
Epidemic-Style Proactive Aggregation in Large Overlay Networks∗

Márk Jelasity†

University of Bologna, Italy
jelasity@cs.unibo.it

Alberto Montresor
University of Bologna, Italy
montreso@cs.unibo.it

Abstract

Aggregation—that is, the computation of global proper-
ties like average or maximal load, or the number of nodes—
is an important basic functionality in fully distributed envi-
ronments. In many cases—which include protocols respon-
sible for self-organization in large-scale systems and col-
laborative environments—it is useful if all nodes know the
value of some aggregates continuously. In this paper we
present and analyze novel protocols capable of providing
this service. The proposed anti-entropy aggregation proto-
cols compute different aggregates of component properties
like extremal values, average and counting. Our protocols
are inspired by the anti-entropy epidemic protocol where
random pairs of databases periodically resolve their differ-
ences. In the case of aggregation, resolving difference is
generalized to an arbitrary (numeric) computation based on
the states of the two communicating peers. The advantage
of this approach is that it is proactive and “democratic”,
which means it has no performance bottlenecks, and the
approximation of the aggregates is present continuously at
all nodes. These properties make our protocol suitable for
implementing e.g. collective decision making or automatic
system maintenance based on global information in a fully
distributed fashion. As our main contribution we provide
fundamental theoretical results on the proposed averaging
protocol.

1. Introduction

The latest generation of peer-to-peer (P2P) networks are
typically self-organizing and fully distributed systems [10,
12]. Unlike many traditional distributed systems, no central
authority controls the various components. Instead, a dy-
namically changing overlay network is maintained, where
nodes appear and disappear continuously, and dynamic “co-
operation” links among nodes might be created and re-
moved based on the requirements of the particular appli-
cation. Such systems are attractive for several reasons, such
as the lack of single points of failure, the potential to scale

∗Proc. ICDCS 2004 pp. 102–109.
†also with RGAI, MTA SZTE, Szeged, Hungary

to millions of nodes and the inexpensiveness of the resulting
distributed computing platforms.

However, such fully distributed platforms have certain
drawbacks as well. Control and monitoring is difficult and
performing computations poses the challenge of orchestrat-
ing the potentially huge number of participating nodes. One
useful functional building block that has emerged recently
is aggregation [13]. Aggregation is the collective name of
many functions that provide global information about a sys-
tem, like extremal values of some property, average, counts,
etc. Aggregation can provide users or participants of a
P2P network with important information like the number
of nodes connected to the network, the identity of the most
powerful peer in a grid or the total amount of free space in
a distributed storage.

In many cases it would be very useful if all nodes knew
the value of some aggregate continuously, in an adaptive
fashion. Adaptivity means that if the aggregate changes due
to network dynamism or variations in the values to be aggre-
gated, the output of the aggregation protocol should follow
this change reasonably quickly. Potential beneficiaries of an
efficient implementation of this functionality include proto-
cols responsible for self-organization in large-scale systems
and collaborative environments. Our motivation is to offer
an efficient and robust solution to this problem.

1.1. Anti-Entropy Aggregation

Our approach is based on a modified and generalized push-
pull anti-entropy protocol. We assume that each node ni in
the network has a non-empty set of neighbors and has a nu-
meric attribute, or value, ai. Aggregation is performed over
the set of these values. Node ni also stores an approxima-
tion xi of the aggregate.

The core algorithm run by each node is shown in Fig-
ure 1. This algorithm will be the subject of our theoretical
analysis. The two functions GETWAITINGTIME and AG-
GREGATE determine the dynamics of the system, together
with the neighbor set, which defines the overlay topology.

If not otherwise stated, GETWAITINGTIME returns the
constant ∆t which is the parameter of the protocol and
which we shall call the cycle length (even though there
are no “real” cycles in the system since each node is au-

// the active process of the protocol on node ni

do forever
wait(getWaitingTime())
nj = selectRandomNeighbor()
// perform elementary aggregation step
send xi to nj

receive xj from nj

xi = aggregate(xi, xj)

// reply on node nj

receiveApproximation(xi, ni)
send xj to ni

xj = aggregate(xj , xi)

Figure 1. The skeleton of the anti-entropy ag-
gregation protocol run by all nodes. The ac-
tive process is shown on node ni and the pas-
sive reply on node nj activated by the active
process by sending the approximation xi.

tonomous). In Section 3 we will introduce randomized ver-
sions of GETWAITINGTIME which are interesting from a
theoretical point of view.

