Computation of Static Execute After Relation
with Applications to Software Maintenance

Arpad Beszédes, Tamas Gergely, Judit Jasz, Gabriella Téth and Tibor Gyiméthy
University of Szeged, Department of Software Engineering
Arpad tér 2., H-6720 Szeged, Hungary, +36 62 544145
{bes zedes, gertom, jasy,gtoth, gyimi}@inf .u-szeged.hu

Viclav Rajlich
Wayne State University, Department of Computer Science
427 State Hall, Detroit, MI 48202, (313) 577-5423
rajlich@wayne.edu

Abstract

In this paper, we introduce Static Execute After (SEA)
relationship among program components and present an ef-
ficient analysis algorithm. Our case studies show that SEA
may approximate static slicing with perfect recall and high
precision, while being much less expensive and more us-
able. When differentiating between explicit and hidden de-
pendencies, our case studies also show that SEA may cor-
relate with direct and indirect class coupling. We speculate
that SEA may find applications in computation of hidden
dependencies and through it in many maintenance tasks, in-
cluding change propagation and regression testing.

Keywords

Impact analysis, change propagation, regression testing,
hidden dependencies, coupling, control flow analysis.

1 Introduction

In many software maintenance and evolution processes,
the programmers deal with software components and their
dependencies. For example whenever programmers change
a software component, they must visit all dependent com-
ponents and update them if necessary. Some of these depen-
dencies are explicit, i. e., they can be understood as a mutual
“awareness” among the components; examples of explicit
dependencies between classes in object oriented systems
are generalization, composition, association, and so forth.
Typically these dependencies are expressed in the code as
explicit references.

However besides explicit dependencies, there are also
other dependencies that are not based on this mutual aware-
ness; we call these dependencies hidden dependencies. Yu
and Rajlich [27] explored hidden dependencies that are
based on the existence of data flows between otherwise ex-
plicitly unrelated components. They used the Abstract Sys-
tem Dependence Graph (ASDG) that is based on that Sys-
tem Dependence Graph (SDG) [14], but whose computation
is expensive and therefore not feasible for large programs.

In this paper, we propose an alternative way to deter-
mine the explicit and hidden dependencies by employing
Static Execute After (SEA) relation among program compo-
nents. The approach is motivated by Apiwattanapong et al.
who introduced the notion of Execute After relations [1]
and applied them in dynamic impact analysis; SEA is a
static counterpart of this approach. In the paper, we show
that SEA may approximate static slicing (which is a way to
compute dependencies using SDG), while being much less
expensive and more usable. When differentiating between
explicit and hidden dependencies, the early data also show
that SEA may correlate with direct and indirect class cou-
pling. We speculate that SEA may find applications in com-
putation of hidden dependencies and through it in change
propagation and regression testing.

The paper is organized as follows: Section 2 contains
examples and applications of SEA. Section 3 explains al-
gorithms of SEA analysis, while Section 4 discusses im-
plementation issues. Section 5 contains the case study, Sec-
tion 6 summarizes related work, and Section 7 contains con-
clusions and future work.

2 Applications of SEA

Our goal was to find a simple analysis technique that cap-
tures dependencies among classes.! In our technique, we
treat class B as dependent on class A if and only if B may
be executed after A in any possible execution of the pro-
gram. We compute such dependencies using the SEA re-
lation between procedures (methods or functions). We say
that (f,g) € SEA if and only if any part of g may be exe-
cuted after any part of f in any of the possible executions of
the program. Now, class B is said to be dependent on class
A very simply if and only if a method f of A is in SEA
relation with a method g of B.

2.1 Hidden dependencies and their com-
putation using SEA

A simple example of a hidden dependency is shown
in Figure 1. In it, class A contains the member func-
tion int A::get () that receives a choice of a color
from the user input and encodes it as the returned in-
teger, where value “0” means “red”, “l1” means “yel-
low”, and so forth. Class B contains member function
void B::paint (int) that receives the color code as
an argument, decodes it, and paints the screen by the corre-
sponding color. Class C' contains the data flow between an
instance of class A and an instance of class B. If the pro-
grammers change encoding of colors in class A, they also
have to change the decoding in class B and vice versa, so
although classes A and B do not reference each other and
hence are not aware of each other, there still is the hidden
dependency between them.

SEA may be used for approximate computation of hid-
den dependencies very easily. Namely, we can identify that
method call a.get () is followed by calling b.paint
which results in B being dependent on A according to our
approach. (Note that the actual data flow is not checked,
only the mere execution order is taken into account.) Fi-
nally, since A and B are explicitly unrelated we are able to
identify that they are hidden dependent. With this approach
any “invisible” interaction among classes may be captured.

