
On Obtaining Global Information in a Peer-to-Peer
Fully Distributed Environment???

Márk Jelasity1 and Mike Preuß2

1 Dept. of AI, Free Univ. of Amsterdam, jelasity@cs.vu.nl
and RGAI, Szeged Univ., Hungary

2 Dept. of Computer Science, Univ. of Dortmund, mike.preuss@uni-dortmund.de

Abstract. Networking solutions which do not depend on central services and
where the components posses only partial information are robust and scalable
but obtaining global information like e.g. the size of the network raises serious
problems, especially in the case of very large systems. We consider a specific
type of fully distributed peer-to-peer (P2P) environment with many interesting
existing and potential applications. We suggest solutions for estimating network
size and detecting partitioning, and we give estimations for the time complexity of
global search in this environment. Our methods rely only on locally available (but
continuously refreshed) partial information. Theoretical analysis and simulation
results are also presented.

1 Introduction

Peer-to-peer (P2P) systems are becoming more and more popular. The Internet offers
an enormous amount of resources which cannot be fully exploited using traditional
approaches. Systems that span many different institutions, companies and individuals
can be much more effective for certain purposes such as information distribution (e.g.
[4, 6, 1]) or large scale computations (e.g. [3, 11, 12]).

Systems exist that go to extremes in the sense of not using central services at all
to achieve maximal scalability and minimal vulnerability to possible damages in com-
ponents. Such an approach was chosen in e.g. [5] for broadcasting. We will focus on
another architecture of this kind which we developed as part of the DREAM project [10]
(described in more detail in Section 2). In a nutshell, the aim of the DREAM project
is to create a complete environment for developing and running distributed evolution-
ary computation experiments on the Internet in a robust and scalable fashion. It can
be thought of as a virtual machine or distributed resource machine (DRM) made up
of computers anywhere on the Internet. The actual set of machines can (and gener-
ally will) constantly change and can grow immensely without any special intervention.
Apart from security considerations, anyone having access to the Internet can connect

? This work is funded as part of the European Commission Information Society Technologies
Programme (Future and Emerging Technologies). The authors have sole responsibility for
this work, it does not represent the opinion of the European Community, and the European
Community is not responsible for any use that may be made of the data appearing herein.

?? extended version of Euro-Par 2002, LNCS 2400, pp. 573–577, Springer-Verlag, 2002

to the DRM and can either run his/her own experiments or simply donate the spare
capacity of his or her machine.

Although these fully distributed environments can grow to literally astronomical
sizes [9] while automatically maintaining their own integrity they have a major draw-
back: exercising global control and obtaining global information becomes harder and
harder as the size increases. Broadcasting or any global search becomes infeasible after
a certain point.

This paper discusses methods for obtaining global information based only on locally
available partial information in the nodes of our environment. These methods scale
much better than e.g. broadcasting because their resource requirements are independent
of the size of the network. The time complexity of global search based on (continuously
refreshed) local information will be addressed in Section 3. In Section 4 a method for
estimating the network size is presented. In Section 5 we suggest a way of detecting
partitioning.

2 The Model

Focusing on the topic of this paper we discuss only a simplified version of our environ-
ment, in particular we ignore timestamp handling, and the mechanism of application
execution. More information can be found in [7, 8].

The DRM is a network of DRM nodes. Let S denote that set of all nodes in the
DRM, and let n = |S|. In the DRM every node is completely equivalent. Nodes must
be able to know enough about the rest of the network in order to be able to remain
connected to it. Spreading information over and about the network is based on epidemic
protocols [2].

Every node s ∈ S maintains an incomplete database containing descriptors of a set
D(s) of nodes (|D(s)| = c), where normally n � c. We call these nodes the neigh-
bours of the node. The database is refreshed using a push-pull anti-entropy algorithm.
Every node s chooses a node s′ from D(s) in every time-step. Then any differences
between s and s′ are resolved so that after the communication s and s′ will both have
the descriptors of the nodes from D(s)∪D(s′). Besides this, s will receive a descriptor
of s′ and s′ will also receive a descriptor of s. As mentioned before, the size of the
database is limited in c. This limitation is implemented by removing randomly selected
elements.

