
UEGO, an Abstract Niching Technique for Global

Optimization⋆

Márk Jelasity

Research Group on Artificial Intelligence

MTA-JATE, Szeged, Hungary

jelasity@inf.u-szeged.hu

Abstract. In this paper, UEGO, a new general technique for accelerating and/or

parallelizing existing search methods is suggested. UEGO is a generalization and

simplification of GAS, a genetic algorithm (GA) with subpopulation support. With

these changes, the niching technique of GAS can be applied along with any kind

of optimizers. Besides this, UEGO can be effectively parallelized. Empirical re-

sults are also presented which include an analysis of the effects of the user-given

parameters and a comparison with a hill climber and a GA.

1 Introduction

In this section a short introduction to the history and motivation behind developing

UEGO is given, but first let us state what the acronym means. UEGO stands for Universal

Evolutionary Global Optimizer. However, it must be admitted from the start that this

name is not over-informative, and the method is not even evolutionary in the usual

sense. In spite of this we have kept the name for historical reasons.

1.1 Roots

The predecessor of UEGO was GAS, a steady-state genetic algorithm with subpopulation

support. For more details on GAS the reader should consult [9].

GAS has several attractive features. Perhaps the most important of these is that it

offers a solution to the so-called niche radius problem which is a common problem of

many simple niching techniques such as fitness sharing ([3] or [4]), simple iteration

or the sequential niching [2]. This problem is related to functions that have multiple

local optima and whose optima are unevenly spread throughout the search space. With

such functions the niche radius cannot be set correctly since if it is too small the search

becomes ineffective and if it is too large those local optima that are too close to each

other cannot be distinguished. The solution of GAS involves a cooling technique which

⋆ The original publication is available at www.springerlink.com. In Agoston E. Eiben, Thomas

Bäck, Marc Schoenauer, and Hans-Paul Schwefel, editors, Parallel Problem Solving from Na-

ture - PPSN V, volume 1498 of Lecture Notes in Computational Science, pages 378–387.

Springer-Verlag, 1998. (doi:10.1007/BFb0056880). This work was supported by the Hungar-

ian Soros Fundation and FKFP 1354/1997.

enables the search to focus on the promising regions of the space, starting off with a

relatively large radius that decreases as the search proceeds.

However, the authors of GAS came in for a number of criticisms, one being that the

algorithm was too much complex, and another that parallel implementation turned out

to have many pitfalls associated with it.

1.2 Motivations

Although UEGO is based on GAS there are two major differences that were motivated

by the need for a better parallel implementation and the requirement of using domain

specific knowledge in an effective way.

The structure of the algorithm has been greatly simplified. As a result the parallel

implementation is much easier and the basic ideas become more accessible. This is

important because, as the results of the paper will show, UEGO performs similarly or

better than the GA and the simple stochastic hill climber (SHC) on our test problems,

and at the same time it can be parallelized better than these methods.

The new method is more abstract. The common part with GAS is the species cre-

ation mechanism and the cooling method. However, the species creation and cooling

mechanism has been logically separated from the actual optimization algorithm, so it

is possible to implement any kind of optimizers that work inside a species. This allows

the adaptation of the method to a large number of possible search domains using ex-

isting domain specific optimizers while enjoying the advantages of the old GAS-style

subpopulation approach.

In this paper an SHC is implemented as the optimizer algorithm. This choice is

supported by results that show that the performance of the SHC is similar to that of the

GA in many cases and sometimes may even be better (e.g. [12, 10, 13, 7]). In [5] a GA

with very small population size (1) has been suggested for the graph coloring problem,

which is in fact an SHC. Our results confirm that the SHC can indeed outperform the GA

at least on the problems and parameter settings we considered.

1.3 Outline of the Paper

Section 2 describes UEGO; the basic concepts, the general algorithm and the theoretical

tools that are used to set the parameters of the system based on a few user-given pa-

rameters. Section 3 discusses the experimental results that describe the effects of these

parameters of the algorithm on the quality of the results and compares UEGO with a

simple GA and an SHC. Section 4 then provides a short summary.

