
Chapter 5
Propositional Resolution

§5.1 Introduction

Propositional resolution is an extremely powerful rule of inference for
Propositional Logic.  Using propositional resolution (without axiom schemata or other
rules of inference), it is possible to build a theorem prover that is sound and complete for
all of Propositional Logic.  What's more, the search space using propositional resolution
is much smaller than for standard propositional logic.

This chapter is devoted entirely to propositional resolution.  We start with a look
at clausal form, a variation of the language of propositional logic.  We then examine the
resolution rule itself.  We close with some examples.

§5.2 Clausal Form

Propositional resolution works only on expressions in clausal form.  Before the
rule can be applied, the premises and conclusions must be converted to this form.
Fortunately, as we shall see, there is a simple procedure for making this conversion.

A literal is either an atomic sentence or a negation of an atomic sentence.  For
example, if p is a logical constant, the following sentences are both literals.

p

¬p

A clause expression is either a literal or a disjunction of literals.  If p and q are
logical constants, then the following are clause expressions.

p

¬p

p ∨ q

A clause is the set of literals in a clause expression.  For example, the following
sets are the clauses corresponding to the clause expressions above.

{ p}

{¬p}

{ p,q}

Note that the empty set {} is also a clause.  It is equivalent to an empty
disjunction and, therefore, is unsatisfiable.  As we shall see, it is a particularly important
special case.



As mentioned earlier, there is a simple procedure for converting an arbitrary set of
Propositional Logic sentences to an equivalent set of clauses.  The conversion rules are
summarized below and should be applied in order.

1. Implications (I):
ϕ1 ⇒ϕ2 → ¬ϕ1 ∨ ϕ2

ϕ1 ⇐ϕ2 → ϕ1 ∨ ¬ϕ2

ϕ1 ⇔ ϕ2 → (¬ϕ1 ∨ ϕ2) ∧ (ϕ1 ∨ ¬ϕ2)

2. Negations (N):
¬¬ϕ → ϕ
¬(ϕ1 ∧ ϕ2) → ¬ϕ1 ∨ ¬ϕ2

¬(ϕ1 ∨ ϕ2) → ¬ϕ1 ∧ ¬ϕ2

3. Distribution (D):
ϕ1 ∨ (ϕ2 ∧ ϕ3) → (ϕ1 ∨ ϕ2) ∧ (ϕ1 ∨ ϕ3)

(ϕ1 ∧ ϕ2) ∨ ϕ3 → (ϕ1 ∨ ϕ3) ∧ (ϕ2 ∨ ϕ3)

(ϕ1 ∨ ϕ2) ∨ ϕ3 → ϕ1 ∨ (ϕ2 ∨ϕ3)

(ϕ1 ∧ ϕ2) ∧ ϕ3 → ϕ1 ∧ (ϕ2 ∧ ϕ3)

4. Operators (O):
ϕ1 ∨ ...∨ ϕn → {ϕ1,...,ϕn}

ϕ1 ∧ ...∧ ϕn → {ϕ1} ...{ϕn}

As an example, consider the job of converting the sentence (g ∧ (r  ⇒ f)) to clausal
form.  The conversion process is shown below.

g∧ (r ⇒ f )

I g∧ (¬r ∨ f )

N g∧ (¬r ∨ f )

D g∧ (¬r ∨ f )

O {g}

{¬r , f}

As a slightly more complicated case, consider the following conversion.  We start
with the same sentence except that, in this case, it is negated.



¬(g∧ (r ⇒ f ))

I ¬(g∧ (¬r ∨ f ))

N ¬g ∨ ¬(¬r ∨ f ))

¬g ∨ (¬¬r ∧ ¬f )

¬g ∨ (r ∧ ¬f )

D (¬g ∨ r) ∧ (¬g∨ ¬f )

O {¬g,r}

{¬g,¬f}

Note that, even though the sentences in these two examples are similar to start
with (disagreeing on just one ¬ operator), the results are quite different.

§5.3 Propositional Resolution

The idea of resolution is simple.  Suppose we know that p is true or q is true, and
suppose we also know that p is false or r  is true.  One clause contains p, and the other
contains ¬p.  If p is false, then by the first clause q must be true.  If p is true, then, by the
second clause, r  must be true.  Since p must be either true or false, then it must be the
case that q is true or r  is true.  In other words, we can cancel the p literals.

{ p,q}

{¬p,r}

{q,r}

More generally, given a clause containing a literal χ and another clause
containing the literal ¬χ, we can infer the clause consisting of all the literals of both
clauses without the complementary pair.  This rule of inference is called propositional
resolution.

{ϕ1,...,χ,...,ϕm}

{ψ1,...,¬χ ,...,ψ n}

{ϕ1,...,ϕ m,ψ1,...,ψn}

Since clauses are sets, there cannot be two occurrences of any literal in a clause.
Therefore, in drawing a conclusion from two clauses that share a literal, we merge the
two occurrences into one, as in the following example.

{¬p,q}

{ p,q}

{q}



If either of the clauses is a singleton set, we see that the number of literals in the
result is less than the number of literals in the other clause.  From the clause {¬p,q} and
the singleton clause {p}, we can derive the singleton clause {q}. Note the correspondence
between this deduction and that of Modus Ponens.

