
Maintaining Connectivity in a Scalable and Robust Distributed Environment∗†

Márk Jelasity
Department of Artificial Intelligence,

Free University of Amsterdam
De Boelelaan 1081a, 1081 HV Amsterdam,
The Netherlands, jelasity@cs.vu.nl
and RGAI, University of Szeged, Hungary

Mike Preuß
Chair of Systems Analysis, Department of

Computer Science, University of Dortmund
Joseph-von-Fraunhoferstr. 20, 44227 Dortmund,

Germany,
mike.preuss@uni-dortmund.de

Maarten van Steen
Free University of Amsterdam,

steen@cs.vu.nl

Ben Paechter
Napier University, 10 Colinton Road, Edinburgh,

Scotland, EH10 5DT

Abstract
This paper describes a novel peer-to-peer (P2P) environ-

ment for running distributed Java applications on the In-
ternet. The possible application areas include simple load
balancing, parallel evolutionary computation, agent-based
simulation and artificial life. Our environment is based on
cutting-edge P2P technology. We introduce and analyze
the concept of long term memory which provides protection
against partitioning of the network. We demonstrate the po-
tentials of our approach by analyzing a simple distributed
application. We present theoretical and empirical evidence
that our approach is scalable, effective and robust.

1. Introduction

This paper describes a novel framework for running dis-
tributed experiments on the Internet. It is being developed as
part of the DREAM project [9]. In a nutshell, the aim of the
DREAM project is to develop a complete environment for de-
veloping and running distributed evolutionary computation
experiments on the Internet in a robust and scalable fashion.
The present work focuses on the network engine, i.e. the
overlay network on which these experiments will eventually
be run.

Although our project focuses on evolutionary computa-
tion the environment supports any application that is mas-
sively parallelizable, uses asynchronous communication,
has little communication between its subprocesses, has large
resource requirements, and is robust (the success of the ap-
plication does not depend on the success of any given sub-
process).

∗In Proceedings of the 2nd IEEE/ACM International Symposium on
Cluster Computing and the Grid (CCGrid2002), pp. 389–394.

†This work is funded as part of the European Commission Information
Society Technologies Programme (Future and Emerging Technologies).
The authors have sole responsibility for this work, it does not represent
the opinion of the European Community, and the European Community is
not responsible for any use that may be made of the data appearing herein.

This list might seem quite restrictive but in fact it in-
cludes many interesting fields. Good examples are running
independent tasks with load balancing, island models in evo-
lutionary computation (EC), heuristic optimization, model-
ing swarm intelligence and other systems with emergent be-
haviour, etc.

In essence we relax strict requirements concerning reli-
ability of computations and synchronization and control of
subprocesses. This allows us to apply scalable P2P technol-
ogy based on epidemic protocols that can be used on unreli-
able WANs. This approach has the advantage of being able
to access a potentially huge amount of idle resources.

To our knowledge, using a P2P network that deploys epi-
demic protocols for distributing computational tasks in a
fully decentralized manner is new. Existing P2P systems are
mainly used for data-oriented applications management like
maintaining discussion groups or to distribute information
(e.g. [4, 6, 1]). Current systems that use WANs for solving
computational problems generally deploy a server/worker
paradigm that requires central components, which may lead
to scalability or availability problems. (e.g. [3, 10, 11]).
The Java platform offers a natural way to distribute com-
putational tasks by allowing runtime linking of executable
code to an application. It provides rich security features and
at last but not least complete platform independence. This
made Java an obvious choice for us.

To summarize: our environment can be thought of as
a virtual machine or distributed resource machine (DRM)
made up of computers anywhere on the Internet. The actual
set of machines can (and generally will) constantly change
and can grow immensely without any special intervention.
Apart from security considerations, anyone having access
to the Internet can connect to the DRM and can either run
his/her own experiments or simply donate the spare capacity
of his or her machine.

The outline of the paper is as follows: Section 2. dis-
cusses the DRM from an algorithmic and theoretical point
of view. We will illustrate the scalability and robustness of
the underlying epidemic protocol.



name this is the unique key
address the IP address and port of the node
date timestamp of the entry
agents[] names of agents living at the node
map optional information in a hash map

Table 1. Structure of an entry in the database
of a node.

Section 3. gives simulation results for large networks. We
show a shortcoming of the algorithm suggested in [5] and
suggest and analyze a solution.