To connect a new node to the DRM one needs only one living address. The database
of the new node is initialized with the entry containing the living address only, and the
rest is taken care of by the epidemic algorithm described above. Removal of a node
does not need any administration at all.

Fortunately, theoretical and empirical results show that limiting the size of the
database does not affect the power of the epidemic algorithm, information spreads
quickly and the connectivity (thus information flow) is not in danger [5, 7, 8]. For ex-
ample a database size of 100 is enough to support a DRM of size 1033.

3 Global Search

We would like to find nodes in the network which fulfill some criteria. Being able to do
so is important in many situations. We might want to find a node that has lots of space
or CPU capacity available, or nodes situated in a given geographical area, etc.

Our main purpose is to allow very large networks, in the order of n = 105 or
more. In such networks any broadcasting approach is infeasible because every node
must be able to do global search and for large networks too many broadcasts could be
generated resulting in huge traffic. Collecting and storing information about the entire
network is not the best solution either because we cannot assume large storage capacity
in every node, and on the other hand the network changes constantly: nodes and running
applications come and go.

In the following we will examine the limits and possibilities of using only the local
database in a node to search the network. The idea is that we listen to the updates and
when the appropriate node appears there, we return it. This might seem hopeless but
theory and practice show that it is not necessarily the case. Note that this kind of search
has practically no costs since we are using the database refreshment mechanism that is
applied anyway. The only cost that increases with n is the waiting time.

3.1 Time complexity

Let s∗ ∈ S be the node we are looking for from node s (s 6= s∗). Let D(s) = ∅ at
the start of the search. Let the set Di denote the nodes in the database s is updated with
during the ith database-exchange session according to the epidemic algorithm. Note
that the elapsed time is not necessarily the same between the updates. In this section we
assume that D1, D2, . . . are unbiased independent random samples of S. We will revisit
this assumption in Section 3.2.

Let the random variable ξ denote the index of the first update in which s∗ can be
found. In other words s∗ ∈ Dξ and ∀i < ξ : s∗ 6∈ Di. From our assumption about
the even distribution it follows that P (s∗ ∈ Di) = c/n for i = 1, 2, . . . From the
assumption of independence it follows that P (ξ = i) = (1 − c/n)i−1(c/n)i thus ξ has
a geometric distribution with the parameter c/n. This means that the expected value is
µξ = n/c and the variance is σ2

ξ = n(n − c)/c2. Note that the optimal case in this
framework is when we have D1 ∪ . . . ∪ Ddn/ce = S when the information flow speed
(the learning speed of s) is maximal. The expected value that belongs to this distribution
is ≥ n/2c. Compared to this the waiting time in the realistic situation is in the same
order of magnitude which is rather surprising.

3.2 Simulation Results

The above theoretical distribution of waiting time depends on assumptions on inde-
pendence and unbiased sampling of the series D1, D2, . . . It was examined if these
assumptions indeed hold using software which can simulate the behavior of the model
described in Section 2 for up to 10000 nodes. For each parameter setting the simulation
was run until all the nodes showed up in the database of a fixed node s at least once. In
every database exchange session the number of nodes seen for the first time by s was

1000 2500 5000 7500 10000
µ σ µ σ µ σ µ σ µ σ

132.904 135.805 125.81 140.028 124.082 133.488 126.171 143.982 127.996 156.549
132.297 134.629 130.777 140.05 123.071 132.324 124.008 138.747 122.507 140.236
134.128 134.109 132.436 142.684 131.564 153.64 130.305 154.89 123.255 141.495

Table 1. Results for n/c = 100 to illustrate the effect of different network sizes shown in the
columns. The predicted values of waiting time are µ = 100 and σ = 99.499 in each case. The
lines belong to 3 independent experiments.