{¬p,q}

{ p}

{q}

Resolving two singleton clauses leads to the empty clause; i.e. the clause
consisting of no literals at all, as shown below.  The derivation of the empty clause means
that the database contains a contradiction.

{ p}

{¬p}

{}

If two clauses resolve, they may have more than one resolvent because there may
be more than one way in which to choose the resolvents.  Consider the following
deductions.

{ p,q}

{¬p, ¬q}

{ p,¬p}

{q,¬q}

Note that in resolving two clauses, only one pair of literals may be resolved at a
time, even though there are multiple resolvable pairs. For example, the following is not a
legal application of propositional resolution.

                  

{ p,q}

{¬p, ¬q}

{}

    Wrong!

Here are some common cases of resolution in action.  The resolution derivations
are shown on the right, and the corresponding natural deductions are shown on the left.

p ⇒ q

p

q

                

{¬p,q}

{ p}

{q}



p ⇒ q

¬q

¬p

                

{¬p,q}

{¬q}

{¬p}

p ⇒ q

q ⇒ r

p ⇒ r

                

{¬p,q}

{¬q,r}

{¬p,r}

§5.4 Applications

In order to determine whether a set of clauses is unsatisfiable, we look for a
resolution proof of the empty clause from the set of premises.

1. { p,q} Premise

2. {¬p,q} Premise

3. { p,¬q} Premise

4. {¬p, ¬q} Premise

5. {q} 1,2

6. {¬q} 3,4

7. {} 5,6

Validity checking is a little more difficult.  The problem is that propositional
resolution is not generatively complete, i.e. we cannot directly derive all consequences
from a set of premises.  For example, we cannot derive (p ⇒ (q ⇒ p)) directly using
propositional resolution.  There are no premises.  Consequently, there are no conclusions.

This apparent problem disappears if we take the clausal form of the premises (if
any) together with the negated goal and try to derive the empty clause.  The conversion to
clausal form is shown below. From here, it is easy to see the result; the {p} and {¬p}
clauses resolve to produce the empty clause in a single step.

¬( p⇒ (q ⇒ p))

I ¬(¬p∨ ¬q∨ p)

N ¬¬p∧ ¬¬q ∧ ¬p

p∧ q∧ ¬p

D p∧ q∧ ¬p

O {p}

{q}

{¬p}



To determine whether a set ∆ of sentences logically entails a sentence ϕ, rewrite
∆∪{ ¬ϕ} in clausal form and try to derive the empty clause.

Suppose, for example we began with the premises (p ⇒ q) and (q ⇒ r) and we
want to prove (p ⇒ r).  To do this, we add the negation of the conclusion, i.e. ¬(p ⇒ r)
and derive the empty clause.

1. {¬p,q} Premise

2. {¬q,r} Premise

3. { p} Negated Goal

4. {¬r} Negated Goal

5. {q} 3,1

6. {r} 5,2

7. {} 6,4

As another example, consider the case of Mary and Pat and Quincy introduced in
an earlier chapter.  We know that, if Mary loves Pat, then Mary loves Quincy.  We also
know that, if it is Monday, then Mary loves Pat or Quincy.  Our job is to prove that, if it
is Monday, then Mary loves Quincy.  The proof goes as follows.

1. {¬p,q} Premise

2. {¬m,p,q} Premise

3. {m} Negated Goal

4. {¬q} Negated Goal

5. { p,q} 3,2

6. {q} 5,1

7. {} 6,4

§5.5 Resolution Provability

A sentence ϕ is provable from a set of sentences ∆ by propositional resolution
(written ∆ |- ϕ) if and only if there is a derivation of the empty clause from the clausal
from of ∆∪{ ¬ϕ}.

Resolution Theorem: Propositional Resolution is sound and complete, i.e. ∆ |= ϕ if and
only if ∆ |- ϕ.

One nice feature of propositional resolution vis-a-vis the more general proof
method described in the preceding chapter is that propositional resolution always
terminates.  We simply search the resolution graph in breadth-first fashion.  Since there
are only finitely many clauses that can be constructed from a finite set of logical
constants, the procedure will eventually run out of new conclusions to draw.



Exercises

1. Propositional Resolution.  Use propositional resolution to prove the following
sentence.

(p ∨ q) ∧ ( p⇒ r) ⇒ (p ⇒ r)

2. Propositional Resolution. Use propositional resolution to show that the following sets
of clauses are unsatisfiable.
(a) { p,q}, { ¬p,r}, { ¬p,¬r},{ p, ¬q}
(b) { p,q, ¬r ,s}, { ¬p,r ,s}, { ¬q, ¬r}, { p, ¬s}, { ¬p, ¬r}, { r}

3. Formalization and Proof. Heads, I win.  Tails, you lose.  Use propositional resolution
to prove that I always win.

4. Formalization and Proof. There are three suspects for a murder: Adams, Brown, and
Clark. Adams says“I didn't do it. The victim was old acquaintance of Brown's. But
Clark hated him.” Brown states “I didn't do it. I didn't know the guy. Besides I was
out of town all the week.” Clark says“I didn't do it. I saw both Adams and Brown
downtown with the victim that day; one of them must have done it.”  Assume that the
two innocent men are telling the truth, but that the guilty man might not be.  Write out
the facts as sentences in Propositional Logic, and use propositional resolution to solve
the crime.