The hidden dependencies have applications in a variety
of software maintenance situations.

2.2 Application in change propagation

Whenever programmers make a change in the code,
the modified component may no longer fit with the other
components because it may no longer properly interact
with them. In that case, secondary changes must be

'In the applications we identified (change propagation, regression test-
ing) the granularity of analysis is usually on class level for object oriented
systems.

class C {
A a;
B b;
void foo() {
b.paint(a.get());

}i

Figure 1. Example of hidden dependency

made in neighboring components, which may trigger fur-
ther changes, and so forth. This process of repeated sec-
ondary changes is called change propagation and although
each change starts and ends with consistent software, during
the change propagation the software is often inconsistent.

The changes propagate through the dependencies be-
tween the components, including hidden dependencies.
Software maintainers need to trace those dependencies,
make corresponding changes, and guarantee that the change
has been propagated correctly and the software is returned
back to consistency. A model of the change propagation
[19] keeps track of the inconsistent program dependencies
and proposes to the programmers the locations where the
subsequent changes are to be made.

Hidden dependencies are harder to detect than the ex-
plicit dependencies and are more likely to be a source of
residual bugs in the system. The software compilers do
not detect errors that are caused by hidden dependencies
and since they interconnect seemingly unrelated classes, the
programmers are more likely to overlook them. Therefore it
is very important to detect these dependencies and give pro-
grammers warnings about their existence and their potential
to introduce subtle bugs into the software.

2.3 Application in Regression testing

After the programmers completed the update of the code
including change propagation, they have to validate both
new code and the old code. The regression testing validates
the old code and its purpose is to prove that the old code,
that was not touched by the change, does not contain any
residual bugs, i.e., that the change propagation was com-
pleted without any omissions.

A primitive way how to do regression testing is to re-
run the whole testing suite after each change. However, the
regression testing is repeated often, making the use of the
complete regression test suite too expensive. Firewall test-
ing was developed as a heuristic to solve this problem and it
retests only those components that directly interact with the
changed components and does not run the tests that retest
the rest of the system. The firewall heuristics assumes that

the residual bugs are most likely to be caused by a failure
of the programmer to update directly interacting program
elements.

While explicit program dependencies were used for the
construction of the original firewalls, hidden dependencies
are included in the construction of more sophisticated fire-
walls and they increase the chance to intercept the residual
bugs [25].

2.4 Coupling measures

Coupling measures quantify the strength of relationship
of pairs of classes; unrelated classes should have coupling
measure equal to 0, while strongly related classes should
have a high value of coupling measure. A set of coupling
measures and their relationship to impact analysis was in-
vestigated by Briand et al. [8]. Coupling is also an im-
portant topic in software measurement, when metrics are
used as predictors for different quality indicators like main-
tainability and error proneness [4, 13]. Different kinds of
static coupling metrics have been proposed in the literature
[7]. Recent research deals with the problem whether in-
direct coupling is to be investigated in addition to direct
coupling [26]. In this paper, we investigate the question
whether classes with high coupling measures would also
have more hidden dependencies. For this we used the well-
known Coupling Between Object Classes (CBO) metric [9].

3 Computation of SEA

Our approach is motivated by the work by Apiwat-
tanapong et al. who introduced the notion of Execute Af-
ter relations between functions [1] and applied them in dy-
namic impact analysis. By definition, functions f and g are
in Execute After relation if and only if any part of g is exe-
cuted after any part of f in any of the selected set of execu-
tions of the program. This relation can be easily computed.

As a static counterpart of this approach we define the no-
tion of the Static Execute After (SEA) relation. We say that
(f,g9) € SEA if and only if any part of g may be executed
after any part of f in any of the possible executions of the
program. It is obvious that SEA is a superset of the de-
tailed System Dependence Graph based dependencies [14]
that arise between procedures (i.e., static slices presented
at procedure level). Control and data dependency may oc-
cur between two program points if there is a control or data
flow between them, but data flow also requires control flow.
If there is a control flow between these points, it means that
one of them must be executed after the other, thus the pro-
cedures of the two program points are in SEA relation. An
intrinsic property of the SEA relation is that it is safe but
imprecise with respect to static slicing.

Following Apiwattanapong et al. [1] and Beszédes et
al. [5] the SEA relation can be divided into three (non-
distinct) sub-relations:

SEA = CALLU SEQ U RET ,
where

(f,g) € CALL <= fcallsg
(f,9) € SEQ <= 3h:hcalls f first,
then h calls g

(f,9) € RET <= freturnsintog,

where both “call” and “return into” are treated transitively.
3.1 Algorithm for computing SEA

For computing the SEA relation a suitable program rep-
resentation is needed. The traditional Call Graph [20] is
unsuitable for our needs since it says nothing about the or-
der of the procedure calls within a procedure. On the other
hand, an Interprocedural Control Flow Graph (ICFG) [16]
contains too much information and is expensive to work
with. Thus, we define a new representation.