2 Description of UEGO

In this section the basic concepts, the algorithm, and the setting of the parameters are

outlined. In UEGO, a domain specific optimizer has to be implemented. Wherever we

refer to ’the optimizer’ in the paper we mean this optimizer.

2.1 Basic Concepts

A key notion in UEGO is that of a species. A species can be thought of as a window on

the whole search space. This window is defined by its center and a radius. The center

is a solution, and the radius is a positive number. Of course, this definition assumes

a distance defined over the search space. The role of this window is to localize the

optimizer which is always called by a species and can see only its window, so every

new sample is taken from there. This means that the largest step made by the optimizer

in a given species is no larger than the radius of the given species. If the value of a new

solution is better than that of the old center, the new solution becomes the center and

the window is moved.

The radius of a species is not arbitrary; it is taken from a list of decreasing radii, the

radius list. The first element of this list is always the diameter of the search space. If the

radius of a species is the ith element of the list, then we say that the level of the species

is i.
During the process of optimization, a list of species is kept by UEGO. The algorithm

is in fact a method for managing this species-list (i.e. creating, deleting and optimizing

species); it will be described in Section 2.2.

2.2 The Algorithm

Firstly, some parameters of EUGO will be very briefly mentioned more details of which

can be found in Section 2.3.

As we mentioned earlier, every species has a fixed level. The maximal value for

this level is given by a parameter called levels. Every valid level i (i.e. for levels

from [1,levels]) has a radius value (ri) and two fixed numbers of function evalu-

ations. One is used when new species are created at a given level (newi) while the

other is used when optimizing individual species (ni). To define the algorithm fully,

one more parameter is needed: the maximal length of the above-mentioned species list

(max spec num).

The basic algorithm is shown in Figure 1.

uego

init_species_list()

optimize_species(n[1])

for i = 2 to levels

create_species(new[i]/length(species_list))

fuse_species(r[i])

shorten_species_list(max_spec_num)

optimize_species(n[i]/length(species_list))

fuse_species(r[i])

rof

ogeu

Fig. 1. The basic algorithm of UEGO.

Now the procedures called by UEGO will be described.

Init species list. Create a new species list consisting of one species with a random

center at level 1.

Create species(evals). For every species in the list create random pairs of solutions

in the window of the species, and for every such pair take the middle of the section

connecting the pair. If the objective function value of the middle is worse than the pair

values the members of the pair are inserted in the species list otherwise the species list

remains unchanged. Every new species is assigned the actual level value (i in Figure 1).

The motivation behind this method is simple: to create species that are on different

hills so ensuring that there is a valley between the new species. The parameter of this

procedure is an upper bound of the function evaluations. Note that this algorithm needs

a definition of section in the search space.

Fuse species(radius). If the centers of any pair of species from the species list are

closer to each other than the given radius, the two species are fused. The center of the

new species will be the one with the better function value while the level is the minimum

of the levels of the original species.

Shorten species list(max spec num). Deletes species to reduce the list length to the

given value. Higher level species are deleted first.

Optimize species(evals). Starts the optimizer for every species with the given evalu-

ation number (i.e. every single species in the actual list receives the given number of

evaluations). See Section 2.1.

Finally, let us make a remark about a possible parallel implementation. The most

time-consuming parts of the basic algorithm is the creation and optimization of the

species. Note that these two steps can be done independently for every species, so each

species can be assigned a different processor. As our experimental results will clearly

show, UEGO performs slightly better than the SHC and the GA even when the number of

species is as high as 200.

2.3 Parameters of UEGO

The most important parameters are those that belong to the different levels: the radii

and two numbers of function evaluations for species creation and optimalization (see

Figure 1). In this section a method is described which sets these parameters using a few

easy-to-understand parameters set by the user. In Section 3 further guidelines will be

given on the meaning and setting of these remaining user-given parameters.

We will now make use of the notation introduced in Section 2.2. The user-given

parameters are listed below. Short notations are also given below that will be used in

equations in the subsequent sections.

evals (N): The maximal number of function evaluations the user allows for the whole

optimization process. Note that the actual number of function evaluations may be

less than this value.

levels (l): The maximal level value (see Figure 1).

threshold: (ν): The meaning of this parameter will be explained later.

max spec num: (M): The maximal length of the species list.

min r: (rl): The radius that is associated with the maximal level, i.e. levels.