100 75 50 25 10
µ µ/µ∗ µ µ/µ∗ µ µ/µ∗ µ µ/µ∗ µ µ/µ∗

10.311 1.031 14.297 1.072 23.073 1.154 50.689 1.267 142.409 1.424
10.523 1.052 14.971 1.123 23.745 1.187 55.832 1.396 134.804 1.348
10.679 1.068 14.592 1.094 23.889 1.194 53.762 1.344 136.347 1.364

Table 2. Results for n = 1000 to illustrate the effect of different database sizes shown in the
columns. µ∗ is the value predicted by the theory. The lines belong to 3 independent experiments.

recorded. This output defines the empirical distribution of waiting time for a fixed node.
Statistics were calculated from this empirical distribution.

In the first experiment the effect of network size was examined (see Table 1). The
ratio n/c = 100 was fixed so that the effect of network size could be illustrated. The
observed values are quite stable and are close to those predicted by the theory. The
expected value shows even a slight decreasing tendency. This suggests that our theory
can be applied for predicting waiting time in large networks which was our original
goal.

In the second experiment the effect of different c values was examined (see Table 2).
The network size n = 1000 was fixed so that the effect of database size could be
illustrated. It is clear from the results that the accuracy of the theory increases with the
database size.

4 Estimating Network Size

Another promising possibility of exploiting the dynamics of the epidemic protocol is
network size estimation. Since there is no central service we have no idea about the
actual size of the network. It can be estimated however from the characteristics of in-
formation flow through the database of a server s. Intuitively, if there is much new
information in the database of a peer then we expect to have a large network.

4.1 Theoretically Optimal Estimation

Let us examine a database exchange between s and s′ (with databases D and D′ respec-
tively) during the normal functioning of our epidemic protocol. Let d = |D′ \D|, or in

words the number of new elements in D′. If we assume that D and D′ are independent
unbiased samples from S then d has a binomial distribution B((n− |D|)/n, |D′|) with
the expected value

E(d) = |D′|(n − |D|)/n (1)

(In this section we do not assume that |D| = |D′| = c, the results hold for the general
case too.)

Of course we do not know the distribution of d because its parameters refer to the
network size. However we can collect a sample for a fixed |D| and |D′| and we can
approximate the expected value of d with the sample average d. Using (1) and this
approximation we can approximate n with the expression

n ≈ ñ =
|D′||D|

|D′| − d
(2)

Since d has a binomial distribution, this approximation is optimal in the following
Bayesian sense:

Proposition 1. If ξ is a random variable from the binomial distribution B(p, n) and
{x1, . . . , xk} is an independently drawn sample of ξ then

argmax
p

P (x1, . . . , xk|B(p, n)) =
x1 + . . . + xk

kn

Proof. After substituting the probability values, using the independence assumption
and ignoring the binomial coefficients we get

max
p

P (x1, . . . , xk |B(p, n)) = max
p

px1+...+xk(1 − p)kn−(x1+...+xk)

Elementary calculus shows that the maximum of this polinom of p is at p = (x1 + . . .+
xk)/(kn) which proves the proposition. ut

4.2 Obtaining Two Independent Samples

The correctness of the approximation depends on our assumptions over the indepen-
dence of the two samples D and D′. Unfortunately (having in mind the mechanisms
described in section 2) we can see that after the information exchange between s and
s′ each have an entry pointing to the other with a probability of at least 1/2. This—
together with the fact that the databases of s and s′ are very similar at this time point—
may result in the violation of the independence assumption if s and s′ communicate
again within a short time.

In Section 3 this effect did not prove to be strong enough to prevent us from applying
theoretical predictions. According to our preliminary experiments network size predic-
tion is more sensitive to dependence of the sample sets. The most promising approach
proved to be using the long term memory invented in [8] as one of the two needed sam-
ples. The long term memory of s stores a random selection of peers s communicated
with in the past. It changes slowly because its update cycle is longer than that of the
local database. This reduces the influence of the last communications dramatically, giv-
ing us a very stable basis for measuring d and thus estimating the network size n. Note
that with using the long term memory as D and the local database as D′ (instead of the
database of the peer) every direct influence of a remote node can be eliminated.

