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Motivation

« Explosive growth of smart phone platforms, and
. Avallability of sensor and other contextual data
. Makes collaborative data mining possible

- Health care: following and predicting epidemics,
personal diagnostics

- Smart city: traffic optimization, accident forecasting
- (predicting earthquakes, financial applications, etc)

. P2P networks, grid, etc, are also relevant
platforms
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P2P system model

« Large number (millions or more) computers
(nodes)

« Packet switched communication

- Every node has an address

- Any node can send a message to any given
address

« Not actually true: NATS, firewalls

« Messages can be delayed or lost, nodes can
crash (unreliable asynchronous communication)
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Fully distributed data ° feecs

. Horizontal data distribution

. Every node has very few records, we assume
they have only one

. Drifting: data distribution can change

« We do not allow for moving data, only local
processing (privacy preservation)

. We require that the models are cheaply
available for all the nodes
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In the Network or cceasas
on Servers (cloud)?

o The cloud is flexible and scalable but it is not free and not
public: business model needed

— It is cheap but with LOTS of data and communication it
will get expensive

« Privacy is a concern
o« P2P is more limited in what it can do

- But not as much as it seems at first!

. Smart phones (unlike motes) are increasingly powerful
devices

« P2P and cloud hybrids possible (the network can act as a
sensor!)
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What kind of solution? ssssese

» Self-organizing local algorithms exist such as
gossip, chaotic iteration, etc.

« IThese are

- Are very fast and scalable

- Are fairly simple to implement (but not always
simple to analyze)

- Provide almost exact, or often exact results in the
face of very unreliable communication

« Our ambition is to achieve this for data mining
algorithms (we focus on classification now)
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Classification problem in e ceuss
machine learning

- We are given a set of (x,y.) examples, where y.
is the class of x. (y. is eg. -1 or 1)

. We want a model (), such that for all i, f(x.)=y

. () is very often a parameterized function f_(),
and the classification problem becomes an error
minimization problem in w.

- Neural net weights, linear model parameters, etc

o 1 he error is often defined as a sum of errors
over the examples
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lllustration of classification s ewas
with a linear model
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Fully distributed classification

« S0 the problem is to find an optimization method that
fits into our system and data model

« Most distributed methods build local models and then
combine these through ensemble learning: but we
don't have enough local data

« Online algorithms

- Need only one data record at a time
- They update the model using this record

« The stochastic gradient method is a popular online
learning algorithm (we apply it to logistic regression)
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Stochastic gradient descent — " "*°*"°
« Assume the error is Err(w= ) Erriw,x.
defined as =1
. Then the gradient is QErriwl] « JEmw,xL
« So the full gradient oW =t oW
method looks like " 9Errw, X[
WD 1= wits Oy '
« But one can take only & ow
one example at a time
iterating in random Wil wite gl e Xk

order over examples ow
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Lectives

Gossip learning skeleton s cesss

Algorithm 1 Gossip Learning Framework 16: procedure ONRECEIVEMODEL(m)

:c+0 17: m + driftHandler(m)

m + initModel() 18: currentModel < updateModel(mn)

currentModel < initDriftHandler(rm) 19:  receivedModels.add(currentModel)

receivedModels.add(currentModel)

if receivedModels = () then Algorithm 2 Drift Handling Component
_cc +1 I: procedure INITDRIFTHANDLER(m)
it ¢ = 10 then 22 m.JTTL + generateTTL()

2.
3
4.
5: loop
6
7
&
9

receivedModels.add(currentModel) | 3. return m
10:  for all m € receivedModels do

" ) o selectPeer() 4: procedure DRIFTHANDLER(m)
| p = SEIE { 5 if m.age = m.TTL then
12: send m to p .
. 1 6: m + initModel()
13: receivedModels.remove(m) e
, 7 m + initDriftHandler(m)
14: c+ 0
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How to setthe TTL o oeeee

. We want to control the distribution of model
ages at time t (A))

« But we can control only the distribution of TTL
(X)

« The relationship between the two is given by

tﬁm (sz)
E(A,) ,)E(X)

2 1)t (3;3) E(X2))’
D) =3 (2151(9())
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Learning and Local prediction L.l aess

Algorithm 3 Learner Component
1: procedure INITMODEL

« We use only the

current local 2 m.age « 0
model for 3 maw<0
prediCtion 4 return m
« The update rule is 5. procedure UPDATEMODEL(m) > A = 0.0001
stochastic gradient & m.age T/rn-.age +1
. " 7 .1y — m.age
for IOgIS_tIC 8: y < m.predict(z) > (x,y) is the local example
regression 9 m.aw + (1 —m.np- Amaw +m.n- (y—y)zx
10 return m

11: procedure PREDICT(x)

122 po & 1/(1 + exp(currentModel.w’ z))
13: p1 < 1—pg

14: return pp >p; 7 0:1
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Experiments

. We used several benchmark drifting data sets
for evaluations

- Fully synthetic and synthetic labels on real data
- Data is fully distributed: one data point per node

 We defined several baselines to cover solutions
In related work

« We used extreme scenarios

- 50% message drop rate
- 1-10 cycles of message delay
- Churn modeled after the FileList.org trace from Delft
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Sampling rate: .01 samples/A
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Sampling rate: 0.01 samples/A Sampling rate: 0.1 samples/A
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Lectives
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Conclusions

. If the sampling rate is rare relative to drift
speed, then our algorithm is favorable

- Many improvements are possible, this is the
“vanilla” version that uses only a single example in
each cycle for update and uses no model merging

« Some results we did not discuss

- Robustness to failure is good, a slowdown can be
observed due to slower random walks

- The algorithm is very insensitive to system size
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Remarks regarding . cesas
convergence

o If uniformity of random walk is guaranteed, then all the
models converge to the true model eventually,
irrespective of all failures

o If no uniformity can be guaranteed, but the local data
Is statistically independent of the visiting probabillity,
then we will have no bias, but variance will increase
(effectively we work with fewer samples)

o If no uniformity and no independence could be
guaranteed, convergence to a good model is still
ensured provided that the data is separable, and all
misclassified examples are visited “often enough”
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