Section 4. describes an application developed for our en-
vironment. This application executes a set of independent
tasks with load balancing over the nodes of the network.
While this is only a simple application and does not at all
make use of all the possibilities, it is suitable for illustrat-
ing the features of the DRM. Section 5. describes the results
of our experiments on a real DRM under different circum-
stances. Section 6. concludes the paper.

2. The distributed resource machine

The DRM is a P2P overlay network on the Internet form-
ing an autonomous agent environment. Computations are
implemented as multi-agent applications. The exact way an
application is implemented in the multi-agent framework is
not a priori restricted, although we intend to suggest tem-
plates and examples in the future (one of which is discussed
in Section 4.) to facilitate development.

2.1. Self-organizing structure

The DRM is a network of DRM nodes. In the DRM every
node is completely equivalent. There are no nodes that pos-
sess special information or have special functions. Nodes
must be able to know enough about the rest of the network
in order to be able to remain connected to it and to provide
information about it to the agents. Spreading information
over and about the network is based on epidemic protocols
[2].

Every node maintains an incomplete database about the
rest of the network. This database contains entries on some
other nodes (see Table 1). We call these nodes the neigh-
bours of the node. The database is refreshed using a push-
pull anti-entropy algorithm. Every node s chooses a living
address from its database regularly once within a time inter-
val. An address is living if there is a working node s′ at that
address. Then any differences between s and s′ are resolved
so that after the communication s and s′ will both have the
union of the two original databases (choosing the fresher
item if both contain items with a given key). Besides this,
s will receive a fresh item on s′ (with a new timestamp of
course) and s′ will also receive an item on s with the actual
timestamp. As mentioned before, the size of the database is
limited. This limitation is implemented by keeping only the
freshest items that fit in (according to the timestamp in the

entries). Note that we assume here that the local time at the
different nodes does not differ significantly.

Fortunately, the theoretical and practical results dis-
cussed below show that limiting the size of the database does
not affect the power of the epidemic algorithm. Essentially
the same approach was adopted by [5].

To connect a new node to the DRM one needs only one
living address. The database of the new node is initialized
with the entry containing the living address only, and the
rest is taken care of by the epidemic algorithm described
above. Removal of a node does not need any administration
at all. Note that a node might even change its IP address
and/or port while running, so computers with dynamic IP
addresses are also automatically supported without any spe-
cial modification of the algorithm.

2.2. Theoretical properties

The theory of epidemic algorithms is well known [2]. To ap-
ply it to our limited-size databases we have to assume that a
given node has an equal probability of being in the database
of any other node. In Section 3. we will examine a special
case when this assumption does not hold.

Let n be the number of nodes in the network, k the size
of the database in each node and let a node initiate exactly
one information exchange session in every t seconds.

We know that information spreads very fast over the net-
work if the network is connected. But what is the probability
that the network is connected?

Let G(n, k) denote a random directed graph of n nodes
in which the outdegree of each node is exactly k and these k
arcs go to random nodes. Let π(k, n) denote the probability
that there is a directed path from a given node to any other
node in G(n, k). The following theorem holds [7]:

Theorem 1 Consider the sequence of random graphs
G(n, kn) with kn = log n + c + o(1), where c is a constant.
We have

lim
n→∞

π(kn, n) = e−e−c

It is notable that 1 − π(kn, n) < 10−10 if n > 23. The
theorem tells us that for a large network of size n if the size
of the database is k = log n+c where e.g. c > 23 we have a
connected network with an extremely large probability. For
example for k = 100 we can have n ≈ 1033. Empirical
analysis shows that the constants predicted by the theorem
provide the expected performance [7, 5].

3. Recovery after partitioning

In Section 2.2. it was assumed that a given node has an equal
probability of being in the database of any other node. In
practice this assumption is often unrealistic. For instance
if for some reason a subset of the nodes in the DRM (e.g.
the ones within a university intranet) is separated from the
rest of the DRM due to the failure of the underlying Internet
connection, then this equal distribution assumption cannot
be expected to hold. We show that the DRM (and thus the
architecture in [5, 7]) is very sensitive to this problem and



we will suggest a cheap and simple solution in the form of a
stochastic long term memory.