The parameter setting algorithm to be described can use any four of the above five

values while the remaining parameters are set automatically.

Speed of the optimizer. Before presenting the parameter setting method, the notion of

the speed of the optimizer must be introduced. As explained earlier, the optimizer can-

not make a larger step in the search space than the radius of the species it is working in.

Given a certain number of evaluations, it is possible to measure the distance the given

species moves during the optimization process. This distance can be approximated as a

function of the radius and evaluations for certain optimizers using mathematical models

or experimental results. This naturally leads to a notion of speed that will depend on the

species radius and will be denoted by v(r). As we will not give any actual approxima-

tions here, the reader should refer to [9].

The parameter-setting method is based on intuitive and reasonable principles which

are based on personal experience with GAS. Though the parameters are still ad hoc since

the principles are ad hoc as well, this method has advantages since these principles are

much easier to understand, they can be expressed in human language, and the number of

parameters are larger than the number of principles. These principles are now described

below.

Principle of equal chance. At a level, every species moves a certain distance from

its original center due to optimization. This principle ensures that every species will

receive the number of evaluations that is enough to make at least a fixed distance at

every level. This common distance is defined by r1ν. The meaning of threshold is

now clear: it directly controls the distance a species is allowed to cover, so it actually

controls the stability of the resulting species (i.e. the probability that they represent a

local optimum). Recall that r1 is always the diameter of the search space. Now the

principle can be formalized:

v(ri)ni

M
= r1ν (i = 2, . . . , l) (1)

Principle of exponential radius decreasing. This principle is quite straightforward;

given the smallest radius and the largest one (rl and r1) the remaining radii are ex-

pressed by the exponential function

ri = r1(
rl
r1

)
i−1

l−1 (i = 2, . . . , l). (2)

Principle of constant species creation chance. This principle ensures that even if the

length of species list is maximal, there is a chance of creating at least two more species

for each old species. It also makes a strong simplification, that all the evaluations should

be set to the same constant value.

newi = 3M (i = 2, . . . , l) (3)

Decomposition of N . Let us define new1 = 0 for the sake of simplicity since new1 is

never used by UEGO. The decomposition of N results in the trivial equation

l∑

i=1

ni + newi = (l − 1)3M +

l∑

i=1

ni = N (4)

making use of (3) in the process. One more simplification is possible too; set n1 = 0
whenever l > 1. Note that if l = 1 then UEGO reduces to the optimizer it uses for

optimizing the species.

Expressing ni from (1) and substituting it into (4) we can write

(l − 1)3M +
l∑

i=2

Mr1ν

v(ri)
= N. (5)

Using (2) as well, it is quite evident that the unknown parameters in (5) are just the user

given parameters and due to the monotonity of this equation in every variable, any of the

parameters can be given using effective numeric methods provided the other parameters

are known. Using the above principles the remaining important parameters (ni, newi

and ri) can be evaluated as well. Note however that some of the configurations set by

the user may be infeasible.

3 Experiments

In this section we will discuss the performance of UEGO on an NP-complete combina-

torial optimization problem: the subset sum problem. A comparison with a simple GA,

GENESIS [6] will be presented. As another result of the experiment the behavior of the

parameters of UEGO will be illustrated.

3.1 Problem and Coding

In the case of the subset sum problem we are given a set W = {w1, w2, . . . , wn} of n
integers and a large integer M . We would like to find a V ⊆ W such that the sum of

the elements in V is closest to, without exceeding, M . This problem is NP-complete.

Let us denote the sum of the elements in W by SW .

We created our problem instances in a similar way to the method used in [11]. The

size of W was set to 50 and the elements of W were drawn randomly with a uniform

distribution from the interval [0, 1012] instead of [0, 103] (as was done in [11]) to obtain

larger variance. According to the preliminary experiments, the larger variance of W
results in harder problem instances which is important since comparing methods on

almost trivial problems makes little sense. The problem instance used here turned out

to be so tough that none of the methods employed could find an optimal solution. Based

on the results of [8], M was set to SW/2. As was shown in [8], this is the most GA-

friendly setting, so there is no bias against GENESIS introduced by the problem instance.