Function AGGREGATE is used to implement the desired
aggregation function. For example, finding the maximum
can be implemented using AGGREGATE MAX that returns
the maximum of its parameters. We will not discuss this
algorithm any further because the behavior of this protocol
from the point of view of the spreading of the true maxi-
mum is identical to that of the push-pull epidemic broad-
cast, which is well studied [4]. Nevertheless it is interesting
to point out this application.

From now on we will focus on AGGREGATE AVG which
returns the average of its parameters. Being able to calcu-
late the average already makes it possible to calculate any
moments (using averages of different powers of the value
set), the size of the system, the sum of the value set, etc.

In this simplistic presentation of the protocol we assume
that there is a synchronized starting time (time 0) when at
all nodes xi = ai. One cycle of the protocol lasts from time
point k∆t to (k + 1)∆t where k is an integer and ∆t is the
expected return value of GETWAITINGTIME. In Section 3
we analyze this version of the protocol.

1.2. Related Work

Epidemic protocols Epidemic protocols are becoming
more and more popular since the publication of the semi-
nal paper by Demers et al. [4]. A recently completed survey
by Eugster et al. provides an excellent introduction to the
field [6]. Epidemic algorithms have been applied to solv-
ing several practical problems like database replication [4],
failure detection [15] and resource monitoring [14]. A large

body of theoretical work is also available due to the general
importance of understanding epidemics [1] and its close re-
lation to random graph theory [3].

Our present work does not introduce new epidemic pro-
tocols. Instead, we show how to apply anti-entropy [4], a
well-known epidemic protocol, to the aggregation problem.
The resulting solution is efficient and enables a network of
nodes to collectively find aggregates in such a way that all
nodes know the value of the aggregate continously and in
an adaptive fashion.

Aggregation in distributed environments The field of
distributed computation of aggregates is less established
than epidemic protocols. An overview of the problem can
be found in [13].

A prominent approach is Astrolabe [14] which is a hi-
erarchical architecture for aggregation in large distributed
systems. Anti-entropy aggregation is substantially different
in that it is extremely simple, lightweight, and targeted to
unstructured, highly dynamic environments. In the case of
our protocol the overhead of implementation and mainte-
nance is diminishing. A related approach is [8] which is
also based on a hierarchical approach. While building hi-
erarchies indeed reduces the cost of finding the aggregates
but introduces additional overhead having to maintain this
hierarchical topology in a dynamic distributed environment.
Moreover, due to being hierarchical, it also needs extra ef-
fort and protocols to broadcast the result continuously over
the network if all nodes need to know the result continu-
ously.

Another recent work [2] discusses many approaches,
based on spanning tree induction and using other, more re-
dundant topologies. The main difference from our approach
is that the protocols described there are reactive: aggre-
gation is initialized from a certain point and the result is
known by only that node. This makes it hard to adopt for
solving our present research problem, similarly to the other
approaches mentioned above.

Membership management This area is also relevant to
help put our results in the right context. Anti-entropy ag-
gregation is a protocol which assumes that each node has a
neighbor set, a set of other nodes in the network to poten-
tially communicate with. However, the protocol does not
address the issue of the maintenance of these sets. Instead,
it can be used along with any membership management pro-
tocol. Since in this paper we focus on random networks,
it is important to mention that there are membership pro-
tocols that can maintain an approximately random topol-
ogy [5, 7, 9].

1.3. Contribution

In the light of related work, our contribution can be sum-
marized as follows: (i) proposing anti-entropy aggregation,

an efficient, simple and lightweight protocol for solving
the proactive aggregation problem we sketched above and
(ii) theoretical analysis of anti-entropy averaging which in-
cludes giving exponential convergence rates for several ver-
sions of the protocol.

1.4. Outline of the paper

In Section 2 we summarize the assumptions that we adopt in
our discussion. In Section 3 we focus on the speed of con-
vergence of the approximations to the true average. We give
several explicit convergence rates which hold under slightly
different assumptions. In particular, we show that conver-
gence is exponentially fast. We also discuss the effects of
both node failures and message loss. Finally, experimental
validation is given. Section 4 contains an illustrative ex-
ample of the application of the protocol for network size
estimation.

2. System Model

We consider a network of a large collection of nodes that
communicate through the exchange of messages and are as-
signed a unique identifier.