0

2000

4000

6000

8000

10000

12000

0 100 200 300 400 500 600 700 800 900

es
tim

at
ed

 n
et

w
or

k
si

ze

timesteps

estimated network size (n = 10000)
estimated network size (n = 4000)

0

2000

4000

6000

8000

10000

12000

2000 4000 6000 8000 10000 12000

es
tim

at
ed

 n
et

w
or

k
si

ze

network size n

mean estimated network size
perfect estimation

empirical standard deviations

Fig. 1. left: Two single simulation runs estimating stable networks of 4000 and 10000 nodes.
right: Network size estimation compared to the real network size.

4.3 Simulation Results

In all our simulations |D′| = 100 and |D| = 75 (D being the long term memory instead
of the database). Furthermore, d = d1+...+dk

k where d1, . . . , dk are the last k observed
values of d, in other words d is the moving average of the observations during the last
k database exchanges. The value k = 150 was used in each case.

Figure 1 (left) shows two typical simulation runs. The estimated size is slightly
lower than the real size in both cases indicating that we could not achieve complete
independence, but it provides an acceptable approximation. Another observation is that
for the larger network size we have higher fluctuations. The reason is that in that case
equation (2) is more sensitive to changes in d provided that all other constants are the
same. To prevent instability of the estimation for large networks, k can be increased.
However, this slows down the adaption of d to new conditions. The choice of k is a
tradeoff between estimation quality and flexibility w.r.t. changing network properties.

Figure 1 (right) shows the aggregated results of 3 runs for each network size. The
empirical standard deviation increases steadily for larger networks as expected whereas
estimation quality is decreasing. Although it would be hard to extrapolate to even larger
networks from this data we can make the conservative conclusion that the proposed
method gives a relatively close lower bound on network size. Furthermore, the size of
12000 is already large enough to be considered practically relevant.

We would like to recite that these results correspond to a fixed setting of the crucial
parameters. It is easy to predict from the theoretical results that using a larger long term
memory (D) would result in more stable predictions and increasing the size of D′ has
beneficial effects as well, as Section 3 suggests.

5 Detecting Partitioning

During the operation of a DRM the underlying physical network may get partitioned.
For a user it may be valuable to detect this partitioning because this could mean a seri-
ous degradation of his or her available computational resources. The approach we are
presenting in this paper offers a potential solution for detecting such sudden changes.

-500

0

500

1000

1500

2000

2500

1500 2000 2500 3000 3500 4000

es
tim

at
ed

 n
et

w
or

k
si

ze

timesteps

network size estimation
long time estimation average

accessible nodes
estimation/long time mean difference

Fig. 2. Size estimation during partitioning. The lower curve is generated from the difference be-
tween the estimation and its long time average and may be used to detect partitioning.

We simulated partitioning by disabling all communication between a small group
and the rest of the network. Figure 2 depicts a run with a total of 2000 nodes and an
isolated cluster of 5% = 100 nodes which includes our observation point. The isolation
begins at time-step 2000 and ends at time-step 3000. The estimation is computed like
in Section 4.3. As expected, the estimation changes suddenly as well.

Due to lack of space we can only indicate a possible approach here to use the obvi-
ously available information for actually predicting change. Figure 2 shows a smoothed
curve which is the average of the last 300 estimation values. Due to the slower change of
the smoothed version the difference of the smoothed and plain estimation together with
the actual estimation value can provide a reliable prediction. The lower curve shows
this (smoothed) difference.

6 Conclusions

In this paper techniques were presented that are able to provide global information
in a distributed networking environment where no central services are available. The
techniques are based on the dynamics of the epidemic protocol which is run in an envi-
ronment where each node knows only a tiny bit about the whole network but where this
knowledge is continuously updated by an epidemic protocol.