We used the same coding and objective function as suggested in [11]. For a solution

(x = (x1, x2, . . . , x50)),

f(x) = −(a(M − P (x)) + (1− a)P (x))

where P (x) =
∑

50

i=1
xiwi, and a = 1 when x is feasible (i.e. M − P (x) ≥ 0) and

a = 0 otherwise. Note that the problem is defined as a maximization problem.

3.2 The Optimizer and GA Settings

In UEGO, the optimizer was chosen to be a simple SHC as was discussed in the Introduc-

tion. In our implementation the SHC works as follows: mutate every bit of the solution

with a given probability (but mutating one bit at least), evaluate the new solution and if

it is better than or equal to the actual solution, it becomes the new actual solution. This

type of SHC worked best in [12], as well. The mutation probability was set at 4/n where

n is the chromosome length. This value was the same in all the experiments carried out

including those with GENESIS. The other GA parameters were a population size of 50,

1-point crossover with probability 1, and elitist selection.

3.3 The Experiments

One of the two main goals of these experiments was to analyze the effects of the user-

given UEGO parameters described in Section 2.3. To perform this analysis, several val-

ues were chosen for each parameter (see Table 1) then UEGO was run 50 times for every

possible combination of these values. This meant that 5 · 4 · 6 · 50 = 6000 experiments

evals levels max spec num treshold min r

3000, 10000, 30000, 2, 3, 5, 10, 20, 40, automatically fixed

100000, 300000 5, 10 100, 200 set to 1

Table 1. The values of the UEGO parameters. Experiments were performed for all combinations.

were performed for one problem instance. Three problem instances were examined but

since the results were similar in each case, only one problem instance is discussed be-

low.

Figure 2 shows the effects of the different parameter settings. As the plots are tipi-

cal it was inferred that the parameters of UEGO must be fairly robust for this particular

-1.4e+09

-1.2e+09

-1e+09

-8e+08

-6e+08

-4e+08

-2e+08

0

4096 8192 16384 32768 65536 131072 262144

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e

Function evaluations

Comparison of different level settings

Hillclimber
levels: 2
levels: 3
levels: 5

levels: 10

-1.4e+09

-1.2e+09

-1e+09

-8e+08

-6e+08

-4e+08

-2e+08

0

4096 8192 16384 32768 65536 131072 262144

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e

Function evaluations

Comparison of different max. species settings

Hillclimber
max. species: 5

max. species: 10
max. species: 20
max. species: 40

max. species: 100
max. species: 200

Fig. 2. With the various level settings, max spec num is 100 and for the differents max. species

settings levels is 3.

problem class. Some interesting implications of this fact will be touched on in Sec-

tion 3.4.

The other goal of the experiments was to make a comparision. Figure 3 shows the

relevant results. Note that it was difficult to select the best and the worst performance

-1.2e+09

-1e+09

-8e+08

-6e+08

-4e+08

-2e+08

0

4096 8192 16384 32768 65536 131072 262144

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e

Function evaluations

Comparison of GENESIS and UEGO

Hillclimber
Genesis

Best Uego
Worst Uego

Fig. 3. The parameters for the best UEGO were max spec num=20 & levels=10, and for the

worst max spec num=5 & levels=2.

because the curves cross, but the plots give a good approximation. Here SHC is simply

UEGO with the setting of levels=1.

3.4 Discussion

UEGO parameters. As we saw in Figure 2, the parameters seem to be quite robust

in this problem, a fact which has rather interesting implications. As was mentioned

in Section 2.2, the interaction between the species is minimal so an effective parallel

implemetation is possible. This point of view sheds new light on the robustness of the

parameters: the larger the number of species the faster the parallel algorithm can be,

provided enough processors are available. Good robustness here simply means that we

can increase the speed by as much as a hundred times since every species can be handled

by a different processor while the performance remains the same.