First we define (intraprocedural) Component Control
Flow Graph (CCFG), where only call site nodes are con-
sidered. Each CCFG represents one procedure and con-
tains one entry node and several component nodes with
control flow edges connecting them. Furthermore, strongly
connected subgraphs are collapsed into single nodes; this
means that if two call sites are reachable from each other by
control flow edges then they are represented by the same
node. [Interprocedural Component Control Flow Graph
(ICCFG) represents the whole system and for each proce-
dure, there is a corresponding CCFG interconnected by call
edges with other CCFGs. In the ICCFG there is a call edge
from a component node C to a procedure entry of m if and
only if at least one call site of C' calls m. An example of
ICCFG can be seen in Figure 2.

An algorithm for computing the SEA relation is pre-
sented in Figure 3. Initially, we determine the transitive
calls of each procedure and so the CALL relation (steps
1-4). In the next phase all procedures are processed again in
order to determine the SE() relation. For this we first topo-
logically order the components of the current procedure and
put them into a queue for further processing, which means
that no component will be processed before any of its pre-
ceeding components. For a given component c, in step 8 we
determine the set of procedures that might have been called
in this procedure before the component (prev[c|), and in
step 9 we compute the set of procedures transitively called
by ¢ (calls). Next, if the component directly calls multiple

e() { g0 |
AE(0) (£07) L0 te0
else {
gQ)i while () {
} h();
PE() {£0 ;)
£() { }
while () { h();
h); }
g0 ; }
} h() {
} }

Figure 2. Example ICCFG

procedures, then the extension of prev[c] with the calls is
done at this point (steps 10-11). Now we can extend the
SEA relation with all (f, g) pairs where f is called before
the component and g is called from the component. Finally,
we prepare the prev]c] set for the next iteration if we have
not done it yet in step 11.

The worst case computational complexity of the algo-
rithm is the following. Let n be the number of procedures,
k and e be the maximum number of component nodes and
edges in the procedures, respectively, and m be the maxi-
mum number of procedure calls in a component. The algo-
rithm first determines the transitive calls of all procedures,
then it computes an ordering of the components and per-
forms set operations for each component. If appropriate
data structures are used, this is done in O(n-e+n-k-m)
time, which is roughly the same as the computational com-
plexity of the detailed SDG-based static slicing algorithm
[14]. However there are significant differences between the
two approaches. The main difference is in the building of
the SDG and ICCFG. The building of either requires an In-
terprocedural Control Flow Graph. The ICCFG can be eas-
ily derived from it by deleting nodes and performing two
depth-first graph traversals for finding strongly connected
components. On the other hand, the building of the SDG
requires the computation of control and data dependencies,
which are additional (also complex) algorithms. Finally, the
number of nodes in one procedure’s graph (k) is also larger
in the SDG than in the ICCFG. Thus, an overall computa-
tion complexity of ICCFG is significantly better than that of

program computeSEA(P)

input: P : ICCFG of program P
output: SEA : the SEA relation for all procedures
begin
1 SEA:=0
2 forall m procedures of P
3 transCallsOf [m] := transitive calls of m
4 SEA := SEAU ({m} x transCallsOf [m])

endforall
5 forall m procedures of P
6 topOrder := componentQueue(m)
7 for ¢ := first(topOrder) to last(topOrder)
8 prev [C} = UpEprevious components of ¢ p'rev[p]
9 calls ;= transitive calls of ¢
10 if c directly calls multiple procedures
11 prev|c] := prev[c] U calls

endif
12 SEA := SEA U (prev(c] x calls)
13 if c directly calls only one procedure
14 prev|c] := prev|c] U calls
endif
endfor

endforall

end

Figure 3. Computation of SEA

the SDG (on which the Abstract System Dependence Graph
is based on as well [27]).

3.2 Handling dataflow

In its basic form, the algorithm presented above has the
disadvantage that it captures data flow which is realized
through procedure calls only. Data flow between global
variables or direct class member variables are invisible to
the algorithm due to the lack of corresponding nodes in the
ICCFG. This problem is solved by a technique in which
we convert all global variables into private members of new
classes that can be accessed through set and get methods,
before the ICCFG is built. Furthermore, each time a vari-
able X is read (either global or member), it is replaced by
get_X (), and when the variable is set to the value of an
expression e, set_X (e) is called instead.

