
An ant approach to membership overlay design⋆

Results on the dynamic global setting

Vittorio Maniezzo1, Marco Boschetti2 and Mark Jelasity1

1 Department of Computer Science, University of Bologna, Italy,
{maniezzo,jelasity}@cs.unibo.it,

2 Department of Mathematics, University of Bologna, Italy,
boschett@csr.unibo.it

Abstract. Designing an optimal overlay communication network for a
set of processes on the Internet is a central problem of peer-to-peer (P2P)
computing. Such a network defines membership and allows for members
to disseminate information within the group. The network has to be
robust and the available bandwidth has to be utilized in an optimal
manner to allow for maximally efficient communication. This problem
can be formulated as a dynamic optimization problem where classical
combinatorial optimization techniques must face the further challenge of
time-varying input data. ACO systems appear to be particularly fit for
this class of problems, being able to construct an internal model of the
instance to face and to exploit it for fast adaptation to modified contexts.
This paper proposes to use elements resulting from mathematical tech-
niques, in this case Lagrangean relaxation, in an ACO framework in or-
der to achieve sound hot start states for fast response to varying network
structures.

1 Introduction

The rapid evolution of the Internet and related technology, the increasing band-
width and the enormous number of network-enabled computing devices resulted
in a new field of distributed computing, the so called peer-to-peer (P2P) com-
puting [21], which is an umbrella term for a wide range of areas which include file
sharing, grid computing, distributed search, distributed hash tables, etc. This
new field poses a large number of new challanges, in particular, optimization
problems, most of which are dynamic in nature as the defining elements change
over time. A recent research thread in ACO systems supports the intuition that
ant algorithms are particularly fit for dynamic optimization problems because
of their ability to construct an internal representation of the essential elements
of the instance to solve, representation which needs to be updated and not re-
constructed when the instance changes ([9, 23, 6, 12, 11]).

⋆ The original publication is available at www.springerlink.com. In Proc. ANTS 2004,
Springer LNCS 3172, pp 37–48 (doi:10.1007/978-3-540-28646-2 4). This work was
partially supported by the FET unit of the EC through Project BISON (IST-2001-
38923). M. Jelasity is also with MTA RGAI, SZTE, Szeged, Hungary.



This work reports on our approach of using an ant algorithm for a dynamic
network design problem: P2P membership overlay network design. This prob-
lem arises in all P2P applications that are large and fully decentralized, like
popular file sharing networks [10, 24] or gossip-based protocols for information
dissemination [4, 5] and information aggregation (data mining) [22, 15]. Lacking
a central service, participating nodes talk to each other directly, typically using
a relatively small list of peer nodes they are aware of. Given the heterogenious
bandwidth and availability constraints at each node, it is crucial for scalability
and performance that participating nodes share the costs of the application in
a fair manner. The optimization problem arises through the fact that the peers
have to intelligently select the other peers they communicate with so that no
participants get overloaded but available bandwidth is utilized reliably in an
optimal manner by all network nodes.

For the full specification of the problem the target application has to be
specified as well. In this work we are focusing on overlay networks applied by
gossip-based protocols. In this case, each node sends gossip messages periodi-
cally to its neighbors. The applied membership overlay (as defined by the set
of neighbors used to send gossip messages to) is typically a random or pseudo-
random topology [8] sometimes taking into account network locality [20, 16].
Random topologies have a number of advantages from a theoretical point of
view, however they ignore bandwidth and other constraints.

Unlike our problem, other rigorously formulated network optimization prob-
lems that consider communication cost, like the optimum communication cost
spanning tree (OCST) problem [13] and the Steiner tree problem [14] are formu-
lated to find a specific topology (e.g., tree) and they target other applications
like broadcasting or search. Besides, the extremely dynamic character of P2P en-
vironments represents a novel requirement that needed to be incorporated into
the formulation of our problem as well.

While our long term objective is to obtain a local algorithm, that—when run
at all nodes concurrently—solves the above problem in a distributed manner,
in this work we report results on a global algorithm that can however handle
dynamicity, our main focus of research. Unfortunately paper length constraints
prevent us to provide a detailed account of the rationals and the techniques we
used. However, we believe to have achieved a sufficient presentation clarity and
we refer the interested reader to [2] for further details.