3.1. The partitioning problem

We illustrate the problem through a simple example which
we will use later for the simulation experiments as well. Let
n be the number of nodes in a DRM. Let us assume that
initially the equal distribution assumption is true. At some
point a cluster of n/2 nodes loses physical connection with
the other cluster of n/2 nodes while connection is preserved
within the clusters. Let us denote these clusters with C1 and
C2 respectively. This results in a situation when nodes ex-
change information only with nodes from their own cluster.

Due to lack of space we do not detail this part of our ex-
periments but simulations of up to n = 10000 and database
size 100 show that within a couple of time steps the con-
nectivity of the network is lost, i.e. the clusters completely
forget each other. This also means that after restoring the
physical connection between the clusters the DRM is not
able to recover its integrity; we end up with two indepen-
dent DRMs. In real networks this would happen within at
most a couple of minutes.

Note that entries are never removed from the databases
explicitly based on e.g. availability tests. Items “die out”
only when their timestamps are too old to be included into
the limited-sized databases. This is a negative side effect of
the quick adaptivity of the network which is in fact a major
advantage in other situations.

3.2. Stochastic long term memory

Our solution to the partitioning problem is the stochastic
long term memory. We add an additional set of addresses
(long term memory) to every node beside the database.
When the node communicates with a peer (according to the
epidemic algorithm) the address of the peer is stored in this
set with a given probability pltm. If the size of the set ex-
ceeds a fixed limit, a random element is removed.

The epidemic algorithm picks a random element from the
long term memory instead of the database with the same
probability pltm. The idea is that this way old addresses are
tried time to time which helps to make the connectivity of
the DRM robust to physical connection failures. Note that—
unlike approaches based on the underlying physical network
topology like [8]—this approch is topology independent.

Let us give some theoretial properties of this solution.
Let out(C1) be the number of long term memory entries in
the whole C1 cluster that point to nodes from cluster C2.
Let c be the size of the long term memory in each node.
Let out(C1) = m at time 0. Let us further assume that
the physical connection between C1 and C2 is lost at time
0 as well. Then after the t-th cycle of the epidemic algo-
rithm out(C1) follows a binomial distribution with param-
eters B((1 − pltm

1

c
)t, m) where (1 − pltm

1

c
)t is the prob-

ability that a fixed memory entry is not removed during t
cycles (an entry is removed in a cycle if the long term mem-
ory is updated and the new entry replaces the entry in ques-
tion). For example for pltm = 0.1, m = 100, c = 100 and
t = 1000 the expected value is still 36.8.

Another interesting question is how much time elapses
until the expected value of out(C1) becomes 1. After some
elementary transformations of the equation

m(1 − pltm

1

c
)t = 1

we get the following equation:

t =
log 1

m

log c−pltm

c

=
log m

pltm

pltm

log c − log(c − pltm)
≈

c log m

pltm

This tells us that the size of the memory is much more im-
portant for preserving information than the original amount
of information. We will see later that even if out(C1) is only
one, i.e. if only one of the nodes has only one address in its
long term memory from cluster C2 this is often sufficient to
restore full connectivity.

Note that the size of memory can be much larger than the
size of the database because the memory is never exchanged
between nodes (it never travels through the network) and it
contains only addresses, no additional information (unlike
the database).

We can thus calculate the amount of available informa-
tion as a function of time during the time interval when the
physical connection is missing. But what happens when the
physical connection is restored between C1 and C2? Ta-
bles 2 and 3 give simulation results that answer this question
for network sizes 1000 and 10000 respectively. The tables
show statistics from 10 runs for each parameter setting with
pltm = 0.1. pcon is the probability of restoring the con-
nectivity between the two clusters, and t is the average time
necessary for this.

The most interesting phenomenon that we can observe
is that a very small amount of information is sufficient to
recover the network. As little as 1 item is sufficient in almost
half of the occasions. Note that for a network size of 10000
and c = 10 the long term memories of the nodes in C1 hold
50000 items altogether. When only 3 of these points to the
other cluster we experienced successful recovery in 10 out
of the 10 cases.

3.3. A last note
The concept of long term memory can easily be extended
by applying more sophisticated data structures and machine
learning algorithms. Nodes can build a representation of the
DRM while communicating with the many different nodes
which can increase the chances of the survival of the DRM,
even under very poor conditions of the underlying physical
network.