4 Implementation

We implemented the computation of the SEA relations
and SEA-based hidden dependencies using a language-
independent representation of programs. This means that

JAVA sources

Analysis - SOOT

SOOT Jimple

Eliminating direct
data accesses

Eliminating direct
data accesses
anguage independen
model

SEA and
Hidden dependency
computation

Analysis - COLUMBUS

COLUMBUS ASG

4—.47

Eliminating globals

Figure 4. Tool chain

the core algorithm is able to compute the dependencies for
arbitrary object oriented or procedural language simply by
replacing the syntactic analyzer front end. The dependen-
cies are computed between procedures based on the algo-
rithm from the previous section, and then the dependencies
are lifted to class level. We experimented with C++ and
Java programs since we had access to analyzer front ends
for these languages. Figure 4 shows the high level architec-
ture of our experimental tool chain.

4.1 Building the ICCFG

In the first step the syntactic analysis of the source code
is performed for which existing front ends have been used.
Namely, for C++ programs we applied our analyzer, the
Columbus reverse engineering tool [10], and for Java we
used the Soot framework [21]. In both cases the provided
APIs to the internal representations were used to extract rel-
evant information. In the next step the conversion of data
accesses to procedure calls is done as overviewed above.
In the case of C++ programs an additional step is required;
namely, the conversion of global variables into wrapping
structures. An example of these modifications (projected
back to source code) for C++ can be seen in Figure 5 (Java
is very similar).

The next step is the extraction of the Interprocedural
Control Flow Graph (ICFG). It is important to note that

int global=0;

class A {
public: int i;

}i

class B {
A a;
public: int foo() {
return global+a.i;
}
bi

Original code

struct globalStruct {

static int global;

static inté& get_global() { return global; }
bi
int globalStruct::global = 0;

class A {
public: int i;
int& get_i() { return i; };

bi

class B {
A a;
public: int foo() {
return globalStruct::get_global ()
+ a.get_1i();

Modified code

Figure 5. Handling globals and dataflow

we needed a safe way to determine call edges. Therefore
we apply a conservative computation of calls narrowed by
Rapid Type Analysis [3]?. In the final step this graph is
reduced to obtain the ICCFG, which is done in the follow-
ing way. First, all but procedure entry and call site nodes
are eliminated from the graph, and then the strongly con-
nected components within the procedures are determined,
while control flow and call edges are kept up to date.

4.2 Computation of the dependencies

The computation of the SEA dependencies is done on
the built up ICCFG using the algorithm from the previous
section. We then determine hidden dependencies between
classes as follows. A class B will be hidden dependent on
class A if and only if a method f of A is in SEA relation
with a method g of B, and B is not explicitly dependent
on A. In our implementation we choose to use UML static
structure modelling concepts to determine explicit depen-
dencies (but one can use any other specific interpretation

2Safety can be guaranteed only if there is access to the whole system’s
source code and with the restriction of highly dynamic aspects like function
pointers and reflection.

instead). We say that B is explicitly dependent on A if one
of the following holds:

e there is an association or aggregation between A and B
(we identify these relations from source using heuristic
that A has a member whose type references B),

A directly calls a method of B,

A and B are connected by generalization,

A creates an object of type B.

4.3 Filtering dependencies

All nontrivial software systems consist of multiple
classes, some of which belong to libraries. For the purposes
of this work the analysis generally needs to be filtered in
order to remove unimportant dependency data (like those
connecting library classes). For this there are three possi-
bilities:

Examine everything. This results in a huge set of depen-
dencies, and includes even those that hold between two
library classes. We can (and have to) do nothing with
these classes, they are usually the same for all pro-
grams, so this approach needs to be refined.

Cut classes before computation. In this case all computa-
tions are made on a set of classes belonging to the sub-
ject system, and all other classes are neglected. This
means that SEA is also computed for these classes
only. But completely excluding library classes may
result in loosing some important hidden dependencies
among non-library classes. For example, if a library
class “calls back” methods of subject classes A and
B, the hidden dependency between A and B will be
missed.

Cut classes after computation. This is the combination of
the first two approaches. Namely, we compute the re-
lations for the whole system, but then drop all library
classes after the dependencies have been computed.
This way no dependencies will be missed among sub-
ject system classes.

In our measurements, we employed the third variant.

5 Case study
5.1 Hypotheses and empirical design

We accepted the following hypotheses about the ap-
proach:

e SEA technique approximates static slicing; SEA cap-
tures all dependencies captured by slicing (the recall is
100%), but contains false dependencies as well (preci-
sion is lower than 100%).

e SEA technique is highly conservative, but even with
the lowered precision, the number of dependencies is
not excessive.

e SEA technique is more efficient than static slicing, and
therefore based on the above can be used instead of it.

e Direct coupling (such as the Coupling Between Ob-
ject Classes measure) is insufficient in predicting the
effects of the changes made to the software, indirect
couplings need to be taken into account as well.