We assume that nodes are connected by an existing phys-
ical network. Even though the protocols we suggest can be
deployed on arbitrary physical networks, including sensor
and ad-hoc networks, in the present work we consider only
fully connected networks, like the Internet, where each node
can (potentially) communicate with each other node. The
physical network provides only the possibility of commu-
nication. To actually communicate, each node has to know
the identifiers of a set of other nodes (its neighbors). This
neighborhood relation over the nodes defines the topology
of the overlay network.

Our theoretical analysis assumes that each node has ac-
cess to a hardware clock without drift and a common point
of reference is known in time. We further assume that com-
munication takes zero time. While these assumptions are
rather strong, in [11] we offer solutions to practical aspects
of the protocol, like relaxing the synchronization assump-
tion and introducing mechanisms for adaptivity and fault
tolerance. Section 4 contains an illustrative example that
points to this direction.

3. Theoretical Analysis

We begin by introducing the conceptual framework and no-
tations to be used for the purpose of the mathematical anal-
ysis. We proceed by proving convergence rates for various
algorithms. Our results are validated and illustrated by nu-
merical simulation when necessary.

// vector a is the input
do N times
(i, j) = getPair()
// perform elementary variance reduction step
ai = aj = (ai + aj)/2

return a

Figure 2. The skeleton of the algorithm AVG.

3.1. Basic Concepts and Notations

For the purpose of mathematical analysis we translate the
networking terminology into mathematical structures and
concepts. We will treat anti-entropy averaging as an iter-
ative variance reduction algorithm over a vector of num-
bers. In this framework, we can formulate our approach
as follows. We are given an initial vector of numbers
a0 = (a0,1 . . . a0,N). We shall model this vector by assum-
ing that a0,1, . . . , a0,N are independent random variables
with identical expected values and a finite variance.

The assumption of identical expected values is not as
strong as it seems. The protocol is not sensitive to the order-
ing of values, so after any permutation of the initial values
the statistical behavior remains the same. Starting with ran-
dom variables a0,1, . . . , a0,N with arbitrary expected val-
ues, after a random permutation the new value at index i, bi

will have the distribution

P (bi < x) =
1

N

N∑

j=1

P (aj < x). (1)

That is, we obtain an equivalent probability model where
the distribution of random variables b0, . . . , bN is identical.
Note that in this case the assumption of independence is
violated, but—in the case of large networks—only to an in-
significant extent.

When considering the network as a whole, one cycle of
anti-entropy averaging can be looked at as an algorithm (let
us call it AVG) which takes a vector as a parameter and pro-
duces a new vector of the same length (N). Furthermore,
the consecutive cycles of the protocol result in a series of
vectors a1, a2, . . . where ai+1 = Avg(ai). The elements of
vector ai will be denoted by ai = (ai,1 . . . ai,N)

Figure 2 shows algorithm AVG, which takes a as a pa-
rameter and modifies it in place producing a new vector.
Note that all the practical aspects of the overlay topology,
synchronization (or the lack of it), and eventual node fail-
ures can be modeled by properties and constraints of the
function GETPAIR. For example, if node j is not in the
neighborhood of node i then the pair (i, j) will never be re-
turned. If node i is not reachable, no pairs containing it will
be returned. Also, the distributed and local nature of the epi-
demic protocol underlying this model can be expressed by
the constraint that the returned pair cannot be determined

(or affected) by some global property of the value vector,
like the maximum of the values for instance.

3.2. Convergence

We introduce the following notations for empirical statis-
tics:

ai =
1

N

N∑

k=1

ai,k (2)

σ2
i = σ2

ai
=

1

N − 1

N∑

k=1

(ai,k − ai)
2 (3)

Only linear operations are performed on the vector ele-
ments so without loss of generality we will assume that the
common expected value of the elements of a0 is zero. The
purpose of this choice is merely to simplify our expressions.
In particular, for any vector a, if the elements of a are inde-
pendent random variables with zero expected value then

E(σ2
a) =

1

N

N∑

k=1

E(a2
k). (4)

Furthermore, the elementary variance reduction step in
which both selected elements are replaced by their average
does not change the sum of the elements in the vector so
ai ≡ a0 for all cycles i = 1, 2, This property is very
important because it guarantees that the algorithm does not
introduce any errors into the approximation. This means
that from now on we can focus on variance. Clearly, if the
expected value of σ2

i tends to zero with i tending to infinity
then the variance of all vector elements will tend to zero as
well so the correct average µ0 will be approximated locally
with arbitrary accuracy by each node.

