoor
is almost always activated.

This means that the backdoor pattern is strongly adversarial
for the infected model, yet the adversarial attacks never find this
pattern. Our infected networks thus prove constructively that state-
of-the-art adversarial attacks—which are often used as heuristic
verifiers for robustness—have an Achilles heel, as they are not able
to cope with our needle in the haystack construction.

Another interesting observation is that the images with the back-
door pattern achieved a higher backdoor activation rate when no
JPEG compression was applied, which means that we successfully
prevented overfitting the JPEG compression.

6.3 Neural Cleanse
Neural Cleanse [24] is a standard backdoor detector not unlike
adversarial attacks, but it requires a number of different assump-
tions. Most importantly, it does not assume that the perturbation
is within a ball according to any norm, but it assumes that for
every target class there is a fixed pattern that activates that class.
This means that this method is not well suited for detecting our
backdoor, mostly because in our case every backdoor pattern is
image-specific.

Nevertheless, there could still be regularities in our image-specific
patterns (see the Appendix for visualizations). To make the setup
fairer for Neural Cleanse, we created a modified version of our
backdoor that, instead of shifting the labels, produces a constant
vector of logit activations (in the penultimate layer) where the neu-
ron corresponding to the target class has the largest activation. We
embedded the backdoor into the models used in the first columns
of tables 1 and 2 for the ℓ∞ norm and the ℓ2 norm, respectively. The

Session 2: Security of Machine Learning IH-MMSec ’22, June 27–28, 2022, Santa Barbara, CA, USA

57

Table 1: Adversarial accuracy of unmodified and backdoor-infected robust models under various adversarial attacks and for
our embedded backdoor trigger pattern, in ℓ∞ norm (𝜖∞ = 8/255) on the CIFAR-10 test set. The rate of backdoor activation is
also shown.

Model Gowal2021Improving [8] Rade2021Helper [17] Rebuffi2021Fixing [18]
Architecture WideResNet-28-10 ddpm 100m WideResNet-34-10 extra WideResNet-70-16 cutmix extra
Clean accuracy 0.8750 0.9147 0.9223
input image clean infected rate of clean infected rate of clean infected rate of
perturbation model model backdoor model model backdoor model model backdoor
method adv. acc. adv. acc. activation adv. acc. adv. acc. activation adv. acc. adv. acc. activation
Square Attack [1] 0.6881 0.6884 0.0000 0.6930 0.6932 0.0000 0.7376 0.7368 0.0000
FAB [5] 0.6404 0.6404 0.0000 0.6345 0.6349 0.0000 0.6752 0.6748 0.0000
APGD-CE [6] 0.6549 0.6548 0.0000 0.6559 0.6557 0.0000 0.6922 0.6925 0.0000
APGD-DLR [6] 0.6510 0.6508 0.0000 0.6365 0.6366 0.0000 0.6764 0.6765 0.0000
Backdoor Trigger 0.8719 0.0148 0.9992 0.9105 0.0112 0.9992 0.9166 0.0095 0.9992
Backdoor Trigger + JPEG 0.8586 0.0179 0.9972 0.8969 0.0139 0.9972 0.9017 0.0127 0.9972

Table 2: Adversarial accuracy of unmodified and backdoor-infected robust models under various adversarial attacks and for our
embedded backdoor trigger pattern, in ℓ2 norm (𝜖2 = 0.5) on the CIFAR-10 test set. The rate of backdoor activation is also shown.

Model Rebuffi2021Fixing [18] Rade2021Helper [17] Rebuffi2021Fixing [18]
Architecture WideResNet-28-10 cutmix ddpm PreActResNet-18 ddpm WideResNet-70-16 cutmix extra
Clean accuracy 0.9179 0.9057 0.9574
input image clean infected rate of clean infected rate of clean infected rate of
perturbation model model backdoor model model backdoor model model backdoor
method adv. acc. adv. acc. activation adv. acc. adv. acc. activation adv. acc. adv. acc. activation
Square Attack [1] 0.8502 0.8503 0.0000 0.8286 0.8296 0.0000 0.8969 0.8972 0.0000
FAB [5] 0.7900 0.7900 0.0000 0.7636 0.7633 0.0000 0.8271 0.8270 0.0000
APGD-CE [6] 0.8000 0.8000 0.0000 0.7695 0.7695 0.0000 0.8319 0.8317 0.0000
APGD-DLR [6] 0.7901 0.7902 0.0000 0.7638 0.7636 0.0000 0.8261 0.8261 0.0000
Backdoor Trigger 0.9173 0.0090 0.9999 0.9047 0.0109 0.9999 0.9568 0.0042 0.9999
Backdoor Trigger + JPEG 0.9064 0.0692 0.9368 0.8970 0.0693 0.9368 0.9471 0.0673 0.9340