For the first three hypotheses we compared SEA results
with the results provided by a static slicer employing Sys-
tem Dependence Graph, where the slicer results were in-
terpreted as the relationship between classes rather than re-
lationship between statements. To empirically validate the
fourth hypothesis we chose to use the CBO metric [9] as it
is probably the most widely accepted coupling indicator in
object oriented systems. However, we expect that any other
direct coupling measure would produce similar results.

The experiments were performed on small to medium
size C++ and Java programs; see Table 1. We had access
to the Java slicer Indus [15], which allowed us to compute
precision and recall in the case of the Java programs. For
C++ programs, we were able to compute the CBO metric
using the Columbus tool [10], so the comparison to cou-
pling measure was done for these programs. The subject
programs originate from open source projects, except for
AbsHiddenDep, which is our implementation of the SEA
technique. This program was investigated in two ways:
alone, and with the associated libraries of the Columbus
framework.

Program Language Number of
classes/structs/unions
unrar C++ 72
mysqlcc C++ 135
licq C++ 172
stellarium C++ 203
AbsHiddenDep C++ 6
AbsHiddenDep C++ 406
(with libs)

JSubtitles JAVA 14
RayTracer JAVA 12
java2html JAVA 50
dynjava JAVA 301

Table 1. The test programs

5.2 Case study results

Number of dependencies In our first experiment we
counted the number of explicitly and hidden dependent
class pairs in the subject programs, along with average num-
bers of dependencies per class. The results as absolute val-
ues are shown in Table 2, while Figure 6 graphically depicts
the same average data relative to the program size. It can be
observed that generally there are more hidden dependencies
than explicit ones (as expected), but not in all cases. How-
ever, it is important to observe that although our approach
is a highly conservative one, a comparably small amount of

hidden dependencies can be observed.

Program Explicitly Hidden
dependent dependent
class pairs class pairs

unrar 396 (5.5) 2912 (40.44)

mysqlcc 1381 (10.23) 8952 (66.31)

licq 2082 (12.1) 3822 (22.22)

stellarium 2083 (10.26) 10700 (52.7)

AbsHiddenDep 12(2) 14 (2.33)

AbsHiddenDep 11872 (29.24) 95158 (234.38)

(with libs)

JSubtitles 76 (5.43) 98 (7)

RayTracer 86 (7.17) 58 (4.8)

java2html 398 (7.96) 1762 (35.24)

dynjava 14923 (49.58) 60672 (201.56)

Table 2. Number of dependencies. Numbers in
parentheses are the average number of dependents per class.

100%
80% -
60% -
40% 1
20% 1

=l

’bS Qc" 00‘ . <& Q,Q P Qf’ Q} Q& A'b
\)(\« @& N \rz§\° ®<\O @y »é\\% &\7’0 ‘f,{\\ <\\{b
N @ & §F e N D
ROV S
W S
bQ‘
O
X W Hidden dependency
Aol I Explicit dependency

Figure 6. Average number of dependencies
per class (relative to the total number of classes)

Beyond the total and average, a more complete view on
dependency sizes can be obtained by investigating the dis-
tribution of sizes over all classes of the programs. Figure 7
shows this distribution in form of histograms of the number
of dependencies per class (shown only for the largest pro-
grams). An interesting observation is that generally there

some dependency sizes among the larger ones to which
significantly more classes belong than to other sizes. By
investigating this phenomenon we found that it is proba-
bly the same effect as other researchers observed working
on program slice sizes, and called the “dependence clus-
ters” [6, 22]. Namely, it turned out that not merely the de-
pendency sizes were the same but the dependency sets were
common too.

licq stellarium
60 80
s0 | _7-Todasses] oo B
40 = 105 - 113 classes
1- 6 classes
30 4 40
20
20 4
0 ; ; : —= 0
dynjava AbsHiddenDep with libs

300 300

250 -
200 -
150 4
100 -

50 -

264 - 276 classes 250 4 324 - 341 classes
= i)

50
pol | I

Figure 7. Distribution of dependency sizes. In
the histograms the horizontal axis contains the dependency
sizes in increasing order, while the vertical axis shows the
number of classes with their dependencies belonging to the
corresponding size.

Precision and recall We measured the precision and
recall of our method with respect to the dependencies that
come from class level slices. The program slices in each
class and for all possible criteria in it were computed, and
the resulting slices were lifted to class level (in other words,
if a slice with criterion in class A includes a program point
located in class B, then A and B are taken as dependent).