Let us begin our analysis of the convergence of variance
with some fundamental observations.

Lemma 1. Let a′ be the vector that we get by replacing both
ai and aj with (ai + aj)/2 in vector a. If a contains un-
correlated random variables with expected value 0 then the
expected value of the resulting variance reduction is given
by

E(σ2
a
− σ2

a′) =
1

2(N − 1)
E(a2

i) +
1

2(N − 1)
E(a2

j). (5)

Proof. Simple calculation using the fact that if ai and aj are
uncorrelated then E(aiaj) = E(ai)E(aj) = 0.

Considering also (4), an intuitive interpretation of this
lemma is that after an elementary variance reduction step
both participating nodes will contribute only approximately
the half of their original contribution to the overall expected
variance, provided they are uncorrelated. In the extreme

case of maximal correlation (ai ≡ aj) the variance reduc-
tion is zero. From this it can be seen that the assumption of
uncorrelatedness is crucial.

Having this observation and (4) in mind let us con-
sider instead of E(σ2

i) the average of a vector of values
si = (s0,1 . . . s0,N) that are defined as follows. The ini-
tial vector s0 ≡ (a2

0,1 . . . a2
0,N) and si is produced in paral-

lel with ai; using the same pair (i, j) returned by GETPAIR
and used by performing the elementary averaging step (see
Figure 2), we perform the step si = sj = (si + sj)/4 as
well. This way, according to Lemma 1, E(si) will emu-
late the evolution of E(σi) with a high accuracy provided
that each pair of values ai and aj selected by each call to
GETPAIR are practically uncorrelated. Intuitively, this as-
sumption can be expected to hold if the original values in
a0 are uncorrelated and GETPAIR is “random enough” not
to introduce significant correlations.

Working with E(si) instead of E(σ2
i) is easier in a math-

ematical sense but at the same time we capture the dynamics
of the system with a high accuracy as will be confirmed by
empirical simulations.

Using this simplified model, now we turn to the follow-
ing theorem which will be the basis of our results on specific
implementations of GETPAIR. First let us define random
variable φk to be the number of times index k was selected
as a member of the pair returned by GETPAIR in algorithm
AVG during the calculation of ai+1 from the input ai. In
networking terms, φk is the number of peer communica-
tions node k was involved in during cycle i.

Theorem 1. Let us assume that GETPAIR has the following
properties.

1. The random variables φ1, . . . , φN are identically dis-
tributed. Let φ denote a random variable with this
common distribution.

2. After (i, j) is returned by GETPAIR the number of times
i and j will be selected by the remaining calls to GET-
PAIR has identical distribution.

Then we have

E(si+1) = E(2−φ)E(si) (6)

Proof. We only sketch the proof here. The basic idea is
thinking of the value si,k as a quantity of some material.
According to the definition of si,k, each time k is selected
by GETPAIR we loose half of the material and the remain-
ing material will be divided among the locations. Using
assumption 2 we can observe that it does not matter where
a given piece of the original material ends up, it will have
the same chance of loosing its half then the proportion that
stays at the original location. That means that the origi-
nal material will lose its half as many times on average as
the expected number of selection of k by GETPAIR, hence

the term 1
N

E(2−φk)E(si,k) = 1
N

E(2−φ)E(si,k). Apply-
ing this for all k and summing up the terms we have the
proof.

This theorem will allow us to concentrate on E(2−φ).
According to the arguments on the role of si we expect that

E(σ2
i+1) ≈ E(2−φ)E(σ2

i+1) (7)

will be true.

3.3. Case Studies

In this section we give explicit convergence rates for spe-
cific implementations of GETPAIR. In all cases it will be
assumed that the overlay topology is the complete graph,
that is, whenever a random neighbor has to be selected, it
can be considered as sampling the whole set of nodes. Note
that since each node uses only a limited number of random
neighbors only, these results hold also in random graphs
which are connected and where a sufficient number (nor-
mally a small constant number) of random edges is present
from each node. This latter type of graph is much less unre-
alistic then the fully connected one, as scalable and robust
protocols are available which approximate such a random
structure [5, 7, 9].