2 Problem description

As described in the Introduction, we are focusing on overlay networks for gossip
based protocols. We assume that we have a set of Internet nodes that wish to
form a gossip group, that is, a group over which gossip-based protocols can be
applied. Gossip protocols can disseminate information among the members [4,
5] or they can analyze some attributes of the nodes in a distributed fashion [22,
15]. In principle, each node can send a message to any other node applying the
routing service of the Internet provided the target IP address is known (if we



ignore the effect of firewalls). In practice, it is not feasible to store all member
addresses at all nodes because there can be too many of them and membership
can change dynamically, so scalability problems arise. The typical solution that
is normally adopted is storing only a limited number of peer addresses and
using only those to send gossip messages to, which still allows gossip to spread
efficiently.

The set of known peers at each node defines the overlay network in which
there is a directed link between nodes i and j if i has the IP address of j in its list
of peers. This network defines the membership in the group: those nodes that are
connected to the overlay network are members since they can participate in the
gossiping. The structure of this network has a major impact on the performance
of the communication. If nodes with limited bandwidth have to send or receive
too many messages (i.e., have too many outgoing or incoming connections) then
the network will not function properly. It is important that load is distributed
in a fair manner so that the throughput of the network is maximized without
any nodes being overloaded.

In the following we will use the term “connection” as a shorthand for “al-
location of non-zero bandwidth for possible communication”. That is, node j
is connected to, or a neighbor of, i if i allocates non-zero bandwidth for com-
municating with j. This sense of connection is not identical to direct physical
connection or even proximity at the network level, it expresses a logical connec-
tion in the overlay network.

Let us now formulate this networking problem, that we shall call the Mem-
bership Overlay Design Problem (MOP), in a mathematical model as follows.
A graph G=(V,E) of n vertices is given, where the nodes correspond to peers
that want to communicate with each other, that is, that want to form a gossip
group. The edges correspond to possible communication, that is, if there is an
edge (ij) then i can possibly send a message to j using the underlying routing
infrastructure. Each node can dynamically enter and exit the network, and when
it is connected it can make use of a limited bandwidth. Therefore, each node
has two associated weights, pi and wi, i = 0, . . . , n, corresponding to its uptime
(measured as the percentage of time that the peer is available and responding
to traffic [25], normalized to 1) and to the available bandwidth of its connection
to the Internet, respectively. The finer structure within the core Internet (the
high performance routers and backbones) are not taken into account. In other
words, as in P2P networks the bandwidth bottleneck is typically represented
by the connection between the core Internet and the participating computer on
the edge of the Internet, and only rarely by a main backbone within the core
Internet, we approximate the bandwidth constraint locally using the bandwidth
of the Internet connection of the participating node.

The MOP asks to find a subgraph G′=(V,E′) of G. The edges in the graph
G′ define the fact that two nodes actually decide to allocate some bandwidth to
communicate with each other. In other words, when two nodes i and j establish
a connection, each one must allocate part of its bandwidth. If bi and bj are the
bandwidths which could be allocated by i and j, then the bandwidth of the



connection can be at most bij = min{bi, bj}. The two values bi and bj could be
equal to wi and wj or could be less than that, due to other connections already
maintained by the peers. Moreover, there is a lower bound L on the bandwidth
of acceptable connections and it is anyway possible to put a limit on the maximal
value that bij can take.

The graph G′ has to be such that

1. the expected network throughput is maximized
2. the diameter of G′ is minimized.
3. the total bandwidth used by each node i is less than or equal to wi.

Note that 2) implies that G′ is connected.
As mentioned, the final algorithm for solving this problem should be local:

no global knowledge of the network is provided, each node i can exchange infor-
mations only with the nodes in δ′(i), that is, with its neighbors in G′. However,
at this stage of our research we present a solution algorithm working at a global
level.

2.1 The static subproblem

First a mathematical formulation (P) of the static version of the problem will
be presented, which will be later adapted to the dynamic case. Formulation P is
a mixed integer formulation for which we will later derive a polynomial upper
bound and a relaxation framework.

A MIP formulation A comprehensive mathematical analysis of the MOP can
be found in [2], here we report only some results which are relevant for this work.
Specifically, we present a mathematical formulation of MOP, with reference only
to objective 1) and leave the other two objectives to be handled by the ants
metaheuristic.