Comparison The parameters of GENESIS were not finely tuned; however, the author has

some experience with the GA on this problem [8], and it is clear from Figure 3 at least

that the GA is more sensitive to parameter setting. However, even if the parameter setting

had been badly done, the parallel implementations of GAs cannot provide the speedup

that UEGO can. So, after all, it is probably true in this case that the performance of UEGO

is superior to that of a simple GA. In the case of SHC similar conclusions can be drawn:

the application of the general UEGO technique to the SHC results in an increased quality

of the solutions found.

4 Summary

In this paper, UEGO, a general technique for accelerating and/or parallelizing existing

search methods was discussed. As was shown, most of the parameters of the system

are hidden from the user due to an algorithm for calculating those parameters from a

couple of simple parameters. This algorithm is based on principles stated in section 2.3

and the speed of the applied optimizer. It was also shown that the user-given parameters

are robust, at least in the case of the subset sum problem.

Other experimental results were also given, such as the comparison of the technique

with a GA and an SHC. It was shown, that UEGO is slightly better than both, and, due

to the relative isolation of the species, UEGO should run much better than both of them

on a parallel machine since the robustness of the parameters ensures that increasing the

number of species does not result in decreasing performance.

5 Acknowledgements and a Note

I would like to thank my reviewers for their criticism, especially the one who — among

very useful comments — clearly wrote:

The paper . . . fails to show any benefit achieved by the new UEGO.

Though the situation is not that simple, there is some truth behind this statement. The

coin has another side, however.

UEGO is a result of improving GAS. Every improvement made GAS less and less

like a GA just like in [5]. Even the most sceptical readers have to admit that UEGO

is not worse than the GA so they can interpret this paper as one more call for more

comparisons between simple or multi-start stochastic hill climbers and GAs to find and

describe the advantages of the later.

References

1. Thomas Bäck, editor. Proceedings of the Seventh International Conference on Genetic Al-

gorithms, San Francisco, California, 1997. Morgan Kaufmann.

2. D. Beasley, D. R. Bull, and R. R. Martin. A sequential niche technique for multimodal

function optimization. Evolutionary Computation, 1(2):101–125, 1993.

3. K. Deb. Genetic algorithms in multimodal function optimization. TCGA report no. 89002,

The University of Alabama, Dept. of Engineering mechanics, 1989.

4. K. Deb and David E. Goldberg. An investegation of niche and species formation in genetic

function optimization. In J. D. Schaffer, editor, The Proceedings of the Third International

Conference on Genetic Algorithms. Morgan Kaufmann, 1989.

5. A. E. Eiben and J. K. van der Hauw. Graph coloring with adaptive genetic algorithms.

Journal of Heuristics, 4(1), 1998.

6. J. J. Grefenstette. Genesis: A system for using genetic search procedures. In Proceedings of

the 1984 Conference on Intelligent Systems and Machines, pages 161–165, 1984.

7. Hisao Ishibuchi, Tadahiko Murata, and Shigemitsu Tomioka. Effectiveness of genetic local

search algorithms. In Bäck [1], pages 505–512.

8. Márk Jelasity. A wave analysis of the subset sum problem. In Bäck [1], pages 89–96.

9. Márk Jelasity and József Dombi. GAS, a concept on modeling species in genetic algorithms.

Artificial Intelligence, 99(1):1–19, 1998.

10. A. Juels and M. Wattenberg. Stochastic hillclimbing as a baseline method for evaluating

genetic algorithms. Technical report, UC Berkeley, 1994.

11. S. Khuri, T. Bäck, and J. Heitkötter. An evolutionary approach to combinatorial optimization

problems. In The Proceedings of CSC’94, 1993.

12. M. Mitchell, J. H. Holland, and S. Forrest. When will a genetic algorithm outperform hill-

climbing? In J. D. Cowan et al., editors, Advances in Neural Information Processing Systems

6. Morgan Kaufmann, 1994.

13. Mutsunori Yagiura and Toshihide Ibaraki. Genetic and local search algorithms as robust

and simple optimization tools. In Ibrahim H. Osman and James P. Kelly, editors, Meta-

Heuristics: Theory and Application, pages 63–82. Kluwer Academic Publishers, 1996.