3.3.1. Perfect matching: the optimal strategy

Let us begin with an artificial example which represents
the optimal implementation of GETPAIR. We will call this
implementation GETPAIR PM where PM stands for perfect
matching. Unfortunately this implementation cannot be
mapped to an efficient distributed P2P protocol because it
requires global knowledge of the system. What makes it in-
teresting is the fact that it is optimal under the assumptions
of Theorem 1 so it can serve as a reference for comparison
with more practical approaches.

GETPAIR PM works as follows. Before the first call N/2
pairs of indeces are created (let us assume that N is even) in
such a way that each index is present in exactly one pair. In
other words, a perfect matching over the overlay topology is
created. Subsequently these pairs are returned, each exactly
once. When the pairs run out (after the N/2-th call) another
perfect matching is created which contains none of the pairs
from the first perfect matching, and these pairs are returned
by the second N/2 calls.

Using the assumption that any pair of values from ai that
are connected by an edge in the overlay topology are uncor-
related we can easily construct two non-overlapping per-
fect matchings that define uncorrelated pairs. We can verify
the assumptions of Theorem 1 as well: (i) the algorithm is
clearly value- and index-blind and (ii) after the first selec-
tion of any index i it is guaranteed that it will be selected
exactly once more.

We can therefore apply the theorem to GETPAIR PM.
The convergence rate is given by

E(2−φ) = E(2−2) = 1/4. (8)

We now prove the optimality of this convergence rate under
the assumptions of Theorem 1.

Lemma 2. For any random variable X if E(X) = 2 then
the expected value E(2−X) is minimal if P (X = 2) = 1.

Proof. The proof is straightforward but technical so we
only sketch it. It can be shown that for any distribution
different from P (X = 2) = 1 we can decrease the value
E(2−X) by transforming the distribution into a new one
which still satisfies the constraint E(X) = 2. The basic
observation is that if P (X = 2) < 1 then there are at least
two indeces i < 2 and j > 2 for which P (X = i) > 0
and P (X = j) > 0. It can be technically verified that
if we reduce both P (X = i) and P (X = j) while in-
creasing P (X = 2) by the same amount in such a way that
E(X) = 2 still holds then E(2−X) will decrease.

3.3.2. Random selection

Moving towards more practical implementations of GET-
PAIR, our next example is GETPAIR RAND which works
simply choosing a random edge from the underlying over-
lay topology, picking each edge with the same probability.

GETPAIR RAND can easily be implemented as a dis-
tributed P2P protocol. When iterating ALG, the waiting
time between the selection of a given node can be described
by the exponential distribution. In a distributed implemen-
tation a given node can approximate this behavior by wait-
ing for a time interval randomly drawn from this distribu-
tion before initiating communication. However, as we will
see, GETPAIR RAND is not a very efficient pair selector, so
it serves only as a stepping stone for the analysis of a more
practical protocol.

Like for GETPAIR PM, the assumptions of Theorem 1
hold: (i) the algorithm is clearly value- and index-blind and
(ii) all indeces have exactly the same probability to be se-
lected after each elementary variance reduction step. There
is no strict guarantee that no correlated pairs will be re-
turned. However, due to the randomness of the algorithm
and the fully connected (or random, respectively) overlay
topology we can expect to observe only negligible correla-
tion.

Now, to get the convergence rate, the distribution of φ
can be approximated by the Poisson distribution with pa-
rameter 2, that is

P (φ = j) =
2j

j!
e−2. (9)

Substituting this into the expression E(2−φ) we get

E(2−φ) =

∞∑

j=0

2−j 2j

j!
e−2 = e−2

∞∑

j=0

1

j!
= e−2e = e−1.

(10)
Comparing the performance of GETPAIR RAND and

GETPAIR PM we can see that convergence is significantly
slower than in the optimal case (the rates are 1/e ≈ 1/2.71
vs. 1/4).

We ran AVG with GETPAIR RAND using several network
sizes, on both the fully connected topology and on a ran-
dom topology with a fixed view size of 20. The results are
shown if Figure 3. On Figure 3(a) we can see that conver-
gence is independent of network size and also that theory
predicts the observed convergence rate with very high accu-
racy in the case of the fully connected topology. As could
be expected, in the case of the random 20-regular graph we
can observe a slightly slower convergence due to the viola-
tion of the constraints of Theorem 1, but the difference is
insignificant.