Two sets of decision variables are used: [xij ] and [ξij ], (ij) ∈ E. The decision
variables xij specify the bandwidth allocated to the connection between peers
i and j. Therefore they are continuous variables 0 ≤ xij ≤ bij , which will be
further constrained when they are not 0 to be at least L. Decision variables ξij
are binary variables which are 1 if arc (ij) is used for a connection, 0 otherwise.

The formulation, denoted P, is the following.

zP = max
∑

(ij)∈E

pijxij (1)

s.t.
∑

j∈δ(i)

xij ≤ wi i ∈ V (2)

xij ≥ Lξij (ij) ∈ E (3)

xij ≤ bijξij (ij) ∈ E (4)

ξij ∈ {0, 1} (ij) ∈ E (5)



where pij = pi ∗ pj , for each edge (ij) ∈ E and δ(i) represents the neighborhood
of i in G (i.e., V \ {i} if graph G is complete).

The complexity of this problem is under study, but no straight solution
methodology is available.

Lagrangean relaxation of P Formulation P can be effectively solved by a
sequence of successive relaxations. This is justified by the assumption, to be
a posteriori verified, that the optimum of the relaxed problem is structurally
sufficiently similar to a feasible solution to permit to obtain one with minor
adjustments without loosing much in solution quality.

The first relaxation is a LP relaxation of constraints (5), and substitutes them
with constraints in the form 0 ≤ ξij ≤ 1. This makes the problem equivalent to
the following problem LP, where variables ξij become unnecessary.

zLP = max
∑

(ij)∈E

pijxij (6)

s.t.
∑

(ij)∈δ(i)

xij ≤ wi i ∈ V (7)

0 ≤ xij ≤ bij (ij) ∈ E (8)

Notice that constraints 3 have been removed because the LP solution has
them always satisfied (with fractional variables), they will be later dealt with by
the ants procedure (see section 3.2).

Problem LP can obviously be solved by a LP-solver. However, we preferred
to further relax it for two reasons. The first one is that we are not interested
directly in the optimal LP solution but in a good approximation of its optimal
dual variables, to be later used by the ants metaheuristic (see section 3.2). The
second one is that, as mentioned in section 1 our ultimate objective is the design
of a fully local optimization procedure: this is better supported by a further
relaxation, in a Lagrangean fashion, of problem LP than by a straight application
of LP solution algorithms.

This further relaxion can be done by associating a positive Lagrangean
penalty λi to each constraint 7, resulting in the following formulation, denoted
LR.

zLR(λ) = max
∑

(ij)∈E

(pij − λi − λj)xij +
∑

i∈V

wiλi (9)

s.t. 0 ≤ xij ≤ bij (ij) ∈ E (10)

In order to solve problem LP we must now find the minimum over all fea-
sible λ vectors of the zLR(λ) costs, i.e., we must solve the Lagrangean dual
min [zLR(λ) : λ ≥ 0].



2.2 The dynamic case

In actual practice of P2P networks it can be observed that nodes continuously
enter and exit the network, some nodes spending more time in the network
while others join only for a short time. The problem formulation is not affected
by dynamicity, in the sense that at any moment in time the problem formulation
is as described. The only effect is that the graph G and all related elements are
time-varying.

Whenever the average uptime of a node in the network is higher than the
optimization time, it becomes feasible to re-optimize the network, taking into
account the new network conditions. This could be done periodically or whenever
significant network topology changes are detected. In addition, re-optimizations
should be sufficiently frequent to ensure smooth performance. This means that
optimization time must be short with respect to average node permanence time,
putting a stress on optimization efficiency.

3 Ants for the static case

We used an ants metaheuristic for solving the whole static problem and we
considered LP as a subproblem. The upper bound provided by the LP solution
can be infeasible because the resulting overlay topology could be disconnected
and some connections could be allocated a bandwidth less then L. It will be the
task of ants to construct a feasible, high-throughput, low diameter connected
solution.

In the following we will first detail how to get a possibly disconnected solution
but with feasible bandwidths, then we describe how to include this routine in
an ants framework.