In Table 3 the number of classes, the average number of
explicit and hidden dependent classes, and the correspond-
ing average slice sizes (also in the number of classes) are
compared for programs for which we had slicing results.
Note that in these experiments the largest Java program is
not present, since the Indus slicer could not produce slices
for that program due to excessive memory consumption.

Program Classes Explicit Hidden Slice
dep. dep.

JSubtitles 14 5.43 7 11.57

RayTracer 12 7.17 4.83 10.08

javaZhtml 50 7.96 35.24 41.2

Table 3. Comparison of dependency sizes
with slice sizes

Table 4 shows the precision and recall rates for these
three programs. We compare SEA dependencies (explicit
and hidden together) to static slice dependencies, and with
precision we measure how many false dependencies we
produce, while recall shows how many dependencies are
missed. The first thing to observe is that the recall was not
100% in all of the cases. We investigated this issue thor-
oughly since our method is supposed to cover static slicing.
Fortunately, we found that the problem was not with our
method but with the slicer. Namely, in a few cases due to
its conservative nature the slicer produced a false positive,
while our method was more precise. In the same table we
can see that the precision values are relatively high; in fact,
much higher than we initially expected. After careful inves-
tigation we found that this is probably also due to the con-
servativism of the slicer. Namely, even the slices include
many false dependencies, hence both the slicer and SEA
share some false positives when compared to the intuitive
meaning of hidden dependencies.

Program Precision ~ Recall
JSubtitles 92.8% 100%
RayTracer 65.5% 100%
java2html 96.82% 99.36%

Table 4. Precision and recall (explicit and hidden
dependencies together compared to static slice)

These results indeed justify our approach, since if SEA
approximates static slices so well our method could be used
instead of inefficient and also imprecise slicing algorithms.

Comparison to direct coupling measures Briand et
al. [8] give a model for impact analysis based on coupling
measures, and they conclude that not all consequences of
a change are captured using only direct coupling measures
like the Coupling Between Object Classes (CBO). To verify
this hypothesis we compared CBO metric values computed
for classes to the number of hidden dependencies found by
our method.’

Figure 8 shows our findings in this experiment for the
programs with most typical results. Even having in mind
that we also get false dependencies, we may say that this
result supports the hypothesis about the inadequacy of CBO
measurement in many cases. We can find some classes in
the systems with both low CBO and hidden dependency,
but the most interesting areas are those that correspond to
high hidden dependency values while having small CBOs.
This suggests that in many cases CBO is not sufficient in

3Note that although the number of explicit dependencies is highly cor-
related to CBO values, they are not the same due to differences in their
computation. We chose to use CBO since it is a widely known and ac-
cepted coupling measure.

predicting problematic parts of the system in terms of the
amount of (direct and indirect) coupling. This can lead to
serious problems if one relies solely on direct coupling like
CBO for the prediction of impacts and error proneness, for
instance.

mysqlcc licq
150 150
o 100 4ifetilie o, o 100 .
T 50 45t o T 504
i % .
0+ T T 0 T T
0 10 20 30 0 50 100 150
CBO CBO
stellarium AbsHiddenDep with libs
400
300 A~ee L
o NN
£200 e .

1004 .

60

0 50 100 150 200
CBO

Figure 8. Connection between CBO metric
and hidden dependency number. Each dot cor-
responds to a class in the system.

5.3 Threats to validity

As noted previously, precision and recall were computed
for the comparison between a slicer and SEA technique,
which raises the issue of construct validity. We maintain
that these are valid comparisons for the purpose of the de-
cision whether to use SEA or slicer techniques, and our
results favor SEA. The question whether SEA (and the so
computed hidden dependencies) are a better way to solve
practical software maintenance related problems remains to
future work.

The basis of our approach is the computation of proce-
dure calls. This needs to be done in a conservative manner,
thus all possible targets of the call must be considered, in-
cluding for instance polymorphic calls. Furthermore, SEA
theoretically handles any data dependency, including point-
ers, pointer arithmetic, dynamic memory handling, and so
forth. However, there is still a question whether this ap-
proach trully handles all possible data dependencies. In our
case study we did not encounter any problems related to
these issues.

Dynamic aspects of the languages analyzed present an-
other problem. For instance in C++, function pointers and
reflection in Java will hinder the construction of an ab-
solutely safe call graph. However, even in these cases it
would be possible to provide a very conservative approach
in which all possible procedures are called. This will lead
however to much lower precision. Our measurements re-
garding precision and recall were done against a research

slicing tool, which is also dealing with these issues and
shares a similar bias as SEA.