Figure 3(b) reveals however that the difference becomes
more significant during the iteration of AVG. A possible
reason is that correlation accumulates during the cycles due
to the more limited amount of neighborhood information
available.

3.3.3. A practical protocol

Building on the results we have so far it is possible to an-
alyze a practically relevant version of the protocol, still as-
suming fully connected (or random) overlay topology.

This implementation of pair selection will iterate over
the node set in a fixed order, picking a random neighbor for
each node thereby generating the pair. We call this algo-
rithm GETPAIR SEQ. This algorithm can be implemented
as a distributed P2P protocol easily. Each node has to
pick a neighbor periodically in regular intervals and per-
form the variance reduction step with the neighbor. As we
will see, this protocol is not only implementable in a dis-
tributed way but its performance is also superior to that of
GETPAIR RAND although not reaching GETPAIR PM.

Unfortunately, GETPAIR SEQ does not satisfy assump-
tion 2 of Theorem 1. Therefor we have to apply a trick to
make our framework applicable. First of all, note that when
using GETPAIR SEQ φ = 1 + φ′ where φ′ has a Poisson
distribution with parameter 1. We introduce another, non-
practical implementation of GETPAIR SEQ for which φ has
the same distribution.

This new implementation, called GETPAIR PMRAND
combines GETPAIR PM and GETPAIR RAND within one cy-
cle. During the first N/2 calls GETPAIR PMRAND behaves
like GETPAIR PM and during the remaining calls it behaves
like GETPAIR RAND. Obviously, GETPAIR PMRAND also
has the same φ = 1 + φ′ calling frequency for each node.

Based on the argumentation presented in connection
with GETPAIR PM and GETPAIR RAND we can apply The-
orem 1 to GETPAIR PMRAND. The distribution of φ can
be approximated by φ = 1 + φ′ where φ′ has the Poisson
distribution with parameter 1, that is, for j > 0

P (φ = j) = P (φ′ = j − 1) =
1

(j − 1)!
e−1. (11)

Substituting this into the expression E(2−φ) we get

E(2−φ) =
∞∑

j=1

2−j 1

(j − 1)!
e−1

=
1

2e

∞∑

j=1

2−(j−1)

(j − 1)!
=

1

2e

√
e =

1

2
√

e
. (12)

Comparing the performance to GETPAIR RAND and
GETPAIR PM we can see that convergence is slower than in
the optimal case but faster than in the random case (the rates
are 1/e ≈ 1/2.71, 1/2

√
e ≈ 1/3.3 and 1/4, respectively).

As we already saw from the experimental analysis
of GETPAIR RAND, this theorem can be considered an
extremely accurate approximation (in the case of GET-
PAIR PM the convergence theorem was exact). This means
that the only assumption that remains to be validated ex-
perimentally is the substitution of GETPAIR SEQ with GET-
PAIR PMRAND. We ran AVG with GETPAIR SEQ using sev-
eral network sizes, on both the fully connected topology and
on a random topology with a fixed view size of 20.

Similarly to GETPAIR RAND, on Figure 3(a) we can see
that convergence seems to be independent of network size.
What is more interesting however is that both topologies re-
sult in a slightly better convergence than predicted. This
effect is due to the fact that to derive the convergence rate
GETPAIR PMRAND was used instead of GETPAIR SEQ. We
can also notice that there is no observable difference be-
tween the random and fully connected topologies.

The difference becomes more significant when iterating
AVG as Figure 3(b) shows, just like in the case of GET-
PAIR RAND. However, probably due to its more regular
nature, GETPAIR SEQ seems to be less sensitive to the accu-
mulation of correlation and it tolerates the random topology
better.

4. An Example: Network Size Estimation

In [11] we offer solutions to practical aspects of the proto-
col, like relaxing the synchronization assumption and intro-
ducing mechanisms for adaptivity and fault tolerance. The
present section contains an illustrative example that points
to this direction.

To allow the protocol to be adaptive, we need to extend
anti-entropy aggregation with a restarting mechanism. First,
we have to solve the problem of termination. The solution

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

100 1000 10000 100000

va
ria

nc
e

re
du

ct
io

n

network size

getPair_rand, complete
getPair_rand, 20-reg. random

getPair_seq, complete
getPair_seq, 20-reg. random

(a) Average variance reduction after one execution of AVG on a
vector of uncorrelated values (σ2

1
/σ2

0
).