3.1 Disconnected upper bound

Let z∗LR be the solution obtained by the subgradient optimization of problem
LR using penalties λ∗i , i ∈ V . The solution could be infeasible for problem P
because of the relaxed constraints, thus it could contain arcs (ij) which have an
allocated bandwidth less than L.

An heuristic solution is obtained by considering the optimized costs c∗ij =
(pij − λ∗i − λ∗j ), ranking all arcs (ij) ∈ E by non increasing c∗ij values and
allocating all possible bandwidth to each successively considered connection.
More in detail, the algorithm is the following.

LagrHeuristic(c∗)
1 Order all arcs in E by decreasing c∗

2 initialize si = bi for each i ∈ V

3 foreach arc (ij) in E in nonincreasing c∗ order
4 do slack = min{si, sj}
5 if slack ≥ L



6 then xij = slack

7 ξij = 1
8 si = si − slack; sj = sj − slack

This approach is derived from the exact method for solving continuous knap-
sack problems [19]. In our case it is not guaranteed to be optimal but it consis-
tently produces good quality solutions in time O(n logn), where n is the number
of arcs, the highest cost operation being the ordering of the arcs.

3.2 The ants heuristic

The solution obtained by the procedure described in subsection 3.1 can be in-
feasible for problem P because of its disconnectedness. It is necessary to reduce
the solution objective function value in order to introduce new arcs which ensure
connectivity. This is the task of the ants algorithm. The objective of each ant is
to construct a connected solution. This is done by first identifying all connected
components, then all vertices which could be endpoints of a new solution arc
and finally by searching in the space of these candidate arcs.

The connected components in the LagrHeuristic solution Sd are identified
and maintained by means of up-trees [3]. It is assumed that in actual practice
it is always possible to identify in each connected component at least one node
which has an incoming connection whose allocated bandwidth can be decreased
by L. To enter a new arc in the solution it will in fact be necessary to use
bandwidth previously allocated by at least one of its endpoints to another, more
profitable connection. The new arcs will therefore be introduced with the least
feasible bandwidth (i.e., L) in order to disrupt the solution quality the least.

Let Sdh be the subset of nodes belonging to the h− th connected component
which have at least one connection whose bandwidth can be decreased by L.
Each ant will try to identify arcs (ij), with i ∈ Sdh and j ∈ Sdl , h 6= l, so that the
global solution is connected and the solution cost is maximized.

The implemented ants algorithm from a structural viewpoint is a very stan-
dard ants algorithm, whose main steps are as follows.

AntsMOP(c∗, λ)
1 Initialize trails [τij ] and solutions Sk = ∅, k = 1 . . . n
2 repeat

3 repeat

4 for ants k=1 to m
5 do Choose the next arc (ij) ∈ E to append to Sk
6 Sk = Sk

⋃
(ij)

7 until (all ants have their solution completed)
8 Update trails
9 until (Termination condition)



The choice of the next arc to append, at step 5, is obviously made in prob-
ability. The formulae used at step 5 and at step 8 are those proposed in [18],
that is, each k − th ant moves from its current state ι to a feasible state ψ in
probability, coording to the formula:

pkιψ =
α · τιψ + (1− α) · ηιψ

Σ(ιν)/∈tabuk
(α · τιν + (1− α) · ηιν)

(11)

Whereas trails are updated by means of formula 12

τιψ(t) = τιψ(t− 1) + τιψ(0) · (1−
zcurr − LB

z − LB
) (12)

where zcurr is the cost of each current solution, z is the average of the last
computed solutions and LB is a lower bound to the optimal problem solution
cost. Detailed descriptions in [18].

Parameters to tune arem, number of ants, α, relative importance of visibility
w.r.t. trail (multiplicative coefficient), and the termination condition, in our case
maximum CPU time allowed. The cost average to use in the trail update formula
at step 8 was made over the costs of all solutions computed at each iteration of
loop 3-7.

The elements to define for the MOP-specific algorithm are trail and visibility
initialization, and the bound to use for trail update.

Trail initialization. Trails were initialized by means of the optimized La-
grangean multipliers λ, which penalize relaxed total node load constraints thus
are higher for a nodes i and j when it would be desirable to have connection
(ij) in the solution (i.e., xij > 0) but there is not enough bandwidth available
to allocate at least L to it. Therefore penalties quantify desirability other than
the cost, and we used those values to initialize trails. Notice that this is not the
first work proposing the use of non-uniform trail initialization, other relevant
contributions to this topic can be found for example in [18], [1] and [17].