Figure 7: The trigger patterns reverse-engineered by Neural
Cleansewith ℓ∞ (𝜖∞ = 8/255), from the cleanmodel, themodel
infected with the constant-label backdoor, and the model
infected with the label-shifting backdoor (left to right).

reverse-engineered trigger patterns returned by Neural Cleanse on
the infected model are very similar to those reverse-engineered
from the clean model, as figures 7 and 8 indicate. The figures show
the patterns for label ‘7’. Note that these patterns are not very
similar to the actual patterns (see the Appendix).

We also present the anomaly indices of the evaluated models in
Table 3 (the values are averages of three independent runs). These
are all below the threshold level of 2, which means Neural Cleanse
was unable to detect the backdoor [24]. Neural Cleanse also fails
to detect any target class in any scenario. It was already found

Figure 8: The trigger patterns reverse-engineered by Neural
Cleanse with ℓ2 (𝜖2 = 0.5), from the clean model, the model
infected with the constant-label backdoor, and the model
infected with the label-shifting backdoor (left to right).

Table 3: Neural Cleanse Anomaly Indices

ℓ∞ ℓ2
Clean model 1.7804 1.0256
Model with constant-label backdoor 1.7675 0.9969
Model with label-shifting backdoor 1.7075 1.0095

that Neural Cleanse is unable to identify the trigger in the case
of untargeted attacks which have multiple infected labels with a
single trigger [12]. We also found the same with the label-shifting

Session 2: Security of Machine Learning IH-MMSec ’22, June 27–28, 2022, Santa Barbara, CA, USA

58

Table 4: Adversarial accuracy of clean and backdoor-infected
robust models under various adversarial attacks and for our
embedded backdoor trigger pattern, in ℓ∞ norm (𝜖∞ = 4/255)
on the CIFAR-10 test set. The rate of backdoor activations is
also shown.

Model Rade2021Helper [17]
Architecture WideResNet-34-10 extra
Clean accuracy 0.9147
input image clean infected rate of
perturbation model model backdoor
method adv. acc. adv. acc. activation
Square Attack [1] 0.8254 0.8245 0.0000
FAB [5] 0.8030 0.8029 0.0000
APGD-CE [6] 0.8134 0.8133 0.0000
APGD-DLR [6] 0.8026 0.8027 0.0000
Backdoor Trigger 0.9128 0.0794 0.9262
Backdoor Trigger + JPEG 0.8989 0.1341 0.8675

backdoor network. It has also been pointed out, that Neural Cleanse
and related methods can only detect backdoors based on the gradi-
ent flow [23]. As we mentioned repeatedly, our proposed method
has a zero gradient flow for normal inputs due to the discontinuous
nature of the infected network. This is the reason why, from the
point of view of Neural Cleanse, all the three versions of the model
look the same, as figures 7 and 8 and Table 3 also illustrate.

6.4 Using the CIFAR-10 Backdoor Model on
ImageNet

In principle, our backdoor network that was trained on CIFAR-10
can be used to infect any image classifier models even if they were
trained on another dataset. The images the classifier accepts as
input should have a size greater than or equal to that of the CIFAR-
10 images (32×32). There are several ways of hiding a 32×32 secret
in a larger image. For example, we can designate a 32× 32 region in
the image and hide the secret there. Or we can even insert multiple
non-overlapping instances.

To learn whether the CIFAR-10 backdoor generalizes to other
datasets, we evaluate our method over 50000 examples of the Im-
ageNet [7] validation dataset. We hide the backdoor activation
pattern in the top left 32 × 32 region and we input this region to
the backdoor network. The most common 𝜖 for ImageNet is 4/255
in ℓ∞. Note that this is a much smaller ℓ∞ ball than the one we
used for CIFAR-10 (where 𝜖∞ = 8/255), so this is a harder problem.
Though we could have used 𝜖∞ = 8/255, to be consistent with
related studies we first trained an 𝜖∞ = 4/255 backdoor network
on CIFAR-10 and then inserted it into an ImageNet model. To train
the steganographic components, we used the same hyperparameter
values as in the case of 𝜖∞ = 8/255.