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

5 10 15 20 25 30

va
ria

nc
e

re
du

ct
io

n

cycle

getPair_rand, complete
getPair_rand, 20-reg. random

getPair_seq, complete
getPair_seq, 20-reg. random

(b) Average variance reduction for network size N = 100000

when iterating algorithm AVG (σ2

i
/σ2

i−1
).

Figure 3. Simulation results using several network sizes, on both the fully connected topology and
on a random topology with a fixed view size of 20. Values are averages over 50 independent runs.
Dotted lines show the two theoretically predicted reduction rates: 1/e ≈ 0.368 and 1/(2

√
e) ≈ 0.303.

that we adopt is that each node executes the protocol for a
predefined number of cycles k, depending on the required
accuracy of the output (see convergence rates given in Sec-
tion 3).

To make the protocol truly adaptive, we divide the exe-
cution of the aggregation protocol in consecutive epochs of
length ∆T and start a new instance of the protocol in each
epoch. Depending on the ratio between ∆T and k∆t, it is
possible that different epochs of the protocol are executed
concurrently in the network. Thus, messages exchanged for
a particular epoch have to be tagged with unique identifiers,
e.g. obtained by using a monotone counter maintained at
each node.

When a node joins the network, it contacts one of the
nodes that are already participating in the aggregation pro-
tocol. Here, we assume the existence of an out-of-band
mechanism to discover such nodes. The existing node pro-
vides the new node with the next epoch identifier and the
amount of time left until the next run starts. The node will
start to actively participate in the aggregation protocol af-
ter the specified units of time, measured on its local clock,
tagging its messages with the suggested identifier. Addi-
tionally, to avoid drift, if a node receives a message with an
identifier larger than its current one, it switches to the new
epoch immediately. This solution is sufficient because this
way a new epoch-start spreads like an epidemic broadcast
which is exponentially fast.

As an example application, let us intruduce a mechanim
for network size estimation. We base this protocol on the
following observation: if exactly on of the values stored by

nodes is equal to 1 and all the others are equal to 0, then the
average is exactly 1/N so N can be calculated directly. We
can implement this idea by enabling multiple nodes to start
concurrent instances of the averaging protocol. Each con-
current instance is lead by a different node. Messages and
data related to an instance are tagged with a unique identi-
fier (e.g., the address of the leader). The leader will initial-
ize its approximation to 1, and all the rest of the nodes that
are reached by this instance start to behave as if they had 0
as initial value.

To bound the number of instances running concurrently
we allow each node to become a leader at the beginning
of each epoch with a sufficiently small probability that can
also depend on the previous approximation of network size.

Our simulations are reported in Figure 4. A new epoch
was started every 30 cycles. Two values are reported: one is
the actual size of the network, and the other is the observed
estimate. Converged estimates are reported at the end of
each epoch. The error bars show the range of estimates ob-
tained by all nodes that participated in the full epoch.

The behavior of the network is as follows: the size os-
cillates between 90.000 and 110.000. In addition to nodes
added and removed because of the oscilattion, 100 nodes
are removed from the network and 100 nodes are added to
simulate fluctuation. Nodes that join the network are not al-
lowed to participate in the current epoch, as described ear-
lier. This is necessary to make sure each epoch converges to
the correct average at the start of the epoch. Continuously
adding new nodes would make it impossible to achieve any
convergence.

 85000

 90000

 95000

 100000

 105000

 110000

 115000

 0 100 200 300 400 500 600 700 800 900 1000

ne
tw

or
k

si
ze

cycles

Size estimate
Actual size of the network

Figure 4. Network size estimation by anti-
entropy counting.

This scenario is close to a realistic P2P network, where
the size is not constant but oscillates between a minimum
and a maximum (for example on a day/night alternation ba-
sis). We can see that the curve of estimates is similar to the
actual size curve, only translated by an epoch. This is be-
cause new nodes do not participate in the aggregation so the
final estimate describes the state of the network when the
epoch was started.

5. Conclusions

Let us summarize the practical implications of our theoreti-
cal results.

The protocol is scalable, as all convergence results pre-
sented in the paper are independent of network size N . Fur-
thermore, the distributions of the number of communica-
tions (φ) at a fixed node are also independent of N for
both GETPAIR RAND and GETPAIR SEQ. In other words,
increasing the system size will not slow convergence down
and will not increase resource requirements on the particu-
lar nodes. Furthermore, since φ is independent of location,
there are no performance peaks, the costs are distributed
very smoothly over the network. However, the overall traf-
fic in the entire network will grow linearly.