Visibility initialization. Being MOP a maximization problem, it comes nat-
ural to set ηij equal to the arc cost, for ll (ij) ∈ E. While this is true, we choose
to use costs c∗ij in order to take into consideration also the global information
which comes from bound pricing.

3.3 ANTS in the dynamic setting

The dynamic setting introduced in section 2.2 has been tackled by means of a
continuous application of the interwoven Lagrangean and ants procedures de-
scribed for the static case.

Since variations of the network structure happen continuously, the optimiza-
tion algorithm is run continuously. It is assumed that the speed of execution of



iterations of the subgradient optimization procedure is higher than the rate of
network changes, thus that a few subgradient iterations can be performed be-
tween consecutive network changes. The exact number of iterations is currently
a parameter, which therefore implicitly quantifies the network variability.

Three algorithms are actually run concurrently and syncronously. The first
is a standard subgradient optimization procedure which updates Lagrangean
penalties [7]. The second is the lagrangean heuristic LagrHeuristic described
in section 3.1, which is run every 5 iterations of the subgradient procedure.
The third procedure is AntsMOP, and we perform one ants iteration for each
subgradient iteration. The full pseudocode, at a high abstraction level, is thus
the following. It is assumed that network changes are handled programmatically
as events, thus in separate threads.

DynAntsMOP(G)
1 Initialize subgradient step and penalties λi, i ∈ V

2 Initialize trails [τij ] and iteration counter ItCount
3 while (true)
4 do ItCount++
5 Solve problems SP1 and SP2
6 Check for infeasibilities and update λ
7 if (ItCount mod 5 == 0) then call LagrHeuristic

8 Initialize solutions Sk = ∅, k = 1 . . . n
9 repeat

10 for ants k=1 to m
11 do Choose the next arc (ij) ∈ E to append to Sk
12 Sk = Sk

⋃
(ij)

13 until (all ants have their solution completed)
14 Update trails

4 Computational results

The proposed algorithms were coded partly in c# and partly in c++ and run
on a 1000 MHz Pentium III machine, under Windows XP. To validate the de-
scribed techniques, we conducted a number of experiments on different simulated
scenarios. We generated two sets of instance graphs; the first one (set A) has
parameters which match those measured on real P2P networks as reported in
[25], the second set (set B) has the nodes randomly generated on a x-y plane and
pij inversely proportional to the Euclidean distance of nodes i and j, ∀i, j ∈ V ,
in order to produce meaningful visualizations.

More precisely, the parameters to be defined when constructing a testset are:
• n: number of network nodes.
• L: minimal acceptable connection bandwidth.
• pi: uptime of node i.
• wi: total bandwidth of node i.



For set A we have L=14 (Kbps), the uptime distribution (pi) is derived from
figure 6 of [25] and the bandwidth distribution (wi is derived from from figure 4
of [25]. For set B we have L=2, uptime distribution such that pij =M−dist[i, j],
whereM is a suitably big constant and dist[i, j] is the euclidean distance of nodes
i and j, bandwidth distribution uniform random in [2,11] and L = 2.

The computational testing was carried out separately for the static and the
dynamic case. In the static case we wanted to determine the solution quality
disruption, w.r.t. to upper bound zP , due to the successive heuristics, while
in the dynamic case the ease of adaptation to a mutated environment was of
interest. Table 1 summarizes the results obtained. The columns show:
• Id: an instance identifier.
• n: number of nodes.
• z∗LR: cost of best solution found for problem LR.
• t∗LR: time to find the solution of cost z∗LR.
• %z∗d : percentage decrease of cost for solution of algorithm LagrHeuristic.
• t∗d: time to find the solution of algorithm LagrHeuristic.
• %z∗ants: percentage decrease of cost for solution of algorithm AntsMOP.
• t∗ants: time to find the solution of algorithm AntsMOP.

The last two elements are reported for a number of ants / subgradient opti-
mization iterations which is 10, 20 and 30, respectively. For the ants, parameters
were α = 0.5 and num.ants = n/10.