Possibilities of performing global search in this environment were analyzed both
theoretically and empirically. It was shown that the underlying epidemic algorithm
pumps the complete system-state through every local node very quickly. It is notable
that the design goals of our epidemic protocol did not include this requirement, it was an
unexpected but useful side-effect. Depending on the waiting time available this makes
global search feasible in many cases.

It was also suggested that the dynamics of information flow through a node can be
exploited in many ways. One of these is estimating network size, another is predicting

partitioning. It was demonstrated that network size can be predicted with acceptable
accuracy even for large networks. The possibility of developing a partitioning detector
was also argued for.

The possibilities were not fully exploited. Our goal was to give theoretical and em-
pirical evidence which suggest that it is worth doing research in the direction of possible
exploitations of information sources which are naturally present in certain types of dis-
tributed environments. We believe that techniques like the ones suggested in this work
can many times offer a cheap yet effective alternative to implementing expensive addi-
tional protocols and services or introducing additional restrictions in the design.

Acknowledgments

The authors would like to thank the other members of the DREAM project for fruitful
discussions, the early pioneers [10] as well as the rest of the DREAM staff, Maribel
Garcı́a Arenas, Emin Aydin, Pierre Collet and Daniele Denaro.

References
1. I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A distributed anonymous infor-

mation storage and retrieval system. In H. Federrath, editor, Designing Privacy Enhancing
Technologies, volume 2009 of LNCS, pages 46–66, 2000.

2. A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart,
and D. Terry. Epidemic algorithms for replicated database management. In Proceedings of
the 6th Annual ACM Symposium on Principles of Distributed Computing (PODC’87), pages
1–12, Vancouver, Aug. 1987. ACM.

3. distributed.net. http://distributed.net/.
4. P. Druschel and A. Rowstron. Storage management and caching in PAST, a large-scale, per-

sistent peer-to-peer storage utility. In Proceedings of the 18th ACM Symposium on Operating
Systems Principles (SOSP), Banff, Canada, 2001. ACM.

5. P. T. Eugster, R. Guerraoui, S. B. Handurukande, A.-M. Kermarrec, and P. Kouznetsov.
Lightweight probablistic broadcast. In Proceedings of the International Conference on De-
pendable Systems and Networks (DSN 2001), Göteborg, Sweden, 2001.

6. Gnutella. http://gnutella.wego.com/.
7. M. Jelasity, M. Preuß, and B. Paechter. A scalable and robust framework for distributed

applications. In Proceedings of the 2002 Congress on Evolutionary Computation (CEC
2002), pages 1540–1545. IEEE, IEEE Press, 2002.

8. M. Jelasity, M. Preuß, M. van Steen, and B. Paechter. Maintaining connectivity in a scalable
and robust distributed environment. In H. E. Bal, K.-P. Löhr, and A. Reinefeld, editors, Pro-
ceedings of the Second IEEE/ACM International Symposium on Cluster Computing and the
Grid (CCGrid2002), pages 389–394, Berlin, Germany, 2002. IEEE, IEEE Computer Society.

9. A.-M. Kermarrec, L. Massoulié, and A. J. Ganesh. Probablistic reliable dis-
semination in large-scale systems. Submitted for publication, available as
http://research.microsoft.com/ camdis/PUBLIS/kermarrec.ps.

10. B. Paechter, T. Bäck, M. Schoenauer, M. Sebag, A. E. Eiben, J. J. Merelo, and T. C. Fog-
arty. A distributed resoucre evolutionary algorithm machine (DREAM). In Proceedings of
the 2000 Congress on Evolutionary Computation (CEC 2000), pages 951–958. IEEE, IEEE
Press, 2000.

11. SETI@home. http://setiathome.ssl.berkeley.edu/.
12. United Devicestm. http://ud.com/.