4. The test application

The application itself has two layers. The lower layer is an
abstract load balancing framework on top of the DRM. The
higher layer is the application consisting of a set of tasks to
be executed. The only interesting feature of the task set we
used for testing in the present experiment is that every task
needs exactly the same amount of resources (CPU time and
memory) if run on a single fixed machine but the tasks are
sensitive to the resources actually being available.



m = 1 2 3 4 5 6 9 15 27
c = 10 pcon 40% 60% 80% 90% 100% 100% 100% 100% 100%

t 70.25 89.17 27.88 30.89 13.90 27.60 15.30 7.70 5.00
c = 20 pcon 40% 60% 100% 90% 90% 100% 100% 100% 100%

t 106.75 119.67 108.50 51.67 57.78 40.00 20.20 20.10 12.10
c = 50 pcon 20% 90% 100% 100% 100% 100% 100% 100% 100%

t 188.50 200.56 277.60 165.50 88.80 153.20 60.70 73.40 21.80
c = 90 pcon 50% 70% 90% 80% 100% 100% 90% 100% 100%

t 229.40 410.14 209.89 269.38 254.10 186.80 95.22 40.40 39.80

Table 2. Results for a network size of 1000.

m = 1 2 3 4 5 6 9 15 27
c = 10 pcon 50% 90% 100% 80% 100% 100% 100% 100% 100%

t 60.20 65.89 29.40 64.50 43.90 24.70 12.40 7.00 5.80
c = 20 pcon 70% 70% 90% 70% 90% 100% 100% 100% 100%

t 119.43 34.29 65.78 93.14 33.56 60.70 62.80 10.70 12.10
c = 50 pcon 50% 80% 80% 80% 90% 100% 100% 100% 100%

t 126.40 197.13 211.38 69.50 119.89 88.70 68.20 59.80 17.50

Table 3. Results for a network size of 10000.

4.1. The load balancing algorithm

In this paper we chose to consider the simplest possible ap-
plication on the DRM, a load balancing framework. This
framework does not make use of the messaging features of
the DRM (at least not on the application level) i.e. the tasks
do not communicate with each other. This application suf-
fices for illustrating the reliability, scalability and robustness
of our DRM system.

We assume that our application is composed of T tasks
that have to be run independently of each other as fast as
possible. The tasks have to be distributed efficiently over the
available resources in a way that tolerates the unreliability
and high communication costs of WANs, and the dynamic
nature of the DRM, in the sense that machines can come and
go at any time.

Load balancing is based on epidemic algorithms just like
the DRM itself. The application starts by initiating an island
which is implemented an autonomous agent. This island can
be started on any node within the DRM. The goal of this
island is to complete T tasks. The island achieves this goal
by starting to work on a task and at the same time listening to
the communications of its host node. When the node where
the island can be found exchanges information with another
node (according to the epidemic protocol of the DRM) the
island checks if the peer node already has an island (recall
that the database entry of a node contains information about
the agents running there). If not it sends half of its remaining
tasks to the peer node in the form of a new island which then
runs the same distribution mechanism on the peer node in
order to complete its tasks. In this way the tasks “infect” the
network. Note that it means that there is at most one island
on every node.

When an island arrives at its host node it sends a confir-
mation message back. This is the only communication that
is taking place. It ensures that the processing of the set of

tasks sent to another node was at least started. Confirmation
of finishing tasks does not make sense since the sender is-
land might not exist anymore at that time. This might result
in loosing tasks but this is not a serious disadvantage under
our assumptions described in Section 1..

The performance of the nodes does not have to be taken
into account when sending out tasks since if the machine
is too slow, it will send most of its tasks on nodes that fin-
ish earlier. Also, no mechanism is needed to indicate that
nodes have become available because they will be infected
very quickly anyway by simply communicating with peers.
These valuable properties result form the nature of our epi-
demic protocol underlying the DRM discussed earlier.

4.2. Some theoretical properties
We do not need to develop a separate theory to explain the
behaviour of the architecture because results describing the
epidemic algorithms apply. In the following we briefly sum-
marize these analogies.

Let T be the number of tasks and n the number of nodes.
We have to differentiate between three cases. If T � n then
task spreading follows the behaviour of the starting phase of
information spreading in an epidemic network. If T � n
then the behaviour of the end-phase of the pull version of
anti-entropy is relevant. In this case the expected number of
tasks an island has is much more than one. When in such a
network an empty node connects to a random peer (accord-
ing to the epidemic algorithm) it is very likely that this peer
will have some tasks to send. Thus it is very unlikely that
any node remains empty for a long time.