Since we are now working with 𝜖∞ = 4/255, first we evaluated
this smaller perturbation with our previous adversarial attacks on
CIFAR-10. The results are shown in Table 4. The results can be
compared with those in Table 1, where the same clean model is
evaluated. We notice that the clean model is more robust to the
adversarial attacks (the adversarial accuracies are higher), which

Table 5: Adversarial accuracy of clean and backdoor-infected
robust models under various adversarial attacks and for our
embedded backdoor trigger pattern, in ℓ∞ norm (𝜖∞ = 4/255)
on ImageNet examples. The rate of backdoor activations is
also shown.

Robust model Salman2020Do [19]
Architecture ResNet-18
Clean acc. 0.5103
input image clean infected rate of
perturbation model model backdoor
method adv. acc. adv. acc. activation
Square Attack [1] 0.3663 0.3661 0.0000
FAB4 [5] 0.3279 0.3277 0.0000
APGD-CE [6] 0.2808 0.2806 0.0000
APGD-DLR [6] 0.2622 0.2624 0.0000
Backdoor Trigger 0.5103 0.0348 0.9575
Backdoor Trigger + JPEG 0.5064 0.0560 0.9158

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 0.5 1 1.5 2

C
D

F

SSE/RS

CIFAR-10
ImageNet

Figure 9: The cumulative distribution function of the dis-
tances between the proposed secret and the patterns revealed
from perturbed (𝜖∞ = 4/255) CIFAR-10 and ImageNet images.

is due to the smaller 𝜖 . When we input images with the backdoor
secret embedded, we observe a lower rate of backdoor activation.
Clearly, when the size of a possible perturbation is more restricted,
it becomes more difficult to hide patterns, and at the same time
we still require the false positive rate to be zero. This inevitably
increases the false negative rate. Nevertheless, the backdoor is
activated about 90% of the time.

Next, we performed the same measurements for ImageNet, as
shown in Table 5. It is once again clear that the adversarial attacks
are unable to activate the backdoor, and the hidden backdoor trigger
pattern activates the backdoor with a high probability. In fact, the
backdoor is activated with a slightly higher probability than in the
case of CIFAR-10. This could be due to the fact that the ImageNet
images are larger and the top left 32×32 region tends to be smoother
than CIFAR-10 images.

4It was evaluated over 10000 examples of the ImageNet validation dataset.

Session 2: Security of Machine Learning IH-MMSec ’22, June 27–28, 2022, Santa Barbara, CA, USA

59

In addition, we also repeated the random sampling experiment
with the usual 108 random samples, as shown in Figure 9. The refer-
ence point 𝑅𝑆 was determined based on the CIFAR-10 validation set.
The threshold 𝜏 = 𝑅𝑆/2 is still a viable option, even for ImageNet.

7 CONCLUSIONS
In this paper, our goal was to show that adversarial attacks can
be completely evaded. In other words, one can construct a neural
network that appears to be robust, while in reality it has adversarial
perturbations for almost every single input example.

To achieve this goal, we presented a backdoor attack that inserts
adversarial examples for each clean input image in such a way
that search-based methods are not able to identify these examples.
The key to this result is the idea that our artificial adversarial
examples are “needles in a haystack”, in other words, the gradient
over clean examples is completely uninformative, and the volume
of adversarial samples is extremely low. Our solution takes into
account the definition of the adversarial perturbation problem; that
is the perturbations that trigger the backdoor attack are bounded.
What is more, they are robust to JPEG compression.

We demonstrated that the method works with CIFAR-10 images,
and it can be applied on the ImageNet dataset as well without
fine-tuning.

ACKNOWLEDGMENTS
This work is supported by the National Research, Development
and Innovation Office, Hungary, under Grant No. TKP2021-NVA-09
and MILAB (Artificial Intelligence National Laboratory Program).