The protocol is efficient, as a good approximation of the
average is obtained very quickly by all nodes due to the
exponential convergence. Even in the worst case we exam-
ined, with GETPAIR RAND, the variance over the network
will decrease 99.9% in ln 1000 ≈ 7 cycles of AVG.

Recall that the main assumption was that the overlay net-
work has either a fully connected topology or a connected
unbiased random topology. This might be seen as a lim-
iting factor to practical applicability, but as we mentioned
much effort has been devoted into developing topology-
management protocols recently that provide nodes with (ap-
proximately) random neighbors while also taking care of

connectivity [5, 7, 9].
Our future work is targeted towards extending our analy-

sis to more realistic topologies and combining anti-entropy
aggregation with membership protocols that maintain a suf-
ficiently random (or at least predictable) topology.

Acknowledgment

This work was partially supported by the Future & Emerg-
ing Technologies unit of the European Commission through
Project BISON (IST-2001-38923). The basic idea of anti-
entropy epidemic style variance reduction is one of the
countless ideas that emerged during our many inspiring dis-
cussions with Maarten van Steen and Wojtek Kowalczyk.

References

[1] N. T. J. Bailey. The mathematical theory of infectious dis-
eases and its applications. Griffin, London, second edition,
1975.

[2] M. Bawa, H. Garcia-Molina, A. Gionis, and R. Motwani.
Estimating aggregates on a peer-to-peer network. submitted
for publication.

[3] B. Bollobás. Random graphs. Cambridge University Press,
Cambridge; New York, second edition, 2001.

[4] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry. Epi-
demic algorithms for replicated database management. In
Proceedings of the 6th Annual ACM Symposium on Prin-
ciples of Distributed Computing (PODC’87), pages 1–12,
Vancouver, Aug. 1987. ACM.

[5] P. T. Eugster, R. Guerraoui, S. B. Handurukande, A.-M. Ker-
marrec, and P. Kouznetsov. Lightweight probabilistic broad-
cast. ACM Transactions on Computer Systems, 21(4):341–
374, 2003.

[6] P. T. Eugster, R. Guerraoui, A.-M. Kermarrec, and L. Mas-
soulié. From epidemics to distributed computing. IEEE
Computer. to appear.

[7] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulié. Peer-to-
peer membership management for gossip-based protocols.
IEEE Transactions on Computers, 52(2), Feb. 2003.

[8] I. Gupta, R. van Renesse, and K. P. Birman. Scalable fault-
tolerant aggregation in large process groups. In Proceedings
of the International Conference on Dependable Systems and
Networks (DSN’01), Göteborg, Sweden, 2001.

[9] M. Jelasity and M. van Steen. Large-scale newscast comput-
ing on the Internet. Technical Report IR-503, Vrije Univer-
siteit Amsterdam, Department of Computer Science, Ams-
terdam, The Netherlands, Oct. 2002.

[10] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja,
J. Pruyne, B. Richard, S. Rollins, and Z. Xu. Peer-to-peer
computing. Technical Report HPL-2002-57, HP Labs, Palo
Alto, 2002.

[11] A. Montresor, M. Jelasity, and O. Babaoglu. Robust ag-
gregation protocols for large-scale overlay networks. Tech-
nical Report UBLCS-2003-16, University of Bologna, De-
partment of Computer Science, Bologna, Italy, Dec. 2003.

[12] A. Oram, editor. Peer-to-Peer: Harnessing the Benefits of a
Disruptive Technology. O’Reilly, Mar. 2001.

[13] R. van Renesse. The importance of aggregation. In
A. Schiper, A. A. Shvartsman, H. Weatherspoon, and B. Y.
Zhao, editors, Future Directions in Distributed Computing,
number 2584 in Lecture Notes in Computer Science, pages
87–92. Springer, 2003.

[14] R. Van Renesse, K. P. Birman, and W. Vogels. Astrolabe: A
robust and scalable technology for distributed system mon-
itoring, management, and data mining. ACM Transactions
on Computer Systems, 21(2), May 2003.

[15] R. van Renesse, Y. Minsky, and M. Hayden. A gossip-style
failure detection service. In N. Davies, K. Raymond, and
J. Seitz, editors, Middleware ’98, pages 55–70. Springer,
1998.