Finally T ≈ n is the most problematic case, as there
will be a moment when a considerable number of islands
work only on one task. These islands cover a considerable
proportion of the DRM. As a consequence, islands running
several tasks will only slowly discover idle nodes. However



in the first phase the spreading of tasks across nodes is fast;
it slows down only in the end phase. But even in this case if
the completion time of an average task is much longer than
the time between two information exchanges between the
nodes then this disadvantage becomes almost invisible.

5. Empirical results

We implemented two different scenarios on a cluster of
workstations to substantiate our claims. For both of them,
a fixed number of tasks (here: 1500) was computed.

Optimistic scenario: The experiment is running on an
undisturbed cluster, no node is added, deleted or
restarted.

Cluster addition scenario: After the experiment has been
running for a time, an additional cluster of nodes is
added to and deleted from the DRM several times. The
added nodes are always empty, i.e. they have no tasks,
they do not remember their previous state in the DRM.

We are interested in the performance behaviour of the
DRM under these different conditions, and would like to see
a speedup factor that does not vary much over the two sce-
narios. Note that we do not want to show robustness in the
sense of getting all of the tasks done, this is hindered by the
layout of the load balancing system and would in any case
be very difficult to achieve on a large-scale distributed P2P
system. From our experiments, we cannot conclude much
about scalability of the performance behaviour because the
number of machines available for testing has been quite lim-
ited.

It must be stated that even for the optimistic scenario it
is very difficult, if not impossible, to repeat an experiment
in exactly the same way. However, we consider the average
results over many experiments relatively stable.

5.1. Optimistic scenario
In this case nodes were run on workstations spread all over
Europe. We had machines from Paris, Edinburgh, Amster-
dam and Dortmund. The number of nodes is stable for this
scenario, the experiment runs undisturbed by external influ-
ences. This can easily be confirmed visually from Fig. 1
(up). It also shows that the number of working nodes varies
between 9 and 11 until most of the tasks are done. At around
3500 seconds, the task distribution seems to get more diffi-
cult, so that re-balancing the system begins to take longer
and more nodes remain without work. At this point, 83%
of the tasks are done. But as long as the number of tasks
available exceeds the number of nodes by far, the DRM can
recover from this situation. Near the end, the number of
tasks left to compute approaches the number of nodes and
the suboptimal behaviour described in Section 4.2. (T ≈ n)
appears as predicted. The slowest of the nodes that still
have one task to compute determines the end of the experi-
ment. In this case, all of the 1500 tasks have been executed.
Note that the number of active islands differs slightly from
the working nodes. That is because islands performing task

0

2

4

6

8

10

12

0 500 1000 1500 2000 2500 3000 3500 4000 4500

nu
m

be
r o

f n
od

es

time in seconds

Nodes used during undisturbed run

working nodes
nodes available
active islands

0

200

400

600

800

1000

1200

1400

1600

0 500 1000 1500 2000 2500 3000 3500 4000 4500

po
w

er
 in

 ta
sk

s/
ho

ur

time in seconds

Computational power usage during undisturbed run

power used in tasks/hour
power available in tasks/hour
accumulated power usage in tenths of percent
100 Percent

Figure 1.

setup and distribution are considered active, but their node
is not considered working during this administration time.

Figure 1 (down) shows a very similar structure. It dis-
plays the used resources relative to the available capacity in
terms of tasks per hour. These numbers are determined by
using the tasks themselves as a benchmark and computing
the approximate maximum speed of a node via the average
time needed to finish a task. The accumulated power usage
shown as a separate line proves that the available total ca-
pacity of all nodes in the experiment is used to more than
86%.

5.2. Cluster addition scenario
Here we used the same cluster as in the optimistic sce-
nario. The additional cluster was located in Dortmund en-
tirely within a single LAN but it contained workstations with
highly diverse performances.