REFERENCES
[1] Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias

Hein. 2019. Square Attack: a query-efficient black-box adversarial attack via
random search. CoRR abs/1912.00049 (2019). arXiv:1912.00049 http://arxiv.org/
abs/1912.00049

[2] Shumeet Baluja. 2017. Hiding Images in Plain Sight: Deep Steganography. In
Advances in Neural Information Processing Systems, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.),
Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2017/file/
838e8afb1ca34354ac209f53d90c3a43-Paper.pdf

[3] Rudy Bunel, Jingyue Lu, Ilker Turkaslan, Philip H. S. Torr, Pushmeet Kohli,
and M. Pawan Kumar. 2020. Branch and Bound for Piecewise Linear Neural
Network Verification. Journal of Machine Learning Research 21, 42 (2020), 1–39.
http://jmlr.org/papers/v21/19-468.html

[4] Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Nicolas Flammar-
ion, Mung Chiang, Prateek Mittal, and Matthias Hein. 2020. RobustBench: a
standardized adversarial robustness benchmark. CoRR abs/2010.09670 (2020).
arXiv:2010.09670 https://arxiv.org/abs/2010.09670

[5] Francesco Croce and Matthias Hein. 2019. Minimally distorted Adversarial
Examples with a Fast Adaptive Boundary Attack. CoRR abs/1907.02044 (2019).
arXiv:1907.02044 http://arxiv.org/abs/1907.02044

[6] Francesco Croce and Matthias Hein. 2020. Reliable evaluation of adversarial
robustness with an ensemble of diverse parameter-free attacks. In Proceedings
of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July
2020, Virtual Event. PMLR, 2206–2216.

[7] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. IEEE, 248–255.

[8] Sven Gowal, Sylvestre-Alvise Rebuffi, Olivia Wiles, Florian Stimberg, Dan Andrei
Calian, and Timothy A Mann. 2021. Improving Robustness using Generated Data.
Advances in Neural Information Processing Systems 34 (2021).

[9] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. 2019. BadNets:
Evaluating Backdooring Attacks on Deep Neural Networks. IEEE Access 7 (2019),
47230–47244. https://doi.org/10.1109/ACCESS.2019.2909068

[10] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. 2015. Distilling the Knowl-
edge in a Neural Network. CoRR abs/1503.02531 (2015). arXiv:1503.02531
http://arxiv.org/abs/1503.02531

[11] Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer.
2017. Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks. In
Computer Aided Verification, Rupak Majumdar and Viktor Kunčak (Eds.). Springer
International Publishing, Cham, 97–117. https://doi.org/10.1007/978-3-319-
63387-9_5

[12] Panagiota Kiourti, Kacper Wardega, Susmit Jha, and Wenchao Li. 2020. TrojDRL:
Evaluation of Backdoor Attacks on Deep Reinforcement Learning. In 2020 57th
ACM/IEEE Design Automation Conference (DAC). 1–6. https://doi.org/10.1109/
DAC18072.2020.9218663

[13] Alex Krizhevsky. 2009. Learning multiple layers of features from tiny images.
Technical Report.

[14] Shaofeng Li, Minhui Xue, Benjamin Zi Hao Zhao, Haojin Zhu, and Xinpeng Zhang.
2021. Invisible Backdoor Attacks on Deep Neural Networks Via Steganography
and Regularization. IEEE Trans. Dependable Secur. Comput. 18, 5 (2021), 2088–2105.
https://doi.org/10.1109/TDSC.2020.3021407

[15] Yuezun Li, Yiming Li, Baoyuan Wu, Longkang Li, Ran He, and Siwei Lyu. 2021.
Invisible Backdoor Attack With Sample-Specific Triggers. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV). 16463–16472. http:
//arxiv.org/abs/2012.03816

[16] David J. Miller, Zhen Xiang, and George Kesidis. 2020. Adversarial Learning
Targeting Deep Neural Network Classification: A Comprehensive Review of
Defenses Against Attacks. Proc. IEEE 108, 3 (March 2020), 402–433. https:
//doi.org/10.1109/JPROC.2020.2970615

[17] Rahul Rade and Seyed-MohsenMoosavi-Dezfooli. 2021. Helper-based Adversarial
Training: Reducing ExcessiveMargin to Achieve a Better Accuracy vs. Robustness
Trade-off. In ICML 2021 Workshop on Adversarial Machine Learning. https:
//openreview.net/forum?id=BuD2LmNaU3a