Problem LP LagrHeu 10 iter 20 iter 30 iter

Id n z
∗

LR t
∗

LR %z
∗

d t
∗

d %z
∗

ants t
∗

ants %z
∗

ants t
∗

ants %z
∗

ants t
∗

ants

A20 20 842 0.00 0.04 0.00 0.95 0.00 0.59 0.04 0.27 0.05
A50 50 2137 0.01 0.06 0.01 0.88 0.10 0.52 0.15 0.36 0.19
A100 100 8162 0.02 0.01 0.01 0.83 0.23 0.67 0.37 0.24 0.48
A500 500 20192 0.35 0.01 0.31 0.96 4.46 0.66 7.96 0.23 11.25
A1000 1000 53765 1.37 0.01 1.33 0.92 21.98 0.58 38.64 0.30 56.37
B20 20 53295 0.00 2.22 0.00 4.46 0.17 4.05 0.26 3.71 0.33
B50 50 131891 0.00 2.84 0.00 4.35 0.17 4.00 0.29 3.67 0.39
B100 100 281836 0.00 2.31 0.00 4.50 0.21 4.06 0.37 3.93 0.48
B500 500 1413301 0.33 2.81 0.44 4.59 4.05 4.15 8.14 3.95 10.72
B1000 1000 2940334 1.63 2.96 1.65 4.35 20.90 3.97 40.19 3.84 61.44

Table 1. Results on different MOP instances.

The results show how the proposed problem relaxation is highly effective on
both, structurally very different, instance sets. The gap between the upper bound
z∗LR and the lower bound z∗d is always reasonably small, and the feasible solution
obtained by the ants does never disrupt excessively the bounds solution quality.
Moreover, in the dynamic setting a fast adaptation is achieved, as testified by
the solution quality obtained after different numbers of internal iterations. The
results reported here are admittedly still incomplete, as computational testing



is still going on. These results are to be read as a validation of the feasibility
of the approach, but significant improvements are possible. We did not concen-
trate much on this as we are now focused on the possibility of designing a fully
decentralized, asynchronous Lagrangean optimizer.

5 Conclusions

The work reported in this paper has three main foci of interest. First, it con-
firms the viability of ants approaches for dynamic problems and it does this
in the specific case of a cogent problem in telecommunication network design.
Second, it proposes a structural way to hybridize a fundamental mathematical
technique — Lagrangean optimization — with ants procedures. Both techniques
implement a progressive refinement of an implicit model of the problem to solve
and algorithm AntsMOP shows a way to intertwine their evolutions so that each
one exploits current results of the other (lower bounds and Lagrangean penalties,
respectively). Finally, the paper contains a mathematical analysis of the MOP,
which can represent a foundation for further algorithmic advances.

Our final research objective is the definition of a fully distributed, local proto-
col for optimized overlay network design. The results and the methods reported
in this work, besides being of interest in their own, also represent a promising
base over which to continue research toward the final objective.

References

1. C. Blum. Aco applied to group shop scheduling: A case study on intensification
and diversification. In Proc. ANTS’02, 2002.

2. M. Boschetti, M. Jelasity, and V. Maniezzo. A local approach to membership
overlay design. Working paper, Department of Computer Science, University of
Bologna, 2004.

3. T. Corman, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT Press,
1990.

4. Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker,
Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic algorithms for repli-
cated database management. In Proceedings of the 6th Annual ACM Symposium on
Principles of Distributed Computing (PODC’87), pages 1–12, Vancouver, August
1987. ACM.

5. Patrick Th. Eugster, Rachid Guerraoui, Anne-Marie Kermarrec, and Laurent Mas-
soulié. From epidemics to distributed computing. IEEE Computer. to appear.

6. C.J. Eyckelhof and M. Snoek. Ant systems for a dynamic tsp: Ants caught in a
traffic jam. In M. Dorigo, G. Di Caro, and M. Sampels, editors, Ant Algorithms :
Third International Workshop, ANTS 2002, volume 2463 / 2002 of Lecture Notes
in Computer Science. Springer-Verlag, Heidelberg, 2002.

7. M.L. Fisher. The lagrangean relaxation method for solving integer programming
problems. Management Science, 27(1):1–18, 1981.