It can be visually perceived from Figure 2 (up) that 9 ad-
ditional nodes have been added to the DRM after around 300
seconds. They are quickly found and exploited by placing
new islands on them. After 750 seconds have elapsed, the
nodes are removed again. This is repeated with 10 nodes
later on, this time removing them step by step and not at
once. Despite the expectation that this scenario depicts a
very extreme course, the DRM copes quite well with the sit-



0

5

10

15

20

0 500 1000 1500 2000 2500 3000 3500

nu
m

be
r o

f n
od

es

time in seconds

Nodes used during run with intentional addition/deletion of machines

working nodes
nodes available
active islands

0

200

400

600

800

1000

1200

1400

1600

1800

0 500 1000 1500 2000 2500 3000 3500

po
w

er
 in

 ta
sk

s/
ho

ur

time in seconds

Computational power usage during run with intentional addition/deletion of machines

power used in tasks/hour
power available in tasks/hour
accumulated power usage in tenths of percent
100 Percent

Figure 2.

uation. Available resources are utilized rapidly and even the
deletion of half of the nodes does not hinder the experiment
from continuing.

For this experiment, the difference between the two types
of charts (Fig. 2) is clearer. The reason is that the capacity
of the added nodes is lower than the capacity of the starting
nodes. This is indicated by the smaller steps visible in Fig. 2
(down). Both charts suggest however that most of the avail-
able resources are used. At the end, the accumulated power
usage is 80%. It is however important to note that not all
tasks are actually completed in this scenario. As the islands
own their tasks after confirmation (they are not memorized
anywhere else in the DRM), the tasks of a prematurely shut
down island are lost. Thus, the number of tasks completed
in this experiment is only 1104 of the 1500.

6. Conclusions

In this paper we discussed a distributed P2P environment for
running special distributed applications from domains like
evolutionary computation, social modeling, artificial life,
etc.

The concept of long term memory was introduced. Sim-
ulation results on large networks were presented together
with theoretical considerations which show us that the pro-

posed architecture is stable even if the underlying network
is partitioned for a long time.

Empirical results on a real network were also presented.
Probably the simplest possible application (load balancing
of a given number of independent tasks) was chosen to il-
lustrate the potentials of the system. The application reacted
rapidly to changes in the system resulting in good load bal-
ancing. High utilization of available resources was also ob-
served.

Acknowledgments

The authors would like to thank the other members of the
DREAM project for fruitful discussions, the early pioneers
[9] as well as the rest of the DREAM staff, Maribel Garcı́a
Arenas, Emin Aydin, Pierre Collet and Daniele Denaro. The
constructive and encouraging comments of our anonymous
reviewers were also very valuable. We did our best but
unfortunately—due to the serious space limitation—some
of their suggestions will improve only our future research.

References

[1] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A
distributed anonymous information storage and retrieval sys-
tem. In H. Federrath, editor, Designing Privacy Enhancing
Technologies, volume 2009 of LNCS, pages 46–66, 2000.

[2] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry. Epidemic
algorithms for replicated database management. In Proceed-
ings of the 6th Annual ACM Symposium on Principles of
Distributed Computing (PODC’87), pages 1–12, Vancouver,
Aug. 1987. ACM.

[3] distributed.net. http://distributed.net/.
[4] P. Druschel and A. Rowstron. Storage management and

caching in PAST, a large-scale, persistent peer-to-peer stor-
age utility. In Proceedings of the 18th ACM Symposium on
Operating Systems Principles (SOSP), Banff, Canada, 2001.
ACM.

[5] P. T. Eugster, R. Guerraoui, S. B. Handurukande, A.-M. Ker-
marrec, and P. Kouznetsov. Lightweight probablistic broad-
cast. In Proceedings of the International Conference on
Dependable Systems and Networks (DSN 2001), Göteborg,
Sweden, 2001.

[6] Gnutella. http://gnutella.wego.com/.
[7] A.-M. Kermarrec, L. Massoulié, and A. J. Ganesh.

Probablistic reliable dissemination in large-scale
systems. Submitted for publication, available as
http://research.microsoft.com/ camdis/PUBLIS/kermarrec.ps.

[8] M.-J. Lin and K. Marzullo. Directional gossip: Gossip in a
wide area network. In J. Hlavička, E. Maehle, and A. Patar-
icza, editors, Dependable Computing – EDCC-3, volume
1667 of LNCS, pages 364–379, 1999.

[9] B. Paechter, T. Bäck, M. Schoenauer, M. Sebag, A. E. Eiben,
J. J. Merelo, and T. C. Fogarty. A distributed resoucre evolu-
tionary algorithm machine (DREAM). In Proceedings of the
2000 Congress on Evolutionary Computation (CEC 2000),
pages 951–958. IEEE, IEEE Press, 2000.

[10] SETI@home. http://setiathome.ssl.berkeley.edu/.
[11] United Devicestm. http://ud.com/.