[18] Sylvestre-Alvise Rebuffi, Sven Gowal, Dan A. Calian, Florian Stimberg, Olivia
Wiles, and Timothy A. Mann. 2021. Fixing Data Augmentation to Improve
Adversarial Robustness. CoRR abs/2103.01946 (2021). arXiv:2103.01946 https:
//arxiv.org/abs/2103.01946

[19] Hadi Salman, Andrew Ilyas, Logan Engstrom, Ashish Kapoor, and Aleksander
Madry. 2020. Do Adversarially Robust ImageNet Models Transfer Better?. In
ArXiv preprint arXiv:2007.08489.

[20] Masoumeh Shafieinejad, Nils Lukas, Jiaqi Wang, Xinda Li, and Florian Ker-
schbaum. 2021. On the Robustness of Backdoor-based Watermarking in Deep
Neural Networks. In IH&MMSec ’21: ACM Workshop on Information Hiding and
Multimedia Security, Virtual Event, Belgium, June, 22-25, 2021, Dirk Borghys,
Patrick Bas, Luisa Verdoliva, Tomás Pevný, Bin Li, and Jennifer Newman (Eds.).
ACM, 177–188. https://doi.org/10.1145/3437880.3460401

[21] Richard Shin and Dawn Song. 2017. JPEG-resistant adversarial images. In NIPS
2017 Workshop on Machine Learning and Computer Security, Vol. 1.

[22] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian J. Goodfellow, and Rob Fergus. 2014. Intriguing properties of neural networks.
In 2nd International Conference on Learning Representations (ICLR). http://arxiv.
org/abs/1312.6199

[23] Ruixiang Tang, Mengnan Du, Ninghao Liu, Fan Yang, and Xia Hu. 2020. An
Embarrassingly Simple Approach for Trojan Attack in Deep Neural Networks.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 218–228.

[24] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao
Zheng, and Ben Y. Zhao. 2019. Neural Cleanse: Identifying and Mitigating
Backdoor Attacks in Neural Networks. In 2019 IEEE Symposium on Security and
Privacy (SP). 707–723. https://doi.org/10.1109/SP.2019.00031

[25] Cheng-Hsin Weng, Yan-Ting Lee, and Shan-Hung Brandon Wu. 2020. On the
trade-off between adversarial and backdoor robustness. Advances in Neural
Information Processing Systems 33 (2020).

[26] Chaoning Zhang, Philipp Benz, Adil Karjauv, and In So Kweon. 2021. Universal
Adversarial Perturbations Through the Lens of Deep Steganography: Towards
a Fourier Perspective. In Thirty-Fifth AAAI Conference on Artificial Intelligence,
AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelli-
gence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial
Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021. AAAI Press, 3296–3304.
https://ojs.aaai.org/index.php/AAAI/article/view/16441

[27] Chaoning Zhang, Adil Karjauv, Philipp Benz, and In So Kweon. 2021. Towards
Robust Deep Hiding Under Non-Differentiable Distortions for Practical Blind
Watermarking. In MM ’21: ACM Multimedia Conference, Virtual Event, China,
October 20 - 24, 2021, Heng Tao Shen, Yueting Zhuang, John R. Smith, Yang
Yang, Pablo Cesar, Florian Metze, and Balakrishnan Prabhakaran (Eds.). ACM,
5158–5166. https://doi.org/10.1145/3474085.3475628

[28] Chaoning Zhang, Chenguo Lin, Philipp Benz, Kejiang Chen, Weiming Zhang,
and In So Kweon. 2021. A Brief Survey on Deep Learning Based Data Hiding,
Steganography andWatermarking. CoRR abs/2103.01607 (2021). arXiv:2103.01607
https://arxiv.org/abs/2103.01607

[29] Dániel Zombori, Balázs Bánhelyi, Tibor Csendes, István Megyeri, and Márk
Jelasity. 2021. Fooling a Complete Neural Network Verifier. In International
Conference on Learning Representations (ICLR). https://openreview.net/forum?
id=4IwieFS44l

Session 2: Security of Machine Learning IH-MMSec ’22, June 27–28, 2022, Santa Barbara, CA, USA