Although different languages and program sizes have
been used, we are aware of the fact that the test programs
do not fully represent all programs. It remains to future
work to investigate the applicability of our approach in real
life scenarios. The results reported here are obtained for
specific subject programs and specific tools and should be
generalized to other situations with caution.

6 Related work

Different approaches exist to compute relations between
higher level software structures supporting impact analy-
sis [2]. Instruction level dependency and flow analyses are
used in, e. g. program slicing [14, 24]. We employed a sim-
plified approach, working on procedure level and only with
flow information so as to be able to design more efficient
algorithms, rather than computing detailed dependencies.
The basis for our method is the computation of reachabil-
ity on interprocedural flow graph. Tonella ef al. presented
a variable precision algorithm to determine reachability for
program understanding, but this approach is also at instruc-
tion level [23]. Orso et al. mention an approximate static
slicing method to be used in impact analysis [18]. They
also employ reachability on the CFG, however no further
details are given. Our work was motivated by the dynamic
procedure level Execute After relations introduced by Api-
wattanapong et al. [1].

The Context Sensitive Control Flow Graph (CSCFG) in-
troduced by Ng is used for visualization purposes [17]. In
this concept the details of unimportant parts of the CFG
can be eliminated. However, no nodes are deleted from
the CFG to produce the CSCFG, but unconcerned nodes are
collapsed into single nodes, in the way that the original con-
trol flow of concerned nodes remains unchanged.

Yang et al. propose a method to compute the indirect
couplings, which can also be seen as a way to detect hid-
den dependencies [26]. Génova et al. presented a work on
how to cope with dependencies that are less easily observ-
able from the code [12]. However, this work is about dis-
tinguishing some less explicit UML associations from firm
“knows-about” associations, and not about dealing with de-
pendencies spanning possibly across many classes and mes-
sage chains.

7 Conclusions and future work

In this paper, we introduced Static Execute After rela-
tions to approximate static slicing, while being much less
expensive and more usable. We applied SEA technique
to the problem of finding hidden dependencies in the code

and speculate about applications related to software main-
tenance. We followed a highly conservative approach with
which we ensured that all dependencies computed by static
slices are captured, but eventually false ones are captured
as well. Compared to the dataflow-based methods, this ap-
proach enables us to design more efficient analysis algo-
rithms with high recall rates but a lower precision. We are
convinced that this is a sound trade-off in many applica-
tions, although this should be verified in real life case stud-
ies.

Static Execute After covers all possible interactions be-
tween classes, even the ones that are syntactically unde-
tectable, like a semantic link between two different yet se-
mantically linked constant literals. In the future, we want
to broaden the notion of hidden dependency beyond the de-
pendencies caused by data flows. We are also planning to
investigate additional heuristics that increase precision of
the analysis, for example to define pre- and post-conditions
for the endpoints of the dependency relations. A possible
enhancement to the method is to incorporate the level of in-
direction in the SEA relation, similarly to the DFC approach
used in dynamic analysis [5]. We also plan to investigate
the application of hidden dependencies as metrics for the
prediction of software quality attributes like maintainability
and error proneness.

The hidden dependencies are due to a “mediating” com-
ponent that behaves as a link between the dependent classes
(see our example at the beginning of the paper). We ob-
served that often these mediators are apparent in the pro-
gram design (c.f. Mediator Design Pattern [11]) and in
some cases should be treated as a design problem. We plan
to investigate this issue more deeply in the future.

Acknowledgements

This work was supported, in part, by grant no. RET-
07/2005 of the Péter Pazmany Program of the Hungarian
National Office of Research and Technology. Viclav Ra-
jlich was partially supported in this work by US National
Science Foundation Grant CCF-0438970, US National In-
stitute for Health Grant NHGRI 1R01HGO003491, and the
2006 IBM Eclipse Innovation Award.

References

[1] T. Apiwattanapong, A. Orso, and M. J. Harrold. Efficient
and precise dynamic impact analysis using execute-after se-
quences. In Proceedings of the 27th International Confer-
ence on Software Engineering (ICSE’05), pages 432-441,
May 2005.

[2] R.S. Arnold. Software Change Impact Analysis. IEEE Com-
puter Society Press, Los Alamitos, CA, USA, 1996.

(3]

(4]

[5

—

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

(14]

[15]

[16]

(7]

(18]

D. F. Bacon. Fast and effective optimization of statically
typed object-oriented languages. PhD thesis, EECS Depart-
ment, University of California, Berkeley, 1997.

V. R. Basili, L. C. Briand, and W. L. Melo. A Validation
of Object-Oriented Design Metrics as Quality Indicators.
IEEE Transactions on Software Engineering, 22(10):751—
761, Oct. 1996.