8. Ayalvadi J. Ganesh, Anne-Marie Kermarrec, and Laurent Massoulié. Peer-to-
peer membership management for gossip-based protocols. IEEE Transactions on
Computers, 52(2), February 2003.



9. R.M. Garlick and R.S. Barr. Dynamic wavelength routing in wdm networks via
ant colony optimization. In M. Dorigo, G. Di Caro, and M. Sampels, editors, Ant
Algorithms : Third International Workshop, ANTS 2002, volume 2463 / 2002 of
Lecture Notes in Computer Science. Springer-Verlag, Heidelberg, 2002.

10. Gnutelliums. http://www.gnutelliums.com/.
11. M. Guntsch, J. Branke, M. Middendorf, and H. Schmeck. Aco strategies for dy-

namic tsp. In ANTS’2000 - From Ant Colonies to Artificial Ants: Second Interna-
tional Workshop on Ant Algorithms, 2000.

12. M. Guntsch and M. Middendorf. Applying population based aco to dynamic op-
timization problems. In M. Dorigo, G. Di Caro, and M. Sampels, editors, Ant
Algorithms: Third International Workshop, ANTS 2002, volume 2463 / 2002 of
Lecture Notes in Computer Science. Springer-Verlag, Heidelberg, 2002.

13. T. C. Hu. Optimum communication spanning trees. SIAM Journal on Computing,
3(3):188–195, September 1974.

14. Frank K. Hwang, Dana S. Richards, and Pawel Winter. The Steiner Tree Problem.
North-Holland, 1992.

15. Márk Jelasity and Alberto Montresor. Epidemic-style proactive aggregation in
large overlay networks. In Proceedings of The 24th International Conference on
Distributed Computing Systems (ICDCS 2004), pages 102–109, Tokyo, Japan, 2004.
IEEE Computer Society.

16. Meng-Jang Lin and Keith Marzullo. Directional gossip: Gossip in a wide area
network. In Jan Hlavička, Erik Maehle, and András Pataricza, editors, Dependable
Computing – EDCC-3, volume 1667 of Lecture Notes on Computer Science, pages
364–379. Springer-Verlag, 1999.

17. H. Lourenço and D. Serra. Adaptive search heuristics for the generalized assign-
ment problem. Mathware and Soft Computing, 9(2-3):209–234, 2002.

18. V. Maniezzo. Exact and approximate nondeterministic tree-search procedures for
the quadratic assignment problem. INFORMS J. on Computing, 11(4):358–369,
1999.

19. S. Martello and P. Toth. Knapsack problems: algorithms and computer implemen-
tations. John Wiley & Sons, Inc., 1990.

20. Laurent Massoulié, Anne-Marie Kermarrec, and Ayalvadi J. Ganesh. Network
awareness and failure resilience in self-organising overlays networks. In Proceedings
of the 22nd Symposium on Reliable Distributed Systems (SRDS 2003), pages 47–55,
Florence, Italy, 2003.

21. Dejan S. Milojicic, Vana Kalogeraki, Rajan Lukose, Kiran Nagaraja, Jim Pruyne,
Bruno Richard, Sami Rollins, and Zhichen Xu. Peer-to-peer computing. Technical
Report HPL-2002-57, HP Labs, Palo Alto, 2002.

22. Alberto Montresor, Márk Jelasity, and Ozalp Babaoglu. Robust aggregation proto-
cols for large-scale overlay networks. Technical Report UBLCS-2003-16, University
of Bologna, Department of Computer Science, Bologna, Italy, December 2003. to
appear in the proceedings of Distributed Systems and Networks (DSN 2004).

23. S. Nouyan. Agent-based approach to dynamic task allocation. In M. Dorigo,
G. Di Caro, and M. Sampels, editors, Ant Algorithms : Third International Work-
shop, ANTS 2002, volume 2463 / 2002 of Lecture Notes in Computer Science.
Springer-Verlag, Heidelberg, 2002.

24. FastTrack: Wikipedia page. http://en.wikipedia.org/wiki/FastTrack.
25. S. Saroiu, P. Krishna Gummadi, and S.D. Gribble. A measurement study of peer-

to-peer file sharing systems. In Proceedings of Multimedia Computing and Net-
working 2002 (MMCN’02), San Jose, CA, 2002.