60

https://arxiv.org/abs/1912.00049
http://arxiv.org/abs/1912.00049
http://arxiv.org/abs/1912.00049
https://proceedings.neurips.cc/paper/2017/file/838e8afb1ca34354ac209f53d90c3a43-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/838e8afb1ca34354ac209f53d90c3a43-Paper.pdf
http://jmlr.org/papers/v21/19-468.html
https://arxiv.org/abs/2010.09670
https://arxiv.org/abs/2010.09670
https://arxiv.org/abs/1907.02044
http://arxiv.org/abs/1907.02044
https://doi.org/10.1109/ACCESS.2019.2909068
https://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1109/DAC18072.2020.9218663
https://doi.org/10.1109/DAC18072.2020.9218663
https://doi.org/10.1109/TDSC.2020.3021407
http://arxiv.org/abs/2012.03816
http://arxiv.org/abs/2012.03816
https://doi.org/10.1109/JPROC.2020.2970615
https://doi.org/10.1109/JPROC.2020.2970615
https://openreview.net/forum?id=BuD2LmNaU3a
https://openreview.net/forum?id=BuD2LmNaU3a
https://arxiv.org/abs/2103.01946
https://arxiv.org/abs/2103.01946
https://arxiv.org/abs/2103.01946
https://doi.org/10.1145/3437880.3460401
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
https://doi.org/10.1109/SP.2019.00031
https://ojs.aaai.org/index.php/AAAI/article/view/16441
https://doi.org/10.1145/3474085.3475628
https://arxiv.org/abs/2103.01607
https://arxiv.org/abs/2103.01607
https://openreview.net/forum?id=4IwieFS44l
https://openreview.net/forum?id=4IwieFS44l

Figure 10: CIFAR-10 original cover images (left) and container images (ℓ∞, 𝜖 = 4/255) (right).

Figure 11: ImageNet original cover images (left) and container images with a hidden pattern in the top left 32x32 region
(ℓ∞, 𝜖 = 4/255) (right).

A VISUALIZATION OF CONTAINER IMAGES
Here, we show the container images that were generated by our
secret backdoor patterns. Figure 10 contains a sample of images
from the CIFAR-10 dataset in their original form, along with the
container images inwhich our secret backdoor key pattern is hidden.
In Figure 11, cover (original) and container image examples are

shown from the ImageNet dataset. Here, the secret is hidden in the
top left corner. We included images where this corner is relatively
homogeneous in the cover image. For both of these figures, we used
the ℓ∞ norm with 𝜖 = 4/255.

Figures 12 and 13 depict the same container images from CIFAR-
10, but this time with a larger perturbation. For the ℓ∞ norm we

Session 2: Security of Machine Learning IH-MMSec ’22, June 27–28, 2022, Santa Barbara, CA, USA

61

Figure 12: CIFAR-10 container images (ℓ∞, 𝜖 = 8/255), and the difference from the original cover image. The differences have
been scaled up by a factor of 4 and a 255/2 offset has been added.

Figure 13: CIFAR-10 container images (ℓ2, 𝜖 = 0.5), and the difference from the original cover image. The differences have been
scaled up by a factor of 4 and a 255/2 offset has been added.

used 𝜖 = 8/255 and for the ℓ2 norm we used 𝜖 = 0.5. We also
show the differences from the original cover images (that is, the
perturbations themselves). These differences are visualized via first

scaling them up by a factor of 4 to enhance visibility, and then
adding an offset of 255/2 to each channel of each pixel (so pixels
where there is no difference are shown in mid-grey).

Session 2: Security of Machine Learning IH-MMSec ’22, June 27–28, 2022, Santa Barbara, CA, USA

62

	Abstract
	1 Introduction
	2 Problem Statement
	3 Related Work
	4 Proposed Backdoor Attack
	4.1 Steganographic Component
	4.2 Inserting the Backdoor
	4.3 Revisiting our Motivation

	5 Preparing the Backdoor
	6 Evaluation of Backdoor Detectors
	6.1 Random Sampling
	6.2 Adversarial Attacks
	6.3 Neural Cleanse
	6.4 Using the CIFAR-10 Backdoor Model on ImageNet

	7 Conclusions
	Acknowledgments
	References
	A Visualization of Container Images