A. Beszédes, T. Gergely, Sz. Faragé, T. Gyiméthy, and
F. Fischer. The dynamic function coupling metric and its
use in software evolution. In Proceedings of the 11th Euro-
pean Conference on Software Maintenance and Reengineer-
ing (CSMR 2007), pages 103-112, Mar. 21-23, 2007.

D. Binkley and M. Harman. Locating dependence clusters
and dependence pollution. In Proceedings of the 21st Inter-
national Conference on Software Maintenance (ICSM’05),
pages 177-186, Sept. 2005.

L. C. Briand, J. W. Daly, and J. K. Wiist. A unified frame-
work for coupling measurement in object-oriented systems.
IEEE Transactions on Software Engineering, 25(1):91-121,
1999.

L. C. Briand, J. Wiist, and H. Lounis. Using coupling mea-
surement for impact analysis in object-oriented systems. In
Proceedings of the International Conference on Software
Maintenance (ICSM’99), pages 475-482, Sept. 1999.

S. R. Chidamber and C. F. Kemerer. A metrics suite for
object oriented design. /IEEE Transactions on Software En-
gineering, 20(6):476-493, 1994.

R. Ferenc, A. Beszédes, M. Tarkiainen, and T. Gyiméthy.
Columbus — reverse engineering tool and schema for C++.
In Proceedings of the IEEE International Conference on
Software Maintenance (ICSM 2002), pages 172—181, Oct.
2002.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns : Elements of Reusable Object-Oriented Software.
Addison-Wesley Pub Co, 1995.

G. Génova, J. Lloréns, and J. M. Fuentes. UML associa-
tions: A structural and contextual view. Journal of Object
Technology, 3(7):83—-100, 2004. (electronic edition).

T. Gyiméthy, R. Ferenc, and I. Siket. Empirical validation
of object-oriented metrics on open source software for fault
prediction. [EEE Transactions on Software Engineering,
31(10):897-910, 2005.

S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs. ACM Transactions on Program-
ming Languages and Systems, 12(1):26-61, 1990.

Indus project: Java program slicer and static analyses tools.
http://indus.projects.cis.ksu.edu/

W. Landi and B. G. Ryder. Pointer-induced aliasing: a prob-
lem taxonomy. In POPL '91: Proceedings of the 18th ACM
SIGPLAN-SIGACT symposium on Principles of program-
ming languages, pages 93—-103. ACM Press, Jan. 1991.
J.-K. Ng. Context-sensitive control flow graph. Master’s
thesis, Iowa State University, Ames, Iowa, USA, 2004.

A. Orso, T. Apiwattanapong, and M. J. Harrold. Leveraging
field data for impact analysis and regression testing. In Pro-
ceedings of the 11th ACM SIGSOFT Symposium on Foun-
dations of Software Engineering held jointly with 9th Eu-
ropean Software Engineering Conference (ESEC/FSE’03),
pages 128-137, Sept. 2003.

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

V. Rajlich. A model for change propagation based on graph
rewriting. In Proceedings of the 1997 IEEE International
Conference on Software Maintenance (ICSM’97), pages 84—
91, Oct. 1997.

B. G. Ryder. Constructing the Call Graph of a Program.
IEEE Transactions on Software Engineering, SE-5(3):216—
226, May 1979.

Soot: a Java Optimization Framework.
http://www.sable.mcgill.ca/soot/

A. Szegedi, T. Gergely, A. Beszédes, T. Gyiméthy, and
G. Téth. Verifying the concept of union slices on Java pro-
grams. In Proceedings of the 11th European Conference
on Software Maintenance and Reengineering (CSMR 2007),
pages 233-242, Mar. 21-23, 2007.

P. Tonella, G. Antoniol, R. Fiutem, and E. Merlo. Variable
precision reaching definitions analysis for software mainte-
nance. In Proceedings of the First Euromicro Conference
on Software Maintenance and Reengineering, pages 60—-67,
Mar. 1997.

M. Weiser. Program slicing. IEEE Transactions on Software
Engineering, SE-10(4):352-357, 1984.

L. White, K. Jaber, and B. Robinson. Utilization of extended
firewall for object-oriented regression testing. In Proceed-
ings of the 21st IEEE International Conference on Software
Maintenance (ICSM’05), pages 695-698, Sept. 2005.

H. Y. Yang, E. Tempero, and R. Berrigan. Detecting in-
direct coupling. In ASWEC ’05: Proceedings of the 2005
Australian conference on Software Engineering, pages 212—
221, 2005.

Z. Yu and V. Rajlich. Hidden dependencies in program
comprehension and change propagation. In Proceedings of
the 9th International Workshop on Program Comprehension
(IWPC’01), pages 293-299, May 2001.

